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1. Background to the Present Study

1.1 The Clausius-Mossotti Formula.

There are currently numerous mixture formulas in the literature,
catering for various circumstances of loading, size and shape of loading
materials, wavelength, randomization of particles, etc. Almost all these
formulas reduce to a version of the Clausius-Mossotti equation which
gives the effective, or bulk, permittivity ¢, of the mixture in terms of
that of the matrix material €¢; by an equation of the form

e=€p/e,=14+M (1.1)

where the quantity M depends on the loading-particle size, electrical
properties and the volumetric loading factor v.

1.2 Loading Strengths

A number of regions of different loading strengths can be iden-
tified. The following can be conveniently characterized, although the
nomenclature used here is not an official one:
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1.2.1 Very weak

In this region the loading particles are so far apart that multiple
scattering between them is negligible. Under these circumstances the
quantity M in (1.1) can be written in the form

M =aN (1.2)

where N is the number of particles per unit volume, and «, called
the polarizability, is a measure of the particle scattering. The particle
scatters as if it were a point dipole, with no size or structure, though
its size and shape are used in calculating o .

As an example, for a very weak loading of small spherical metallic
particles, it is found that

M=3v (1.3)

where v is the geometric volumetric loading. For spheres of radius r
in a cubic lattice of side D,

v = (4/3)nr3/ D3 (1.4)

with a maximum value of /6 when 2r = D. However, (1.3) breaks
down well before a 50% loading occurs.

1.2.2 Weak

The transition from very weak to weak loading does not occur
at a precisely defined point. When interparticle dipole-dipole scatter-
ing becomes significant, (1.2) no longer describes the situation. If M
becomes “appreciable” with respect to unity, for example M = 1/2,
multiple scattering between the loading particles leads to a modified
version of (1.2);

M =aN/(1 - A'aN) (1.5)

where A’, called the array factor, depends on the mutual disposition
of the particles. It has the value 1/3 for particles in a cubic array, and
(1.3) for small metallic spheres becomes

M =3v/(1-v) (1.6)
For example, v =1/7 for M =1/2;and v=1/4 for M =1.
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1.2.8 Strong

Beyond a certain point, depending also on the polarizability, (1.5)
and (1.6) fail because the particles are so close that dipolar scatter-
ing is insufficient to account for their mutual interaction. Quadrupole,
octopole and higher-order terms must be included, and terms that de-
pend on higher powers of N or v enter the denominators. Thus (1.6)
becomes augmented by an octopole term (in the cubic lattice case the
quadrupole term vanishes by symmetry) to give [1]

M =3v/(1 —v —1.650'%/3) (1.7)

This formula gives M = 4.46 for v = 1/2, when the spheres are very
nearly touching. This region may be referred to as one of strong load-
ing; and its upper limit is reached when the spherical surfaces, known
as exclusion spheres, which can be thought of as just circumscribing the
particles, are touching. In the case of a spherical particle the actual sur-
face and the circumscribing spherical surface coincide. Otherwise, the
particle resides within the circumscribing sphere. Clearly, the greatest
volumetric loading (for a cubic lattice of spheres) is v = 7/6 = 0.523,
at which value, of course, still more terms would be needed in the
denominator of (1.7).

1.2.4 Dense

Although the circumscribing spheres cannot get any closer than
just touching, the individual particles can, provided they are not spher-
ical. In particular, for elongated aligned particles in a regular lattice
structure, much closer spacings are, in principle, possible; although
physical touching can occur if the alignment is disturbed. When such
touching, on average, is limited to perhaps one or two close neighbors,
at most, the loading can be called dense.

1.2.5 Very dense

If the particles are so close that, on randomizing their orienta-
tions, a particle can typically touch several others, a new phenomenon
called reticulation occurs. The particles begin to form a coherent three-
dimensional network of contacting particles, and this marks a sort of
phase change between a particle-loaded matrix, and a new type of ma-
terial in which the role of matrix and particle material is reversed. The
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particles now form the body of the mixture, in which small pockets of
the original matrix material are embedded; much like the gas bubbles
in an expanded or foamed plastic material. The loading in such a ma-
terial may be characterized as very dense, and is not the subject of the
present study; though the approximate point of transition from dense
to very dense will be discussed briefly in a later section.

It is clear that if the particles are highly elongated, the start of
the dense region, as a function of volume loading, can occur at an ex-
tremely low value of geometric loading. For example, if the particles
are cylindrical fibers with an aspect ratio of 100, the transition from
strong to dense loading occurs when v = (7/4)107*, less than a hun-
dredth of a percent—this would normally be thought of as being in
the very weak category! Clearly, particle shape as well as the actual
volume loading must both be considered in determining the loading
region of concern. The present study is primarily concerned with the
region here classified as dense, i.e., interpenetrating exclusion spheres.

1.8 The Ezclusion Sphere

The exclusion sphere concept plays a crucial role in developing
mixture formulas. As long as one has not crossed the threshold from
strong to dense, i.e. just-touching exclusion spheres, the loading parti-
cles cannot touch, whatever their shape or orientation. Thus a random
orientation can be considered by averaging particle orientations with-
out consideration of particle contact, which otherwise enormously com-
plicates calculations of this character. The exclusion sphere, however,
comprises a much more basic consideration than that of merely pre-
venting particle contact. To see this we must introduce the T-matrix,
due to Waterman [2], which is essentially a matrix whose elements
give the scattering into one order of spherical harmonic when the par-
ticle is excited by another. Most modern mixture calculations depend
on this feature, which is a very powerful one, permitting the mixture
analysis to be separated from the analysis of the particle properties
per se. These are embedded in the elements of the T-matrix, and de-
pend on the possibility of the particle field, under various conditions
of excitation, being expressible in terms of out-going waves of vari-
ous orders of spherical harmonics. (The different orders of spherical
harmonics replace the higher multi-pole radiations of earlier analyses.)
Such an expansion in out-going waves is possible outside the exclu-
sion sphere, but not inside it. Thus the limitation to non-penetrating
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exclusion spheres is quite essential to the use of the T-matrix formu-
lation; not just to prevent particle contact on angular averaging, but,
very basically, just to permit the T-matrix formulation to be valid.
This electromagnetic requirement scems not to have been remarked
upon before; and attempts to apply formulas to densitics in excess of
those thus permitted have been made [3] without consideration of the
invalidity of the application.

One of the paradoxes encountered in this may arise for certain
rectangular lattices, for which the array factor A’ in (1.5) can be large
enough to permit the denominator to go through zero and become
negative. The resulting non-physical value of ¢ clearly indicates that
something is amiss.

It follows that, to be able to make any sort of valid analysis at all
in the dense region, the T-matrix concept has to be abandoned. An-
gular averaging will be a very difficult operation, and even an analysis
of aligned particles in a regular array will call for a new approach.

An initial attempt at the latter is examined in the remainder of
this study. As will be seen, not only is the T-matrix concept abandoned,
but also that of separation of excitation and the resulting scattering,
an essential feature of the T-matrix clement determination.

2.  Aligned Fibers in a Rectangular Array

2.1 Approzimations Used

Approximations of various sorts need to be made along the way. In
the present study we are concerned with loading particles in the form of
finitely conducting cylinders, of diameter 2a and length 2 L, in which
the aspect ratio L/a is large, of the order of 100. The conductivity
of the fibers, o, may be large, but the radius is sufficiently small for
the fields to substantially penetrate the body of the fiber. The fibers
are small compared to wavelength, so terms of order L/)\o are small
and usually may be neglected; here, Ao is the free space wavelength,
typically in the microwave band.

2.2 Geometric Arrangement

The fibers are considered arranged in a rectangular array, in which
the co-linear spacing, g, is necessarily greater than 2 L; but in the
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examples given will not be much greater than this. The equatorially
adjacent fibers are separated by f, with f <« g for loadings of the
order of a percent. In fact, if we take g = 2L, then f =0.18L for a1
percent loading when L/a = 100, giving f/g = 0.09.

The geometric arrangement is shown in Figure 1 in which a z-
polarized wave propagates along the z-axis. Particles are located at
r=mf, 0 <m<oo; y=nf, —0o0o <n < o0; 2=pg,—00 <
p < co. A typical particle could be located anywhere in the y-z
plane, but because the distribution is to *oo in both dimensions, all
such particles are equivalent, so for convenience we take the y and z
coordinates of a representative particle as both zero. Not so, however,
for the z coordinate, since the front surface of the mixture is at z =
0; and £ = myf will be taken as the z coordinate, where we take
my > 1 so as to be dealing with the bulk properties, rather than the
special properties of a thin “skin” near the interface at z = 0. This
localized region is of no interest in the present study.

2.8 The Fiber Current

We treat the fibers somewhat like short antennas, each carrying a
current I(¢/L), where ( is an axial coordinate along the fiber, mea-
sured from the fiber center. A common process used in antenna theory
is to consider the radiation as due to a hypothetical current filament of
strength I located along the antenna axis. For this to be valid at the
antenna surface the field calculated there needs to be the same as that
due to the actual current, which is usually distributed uniformly round
the antenna surface. It can be shown that this is then indeed so; but in
the present investigation the current is assumed to substantially pene-
trate the body of the fiber, and it is not immediately obvious that the
assertion still holds. The matter is analyzed in Appendix A, “Effective
Wire Radius”, where it is shown that, irrespective of the cross-sectional
current distribution, so long as it is azimuthally uniform, the effective
radius is always a: the current can validly be considered as concen-
trated along the axis, easing many subsequent calculations.

All fibers in a y- 2 plane (z = constant) are equivalent, but as z
increases, the fields at the fibers, and therefore their currents, progress
with the amplitude and phase of the mixture wave whose propagation
constant is ke'/?, where k = koe}/ 2 is the propagation constant of the
matrix. Apart from this, all fiber currents are equivalent, and we can
write, for the currents in the plane z =mf
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Figure 1. Cylinders in a regular rectangular lattice.
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Lyemys = I(¢/L) exp|—jke'/? fm] (2.1)

where ( is considered measured from the center of any particle, irre-
spective of its placement.
On this basis, the distance between a point ¢ on a particle at

(mf, nf, pg) to a point on the surface of a representative particle at
(mOf) 0) 0) is

Ronp = [(m —mg)?f2 +n2 % + (pg + ¢ — 2)% + a?) /2 (2.2)

In this expression the very small quantity a? can be ignored un-
less m =mg, n=p=0; i.e. for the field produced by the representa-
tive particle on its own surface.

The Hertzian vector from a particle at (mf, nf, pg) to the rep-
resentative particle at (mgyf, 0, 0) is given in Appendix E. It has a
single component II,, and in equation (E2) the current is normalized
by defining

(/L) = —(530/€1ko)1(¢/L) (2.3)

(where ¢, is the relative permittivity of the matrix material) From here
on, only this normalized current is used. In terms of it, the boundary
condition for the tangential component of electric field E at the fiber
surface is given by (E3)

E = jri (2.4)
where (E4),

r=¢€/15a%0 X (2.5)

is a convenient measure, for the purposes of this study, of the fiber
resistivity.

2.4 An Integral Equation

The electric field at any point is the sum of the incident field
Ege~7*2 and a triple radiation sum taken over all particles. To get the
field from the Hertzian vector requires the operation (grad div + k?),
which reduces to (8%/82% + k2) for the z component. If we specialize
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the calculation to a point on the surface of the representative particle,
and use the boundary condition (2.4), we get an integral equation for
the fiber current:

jri(z/L)e —iket/2mof _ Eoe"km°f+(82/8z + k?) Z z Z

m=0n=—00 p=—00

/NC/L) - ek tmige . L <z<L (2.6)

3. A Variational Expression for ¢

3.1 Approzximations for the Kernel

The difficulty with (2.6) is the intractable nature of the triple
sum; even with a much simpler kernel the equation has all the difficul-
ties associated with determining an antenna current. Fortunately, in
the present instance, the form of the antenna current is not itself the
object of study, and providing the mixture permittivity can be suitably
extracted, a variational form can be sought in which the exact form
of the current does not need to be known. Since € occurs primarily in
the triple sum, this must first be investigated; two useful instruments
for this are i) approximating a sum by an integral; and ii) the use of
Poisson’s theorem, which replaces a sum by a related sum of Fourier
transforms. These matters are discussed in detail in Appendices B and
C; the main features and conclusions are given in the ensuing sections.

3.2 The Improved Sum Formula

For smoothly varying functions the well-known Newton’s formula
relates a sum to an integral, with an approximate correction equal
to half the function at the end points. A much improved version, the
Euler-Maclaurin sum formula, gives the correction terms as a sequence
of derivatives at the end points. A variant of the latter, in which the
first correction term is the second-order derivative, comes from approx-
imating the area under a curve between the limits m—1/2 to m+1/2
by the unit-width rectangle at m:
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m+1/2
fom) = [ @z + O(1"m) (3.1)
m-—1/2
This leads to the moderately accurate approximation
M, Ma+1/2
> sm= [ ey (3.2)
=M, M,-1/2

In Appendix B a substantial improvement, which appears to be
novel, is found in which (3.1) is replaced by

m+1/2 ]
f(m) = / Lo ReJE DA O m) (33

where § = 1/3!/2 . Instead of (3.2) one finds

Mj Ma+(1+4i6)/2
S f(m)~Re / f(2)dz (3.4)
M, My~ 14(14i6)/2

This is a considerable improvement over (3.2) and is used in Appendix
C for handling sums with f(m) = (m?+a?)~'/2, with o a parameter
determined by the details of the application. Equation (3.4) is exact for
cubic curves, and its application amounts to approximating a function
piece-wise by cubic segments at unit intervals.

3.8 The Triple Sum

Poisson’s theorem states that

Y flan)= = 3" Flengfa) (35)
where o
F(w) =/ e f(2)dz (3.6)

This replaces one sum by another; however one may be much more
slowly convergent than the other, leading to very good approximations
in some cases by taking only a very few terms of the more convergent
series. This happens to be the case if
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f(Z) — e—ik(r’+zz)‘/’/(r2 + 22)1/2 ’

for which F(w) = 2K, [r(w? — k2)1/?].

This is a highly attenuating function when the argument is large, lead-
ing to (C6) in which the Ky functions are further approximated by
a sum handled by the method of Appendix B. There are many more
such operations needed before the triple sum can be adequately ap-
proximated and these are detailed in Appendix C, leading eventually
to (C25):

o-ikel/ifm _ —2me~ kI mo

Ronnp k2 2g(12 1)

e'jkcl/zjmo{ 47 + 27Tg |:l + ¢2 |¢|jl

k2f2g(e —1) = f? 2 g

(02 +¢2)1/2 ] } (37)

Ha + )

where ¢ =(z2—¢); B=f(1+1i6)/2; 6=1/V3.

Re log

B+ (¢2 +52 + a2)1/2

3.4 A Variational Ezxpression

The above expression can at once be seen to consist of two distinct
parts, one varying as exp(—jkz) and the other as exp(—jke'/?x),
where z = m,f is the coordinate of the representative particle. Since
the net field in the mixture varies only as exp (—jke!/2z) the term
in exp(—jkz) must somehow be removed. As is apparent from (2.6)
the excitation field Epexp (—jkz) also occurs in that equation. The
extinction theorem requires that it be cancelled out, leading to the
relation

2
0=FEp +[ i(¢/L)d¢ [W] (3.8)
This equation determines the current moment in terms of the incident
field, although it happens that the subsequent analysis is homogeneous
in the current, so that (3.8) does not need to be used here. In what
remains of (2.6) the factor exp (—jke'/2fm,) cancels throughout, lead-
ing to
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.. L 47
]Ti(Z/L) = (62/822 + kz) /_Lz(C/L) {m + F(z — C)}(:i)
where F(@) = Fy(9) + Fo(¢) + Fy(¢) and '
Fi(¢) = (a® + ¢*)71/2 (3.10)

Fy(¢) = (1/f){log(a® + ¢%) — 2Re log[B + (¢* + 8% + a%)/?]} (3.11)

2ng [1 L& M]
216 ¢ g
Now the first term in the integral is independent of z, so (82/822 +k?)
reduces to just k2. In the term in F the representative lengths are
of order L or less, so 8%/022 = O(1/L?), in relation to which the k2
term is negligible. Hence (3.9) becomes, on re-arrangement,

F3(¢) = (3.12)

M [V i/L)de = jrite/ L) - 0%/02 / C (/PG - e
m—/_Lz = jri(z z Lz( z(3§13)

This equation can be put in variational form by multiplying both sides
by i(z/L) and integrating over the fiber length:

47
f2g(e—1)

K /_ LL 2(2/L)dz + /_ LL /_ LL #(2/ L) (¢/L)F (2 — ¢)dzd¢/ L2

[ /_ I;i(z/L)dz]z

Use has been made of an integration by parts on z and ¢, as discussed
in the first section of Appendix D. And as shown in Appendix F,
this form is a variational structure in which small departures of any
assumed form for the current from its correct form lead to second-order

(3.14)
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errors in €. Moreover, since the integral equation (3.13) is embedded
in (3.14), further improvements in the value of € from an assumed
current form can be found. The method is explained in Appendix F.

Two further changes are made to (3.14). All lengths are normal-
ized to L from here on, so that, for example, a now means a/L, f
means f/L, etc; and use is made of the integration-variable change of
Appendix D. This leads to

8T
f2g(e-1)

e e [l
[ /0 i(z)dz]
(3.15)

The symmetry of i(z) around z =0, plus the fact that i(+1) =
0, the vanishing of the current at the fiber ends, has been utilized in
arriving at (3.15). The purpose of the variable change of Appendix D
is to separate the double integration of z and ¢ into an integration
over a variable g involving only the currents, and a variable A, the
original (z—¢), in F . The first integration can thus be carried out, for
an assumed form of current, irrespective of the function F of (3.10)
to (3.12).

Manipulations of (3.15) form the bulk of the remainder of the
analysis leading to an expression for €.

4. A Variational Solution for ¢

4.1 Current Power-Series Expansion
In the quasi-static limit for a linear antenna excited by a uniform
tangential field, the current produced is proportional to
igs = coskz —coskL (4.1)

For kz and kL both < 1, (4.1) can be approximated by ex-
panding the cosines to the first two terms. Apart from an irrelevant
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factor L?k%/2, this approximation is igs = (L% — 22)/L?, or if lengths
are normalized to L,

This exhibits the necessary symmetry around z = 0, and vanishes as
required at z = %1 . It is therefore the simplest and most obvious form
for insertion into (3.15). In fact, if the fibers were far enough apart for
their net effect to appear as a constant field, (4.2) is all that would
be needed. But their close proximity ensures that the field incident on
a fiber is far from uniform, and, in the earlier type of analysis this
would call forth the existence of higher multipole components; or, in
the case of the T-matrix, higher-order spherical harmonics. What is the
equivalent of these for the present analysis? One could contemplate,
for instance, an expansion in terms of a set of suitable functions f.(2),
of the form

(e o}
i) = (1= )| 3 Anfol®) (43
n=0

where the outside factor ensures the vanishing of i(z) at z = +1. But
(3.13) gives no obvious clue to the best choice of f,(2). Perhaps the
simplest, in the absence of any other guidance, is to assume a power
series expansion, with the powers even, to ensure symmetry. This form
will be pursued in this section, with the expansion limited here to a
single additional term Az?:

i(2) = (1 — 2%)[1 + A2?) (4.4)
However, the method could be extended to more terms, though the
resulting analysis would be quite lengthy.
4.2 Current Integrals

The first step is to evaluate the p-integration of (3.15). This is
straightforward since only polynomials are involved. The integration is
given in (D8); the resulting functidn is denoted by I(\), and it can
be shown that

I()) = (2/3)(4 — 61 + A%) + 4A(4/15 — 2X + 422 — 7A%/3 + A%/5)
+2A%(44/105 — 2) + 8X2/5 + A3/3 — 2)%/5 + 207/35)  (4.5)
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Two other integrals occurring in (3.15) are
2

[ /0 1 i(z)dz] — (4/9)(1 + A/5)? (4.6)

and .
/ 2(2)dz = (8/15)[1 + 24/7 + A%/21] (4.7)
0

The integration of I(\) with F()) is more involved; it is given
in Appendix G, and use is made of some appropriate approximations:

/02 IVF(Ndr =3 [log% - g] + 22 [10 2 %]
+ 85(;452 [log% - %J (4.8)

/02I(A)F2(A)dA - ‘?8 llog 1 :}1/2 - % e TCRd ﬂ

e R
e 2o TS -
2 327 2

/0 I Fa(N)dA = -[(39 — 5) +2(39 — DA/T + (5 = T)A%/33
(4.10)

4.3 Angular Averaging

Before inserting these results into (3.15) it is necessary to consider
an aspect of angular averaging which impinges on these calculations.
Since the particles are all aligned along the z-axis, no such averaging
is apparently required. However, a practical material consists of fibers
in random orientation. The present analysis has not been set up to
take this into account; and in fact it is not currently known how to
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do this. One approach is therefore to ignore it completely and proceed
with the aligned-fiber calculations. An alternative is to note that, when
the fibers are well-separated, the impact of random averaging on an
equation like (2.6) is to reduce the contribution of all the terms in the
triple summation except that of the representative particle. If another
fiber makes an angle 6 with respect to the representative particle its
contribution to the field at the particle is reduced by a factor cos?4,
and this averaged over a sphere has the value 1/3. Thus the triple
summation, apart from the term in (mg, 0, 0) is reduced by a third,;
or, what amount to the same thing, the other terms are to be multiplied
by 3. This affects Ep in (3.8), and r and F) in (3.9) and (3.10).

It is not claimed that doing this will account for the randomizing
of the fiber directions. Rather, that this feature would be one compo-
nent of such a calculation, and correctly gives the very weak, or perhaps
weak, limit. By including it, one has a partial comparison with other
formulas which include it. Although it is somewhat optional whether
to do this, it will be done here. If results, absent this feature, are de-
sired they can be found by the method of this section by omitting this
factor 3in r and F).

Because of a similarity of the integrals involving Fy; and Fs it is
desirable to combine them. When the factor 3 is included with F; the
combination is written in the form 2F; + (F} + F») . The term coming
from 2 F is dropped if the randomizing option is not followed.

4.4 Variational Solution

Adding (4.8) to (4.9), and restoring now the original meanings of
a, f, etc.,i.e. writing a/L, f/L for a and f in these equations, we
get

2 g ; i, ;
fo IVFRO) + F(N)JdA = 5 [log A A E]
+ 15 [IOga.31/2 —156-31/2 _E]
88A? / m 35f
105 [IOg Py R 6312 m] = Hy (4.11)

The term 1/f2g in (4.10) and (3.15) reverts to L3/f2g. Since the
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volumetric loading is wa?-2L/f%g we can write

83
f%g

Solving (3.15) for € =¢,,/€, gives

=v(2L/a)? (4.12)

€m = €,[1 +v(2L/a)?/G) (4.13)

where

G= %{jrﬁ(sﬁ)[l +24/7+A%211+ H}Y  (4.14)

where H = Hy + Hy + H3 and

8 4L 7 164 4L 53
=2¢{ = |log — — = — |log — — —
H, 2{ [oga ]-i- 5 [oga ]

3 3 15
8842 4L 3931
105 [log e m] } (4.15)

H is given in (4.11)

Hjy = (4/45)v(2L/a)*|(3g/L —5) +2(3g/L —7)A/7+ (5g9/L —7) A®/35]
(4.16)
(The term H, is dropped, and r in (4.14) is divided by 3 if the angular
averaging is omitted).
G is seen to be the ratio of two quadratics in A. The variational
solution requires that one form the equation

8G/9A =0 (4.17)

solve for A, and insert the solution back into (4.14) and then (4.13).
The resulting expression is the variational solution for €, .

4.5 Correction Term Evaluation

We can write GG in the form

G =(P+QA+ RAY/(1+CA)? (4.18)
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where C =1/5 and

.18 4L 7 f m f
— 2% =~ _ - Y _1_ _ 4
P=jrL : +12[loga 3]+6[loga.3l/2 1 S31 4L]
v(2L/a)? [ 3g
+ = -5 (4.19)
36 24[ 4L 53] 12 f n 5f
— 2V 4 27 o - —1_ _ Y
Q=jrL 3 + 3 [log . 15] + 3 [loga‘31/2 1 5 313 4L]
2v(2L/a)? (3¢
+ = = =7 (4.20)
6 132[ 4L 3931
— iny2 Y, U2 it
R=irliz+ 55 [log a 1155]
66 f n  35f
35 [log 232 g3 44L]
v(2L/a)? [ 5g

9G/BA = 0 gives A = (2CP — Q)/(2R — CQ) ; whence, after some
elementary reduction, it is found that

(2CP -Q)°
o=d

This form is interesting in itself, because if the term in A had not
been included the result would have been simply G = P. Hence the
term (2CP —Q)?/(4PR —Q?), compared to unity, shows the relative
importance of the term in Az? in (4.4), and hence the likelihood of
(4.22) being an accurate form. It happens that the expression (2CP —
Q) is especially simple, and is given by

1/G = % [1 + (4.22)

12[. .6

2CP-Q@) = 3 jrlf— + 2 + f + v(2L/a)2—g— (4.23)

35 5 L 35L

But 4PR — Q? does not reduce to anything compact, and hence
is left to be determined numerically from (4.19) to (4.21).
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5.  Spatial Averaging

5.1 Lattice Displacements

The results of the preceding sections contain no machinery for
spatial averaging. A realistic material will not only have fibers at all
angles, but they will spatially overlap as well. The arrangement con-
sidered so far, essentially parallel layers of aligned particles, has no
overlap at all. It is possible to allow for overlap by interleaving the lat-
tice with another one spaced ¢/2 in the z -direction, but this would
involve a non-physical interpenetration unless the second lattice were
also displaced laterally: for example a g/2 z-displacement plusan f/2
y -displacement as in Figure 2. The antenna currents would be altered,
but would still be equivalent, by symmetry, in the two sub-lattices.
However, the double lattice would now be more sparse in the z-
direction than in the y-direction. One can overcome this by having
also a similar g/2 z -displaced lattice displaced //2 in the z-direction,
but now the currents in the sub-lattices would no longer be equivalent.
The balance can be restored by considering the original lattice, with
no z-displacement, but with f/2 displacements in both the y and ¢
directions. Figure 3 attempts to show this by giving a cross-section in
a plane z constant. The shaded cross-sections are 2z -displaced by g/2
and the unshaded ones are not. All antenna currents are equivalent,
since they have correspondingly arranged neighbors.

5.2 Modified Formulas

The effects of the displaced lattices are discussed in Appendix H.
Essentially, there is no net term corresponding to Fj (¢) of (3.10); and
the term corresponding to (3.11) is negligible, so there is no Fa(¢)
term either. The term on the left of (3.14) containing € is multiplied
by 4, one for each of the four sub-lattices. But since the volume loading,
for the same f and g, also increases by 4 the term in v in (4.13) stays
the same, though (4.12) is replaced by

8wL3/f2g = v(L/a)? (5.1)

The big difference comes in the F3(¢) of (3.12); for the original
lattice and the z-y displaced lattice it is the same, but for the two
z -displaced lattices it takes the form
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Fi(¢) =

2”9[ Om M] (5.2)

+__
f? g

where ¢, = (2 — (£ ¢/2), with the £ sign chosen so that |¢,| <g.
This affects (4.10) which becomes considerably more complicated in
form. However, near g = 2, which is the only region of interest here,
it takes the approximation

/ IONTF(0dA
0

-l (30 () ree( 7)o

(5.3)

The initial factor 1/f2g, when put in terms of the volume, is
reduced by 4 because of (5.1). Hence the term corresponding to Hj of
(4.16) is just the average for the four lattices, and takes the form

Hs =(1/180)v(2L/a)?

[(f’i’i— )-10(32’ )A/7+6(5£ >A2/35]
(5.4)

The only terms affected in P, @, and R of (4.19) to (4.21) are
the final ones in v, which take respectively, additional factors

1/16, —5/16, 6/16 (5.5)

Correspondingly, the term in v in (4.23) for 2CP — Q has the factor
9/35L replaced by
(9/35L —1/16) (5.6)

(This goes through zero and changes sign when g = 35/16 = 2.19; but
for practical purposes it will not be significantly less than zero.)
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6. Results and Discussion

6.1 Formula Structures

It is apparent from the later equations of section 4 that the for-
mulas are too complicated to be easily read. Nevertheless some general
conclusions can be made. The structure of (3.15) is essentially of the
Claussius-Mossotti type; this is also apparent from (4.13) and (4.14).
From discussions in a previous report [4], agreement with measure-
ments cannot be obtained with this structure, no matter what values
may be given to the various parameters. In fact, the new formulas,
despite the quite extensive work put into their generation, are remark-
ably similar to the earlier ones. Thus, from reference 4, equation (10),
we have, (using the present notation)

em/€ — 1 =ad'v/(1 — A'dv) (6.1)

were A’ is the array factor and
o = (2L%/9a)/{[log(4L/a) — 7/3] + je, L?/(a®60)00)}  (6.2)

The differences between this and (4.13) boil down to:
i) A factor 4/5 in the resistive term; this is due to using the average
of the square of the current rather than simply the current, as in the
earlier formulation. The effect is minor, but reduces the already too
low imaginary part of ¢,, by 20%.
ii) The presence in (4.14) of the term in A coming from the assumed
current form (1 — 22)(1 4+ Az?), whereas (6.2) has effectively ignored
this improvement. It will be discussed in more detail later.
iii) A determination of the array factor, which is implicit in (4.16). It
too will be discussed in more detail later.
iv) The polarizability term [log(4L/a) — 7/3], which appertains to an
isolated cylinder, is replaced by the more complicated terms in H; and
Hy of (4.11) and (4.15). These terms include both proximity effects
from neighboring fibers, and also the terms in A coming from the
assumed form of fiber current.

Because of the complicated form of the equations, much of the
remaining discussion will be based on numerical computations.
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Figure 4. Plot of v versus z = f/L; L/a = 100; 4 lattices.

6.2 Volumetric Loading

Taking the four-lattice structures of section 5 leads to (5.1) for
the volumetric loading v in terms of other parameters, principally
the lattice spacings f and g . These are independent parameters, and
in order to provide a dense structure, g should be taken as close as
practical to its minimum value 2L. However, from approximations
used earlier, the spacing between the tips of adjacent co-linear fibers
should be of the same order as their equatorial spacing, so we take
g =2L+2f as arelation between these quantities. If we write f/L =z
then (5.1) becomes

v = 4n(a/L)?/2*(1 + ) (6.3)

A plot of this relation between v and z is shown in Figure 4
for the case L/a = 100, a value used throughout this study. Two
particular values selected for further calculations are z = 0.3, v = 1.07
percent, and z = 0.5, v = 0.335 percent.
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6.3 The Case f/L =0.3, v=1.07 Percent

The value of P, bearing in mind the changes due to the four-
lattice structure given by (5.5), is calculated as

P =67.75 + j0.82 (6.4)

In calculating the imaginary part, the values €, = 2.05, Ao = 7.5 cm
and ¢ = 8-10% mho/m have been used. The value of ¢,, comes out
as

€m = 15.05 — 50.161 (6.5)

This ignores the current term in A. If this is included we find,
from (4.22), an additional factor (1.073 — j2.5:104), to give

€m = 16.0 — j0.172 (6.6)

The corresponding value of A (neglecting the minute imaginary
part) is

A=055 (6.7)

This value of A is far from negligible, but it produces only a 7
percent increase in the calculation of ¢, ; apart from this the increase
in the imaginary part is almost negligible, affecting only the third sig-
nificant figure. This latter is hardly surprising since, physically, the
fiber resistance would not be expected to have much influence on the
form of the fiber current.

The value of ¢, from (6.1), neglecting for the moment the array
factor A’, would have been ¢,, = 15.4 —j0.209, not too different from
(6.5) or (6.6). However, the value of o'v is 6.52, and if the term A'v
in (6.1) is included, with A’ = 1/3 for a cubic lattice (this seems, from
symmetry, the only appropriate form to choose) then the denominator
in (6.1) goes negative and the ensuing result is non-physical. The ques-
tion of lattice array factor will be further discussed later. Chalupa [5]
suggests an empirical value of 1/15, which keeps the denominator in
(6.1) positive for this value of v, but which would eventually lead to
non-physical effects at higher loading. However, none of these features
helps with the very small imaginary part, which needs to be compared
to measured values of about
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€, (measured) = 22 — 55 (6.8)

At this concentration an additional factor of about 30 is needed
for the imaginary term in (4.14).

6.4 The Case f/L = 0.5,v = 0.335 Percent
The value of P, modified by (5.5), is

P =62.21 + j0.82 (6.9)

The additional factor from (4.22) is 1.057 — j1.1 x 10~4, not too dif-
ferent from the case f/L = 0.3, and the resulting ¢, is

€, = 6.72 — j0.062 (6.10)

to be compared with
€., (measured) = 7.42 — 50.38 (6.11)

(obtained by quadratic interpolation from neighboring measured val-
ues, given in reference 4) .
The value of the current term A is

A=051 (6.12)

not very different from the case f/L =0.3.

To account for the resistive term an additional factor in r of
about 6 is needed. For what it may be worth, such an empirical factor
to resolve these discrepancies could be constructed in the form

14 2.5(L/a)*v%/? (6.13)

This reduces to unity for weak concentrations, but otherwise has no
obvious theoretical basis.

6.5 The Current Correction Term

One of the features of the last five sections is the value of the
current term A, a little over 0.5 in both cases, dropping slowly for
smaller volumetric concentrations. The question can be raised as to
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whether this value is much influenced by the dense concentrations (re-
calling that the “dense” region starts near v = 10~4), or whether it is
a carryover from the current form in the weak region. The latter can-
not be found from the formulas of this study because approximations
pertaining to the dense region are involved. But the calculations of the
appendix of reference 4 give the charge density on an isolated cylinder
in the form 7(z) = 2(1 — A22/L? + Bz*/L*). (Note that the notation
of the reference has been altered slightly to prevent confusion). The
coefficients A and B are given in the reference, and were there cal-
culated by comparing coefficients of power expansions near the origin.
Although this is a different procedure from the variational one used in
section 3, it should be expected to give comparable results.

The current on the fiber is obtained by integrating the charge
density, with the integration constant determined by the vanishing of
the current at the fiber ends. The details are given in Appendix I,
where the value of A corresponding to this integration is given by

A= log(2L/a) —253/120
" 3log?(2L/a) — (227/20) log(2L/a) + 56/5

(6.14)

When L/a = 100 this gives A = 0.142, about a quarter of the value
in the dense region. The balance must therefore be presumed due to
the dense nature of the structure.

6.6 The Array Factor

An important consideration is the array factor, which has the
value 1/3 for a cubic lattice. A genuine cubic lattice is not possible
for aligned cylinders because of interpenetration. Probably the nearest
that could be constructed would be a ‘nest’ of sub-lattices with the co-
linear displacement of neighboring sub-lattices equal to the equatorial
spacing—this is clearly not the case for the structure analyzed here.

In reference 3 the lattice array factor for a rectangular lattice of
aligned cylinders is given, and it is seen that, as the lattice becomes
more compressed laterally the array factor drops, goes through zero
and becomes negative. Thus the non-physical change of sign of the de-
nominator of the Clausius-Mossotti type of formula is obviated in this
region. This appears to be the sort of result generated here where the
lattice is also of the laterally compressed character. But, as discussed
in reference 4, the array factor calculation of reference 3 is formally
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invalid at these high concentrations because of the exclusion sphere in-
terpenetration that would be involved. The calculations involve dipolar
terms used way outside their legitimate range. Nevertheless, the cal-
culations seem to be giving usable results in a region where their use
is technically invalid. Why should this be so? The reason seems to
be connected with the process whereby the multipolar (or spherical
harmonic) analysis fails inside the surface of the exclusion sphere. If
all the relevant harmonics are retained, then the resulting series of
terms becomes divergent at and inside the surface. But if only the
first few are used, and, in particular, if the dipolar term predominates,
there may be no apparent divergence. Now there is known to exist a
large class of divergent asymptotic expansions in which the early terms
decrease, and only eventually do they increase to give a divergent re-
sult. The error resulting from stopping the series at a particular early
term, while the terms are still decreasing, can be shown to be less than
that term. If the situation should be at all similar with the spherical
harmonic expansion inside the exclusion sphere, then the dipole term
alone may be a much better representation of the field, even inside the
exclusion sphere, than one has a right to expect. This sort of conclu-
sion may not be relevant when one is dealing with a slowly divergent
series of decreasing terms like, say, the harmonic series 1/n; but at
this time nothing is known about the divergence of the spherical har-
monic series inside the exclusion sphere. All that is known is that the
Clausius-Mossotti formula seems to hold, well above v = 10~ (for
L/a =100), although the dipolar calculations are not properly usable
there. The above discussion may partially explain why one can seem
to be getting away with it well into the dense region, at least for the
real part of e, .

6.7 Dielectric Loss

The loss term, giving the imaginary part of ¢,,, is clearly very
poorly handled by these calculations, even at the 0.1 percent level. The
reason seems to be due to the interparticle contact that can occur,
even at v = 10~%. Chalupa [6] has shown that at about v = a/L,
or 1 percent in the present instance, there is so much contact that
can occur, on averaging the particle orientations, that it heralds the
onset of reticulation. Measurements show that somewhere between 1
and 2 percent the DC resistance of a sample of the material drops
suddenly from many megohms to kilohms, indicating the presence of a
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continuous, even though tenuous, web of conducting material through
the mixture.

The present analysis, designed to provide an intial attempt at
investigating a mixture in the dense region, was not intended to handle
non-aligned orientations; and, in fact, it is not currently known how to
tackle this problem. The most that can be concluded at this time is that
inter-particle contact, which starts to occur as soon as the dense region
is entered, is primarily responsible for the anomalously high losses. The
use of dipolar and similar expansion terms inside the exclusion sphere,
where their use is nominally invalid, would appear not to be the prime
cause.

6.8 Non-Random Alignment

Although the present analysis cannot handle the randomly aligned
fibers, it will be recalled that a primitive attempt at averaging, leading
to a factor of 1/3, was introduced in section 4.3. It is not difficult to
negate this process. For f/L = 0.3, (v = 1.07 percent) the calculation
then gives ¢, = 38.8 — j0.42, to be compared to the measured value
€, = 22 — j5. The formula now grossly overestimates the real part,
but the major discrepancy between the imaginary parts remains. It
is concluded that this partial averaging, though weakly justified, is
nevertheless warranted; though it is quite unable to take inter-particle
contact and the onset of reticulation into account.

7. Conclusions

From the results and discussion of Section 6 the following tentative
conclusions have been drawn.
I) Prior calculations using the T-matrix or multipole methods may be
usefully extended into the dense region, even though they are tech-
nically invalid there because of interpenetration of exclusion spheres,
upon which the calculations are based.
IT) When the particles can touch, which will always be so in the dense
region, the loss term will be in excess of any of these calculations, which
do not take inter-particle contact into account. When the amount of
contact is excessive a phase change occurs in which a three-dimensional
web of conducting material forms in the mixture.
IIT) The loss term cannot be assessed without taking inter-particle
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contact adequately into account.

IV) There is a substantial change in the current form due to proximity
effects, but the effect of this on the variational calculation is minor,
even in the dense region.

V) A negative array factor can be properly generated, which prevents
the non-physical negative permittivity that can be found with the
Clausius-Mossotti formula.

VI) The methods of this study, although providing a valid solution
in the dense region, necessarily produces a formula of the Clausius-
Mossotti character, which is known to be unable to explain the mea-
sured results. The missing feature is, of course, the inter-particle con-
tact on randomizing particle orientations. To make further progress,
this is the feature that will have to be studied further.

Appendix A: Effective Wire Radius

Because most germane calculations in the literature pertain to
current distributions on the surface of cylinders, it is necessary to eval-
uate the effective wire radius for current density distributions that are
uniform in angle, but may vary with radial depth.

It is only the near-field that is of concern, and this is obtainable
from a potential that varies as 1/R near the origin, where

R= (22 +r24a? —2arcos€)1/2 (A1)

and

r refers to a point at radius r

a refers to a point on the cylinder surface, where r = a
z is an axial coordinate

0 is an azimuthal angle

In all subsequent usages there is an integration with respect to 2
over a region, taken here from —L to 4L, where L > a. The current
density variation as a function of z is not important unless it varies
rapidly with 2 over a region of size of the order of a. In practice this
only happens close to the cylinder end, where the current is zero in any
case. Thus, for all practical purposes, we are interested in an integral
of the form
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2m f(r/a)dzdOrdr
I = A2
/ / /0 (22 + 7'2 + a2 — 2arcos §)1/2 (42)

where f(r/a) represents the current density variation with radius. Put
r = au as change of radial variable, and integrate with respect to z,
using L > a:

2m 1 2L
I= / / dfa’® f(u)u [2 log; —log(1 — 2ucos 8 + uz)] du
o Jo
0, 2L [!
= 4mwa“log - uf(u)du + I, (A3)
0

where

5L = —a® /21r /l uf(u)log l—uew) (1 —ue_“’)] didu
. /2"/ wf (s i% cosn0d0du

=1

on carrying out the 6 1ntegratlon

Hence I = Clog & L where C = 4ma? fo uf(u)du is proportional
to the total current. The radius a enters the formula only in the term
log(2L/a) , which is the form taken also when the current flows only on
the cylinder surface (for which f(u) = 6(1 — u)). Hence, irrespective
of the form of the radial current density variation, the effective radius
of the cylinder is the actual geometric radius.

Appendix B: An Improved Sum Formula

The Euler-Maclaurin sum formula replaces a sum by an integral
plus correction terms involving multiple derivatives. A somewhat im-
proved version, which absorbs derivatives of order less than the second,
comes from the approximation

m+1/2
f(m) = / f(@)dz + O(f"(m)) (B1)

m—1/2
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An improved formula, believed to be new, similarly absorbs
derivatives less than the fourth order, and gives excellent approxima-
tions provided the function f(z) does not vary too rapidly within the
range of concern.

Let C,a,3, and 6 be parameters, and define

m+0
s0)= [ Cla+a)+0-O)fc+Blds (B
Differentiating gives
') = C[f(m+0+0a)+f(m—0+0a)]+(1-C)[f (m+0+8)+f(m—0+7))
(B3)
Expanding this in a Taylor series around m gives, after some simpli-
fication,

g'(6) = Cl2f(m) + 2a.f'(m) + (6° + @®) f"(m) + (6% + &*/3) f" (m)]
+(1-0)[2f(m) + 2Bf'(m) + (6* + B°) f"(m)+
+ B(68% + 8%/3) f" (m)] + terms of order f*(m) (B4)

Integrate (B4) with respect to # and then take # = 1/2. The reason
for choosing @ = 1/2 is to produce integrals of the form (B1) which,
when added for an integer sequence for m, combine to give an integral
over an extended range without breaks, since the lower limit of one
integral equals the upper limit of the preceding one. The 6 integration
thus gives, at 8§ =1/2,

9(1/2) =

C f(m) + af’(m) + %(1 + 12012)f”(m) + %(1 + 4a2)flll(m)

+ (L= O)f(m) + B1m) + 52(1 +128%) " (m)

+ 2 (14487 ()] + O(*(m) (B5)
= J(m) + (m) [Ca+ (1 - O]

+1 H(m) [C(1+1207) + (1~ C)(1 +126%)]

f2(4 ™) [aC(1 +40%) +B(1 — C)(1+ 469] + O(/*(m) (B6)
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The object is to choose «, § and C to remove the lower-order
derivatives. Setting to zero the coefficients of f/(m), f”(m), and

f"(m) gives

i)
Ca+p-CB=00rC=8/(f-q), 1-C=—a/(f-a)
(BT)
)
Ca®+(1-C)8*+1/12 =0.
On elimination of C from (B7), this reduces to
af =1/12 (B8)

i)
aC(1 +402) + B(1 — C)(1 +462) = 0.
On using (B7) this reduces to
—4af(a+B)=0, ora= -4 (B9)
in view of (B8). Combining (B8) and (B9) gives

a=-8=1i(1/12)'/? Cc =1/2 (B10)
Define

& = (1/12)1/2 (B11)

Then g(1/2) = § [t L2 f(z+i8))+ f(z—i8)]dz = f(m)+O(f*(m)).
To the extent that terms of order f*(m) can be neglected, this result
can be written in the form

1 m+1/2

m+1/2
fim) =+ / o Ve84 1o or Re / f(z+i8)dz

2 m—1/2
(B12)
This is the improved version of (B1) sought. In particular,

M M+1/2 .
ngl f(m) = Re/l/2 f(x +1i8)dz (B13)
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With a slight change of variable this gives the preferred form

M M+(1+4i6)/2
3 s =re /( o @ (B14)
where
6= (1/3)12;,(1 +i6)/2 = €™/8 /(3)1/2 (B15)

A severe test of (B14) is the harmonic series f(z) = 1/z for which
fim ZM L — Jog M + v, with v = 0.5772. Equation (B14) gives

M—-oo m=1 m

M+(1448)/2 14146
Re log(ar,')’(“rw)/2 = Re[log M — log 7+ O(1/M)]
1 2
=logM — %log 26

=10gM+élog3 as M — oo.

Hence the comparison is between v = 0.5772 and 1/2log 3 =
0.5493, an error of about 4.5 percent. In contrast, (B1) would have
given log 2 = 0.6931, a 20 percent error.

Note: The operation Re in (B14) is independent of any other use
of complex quantities, such as j (used for harmonic time variation).
Similarly for multiple summations, leading to the corresponding mul-
tiple integrals. One can use a system of multi-complex numbers with
imaginaries 4, such that i2 = —1 but ini, # —1 if n # p; or else
take the real part at each summation before proceeding to the next
one. If 7 and j both occur in a formula, note that ij # —1.

Appendix C: The Lattice Sum

Cy: Triple Summation
The required lattice sum is

[o o] oo C_ijm'""

5=y % % Ry (c1)

m=0n=—00 p=—00 mnp
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where
Rpnnp = [(m — mg)*f% +n? % + (pg + ¢ — 2)? + a?]'/? (C2)

We seek a good approximation to S contingent on the inequalities
aL f, f<g, kg < 1. Use is made of Poisson’s theorem

nio flan) = éqio F <-2—Z—"> )

where

F(w) = / ” v f(2)dz (C4)

—00

In particular, if f(z) = e~7k(E"+r)? /(52 4 2)1/2 then

F(w) = —]7rH )[r(k2 w2 0% < K2
= 2Ko[r(w? — k%)/?);w? > k? (C5)

Using (C3) and (C5), with i replaced by j, gives the initial sum

_Jk(r2+a2n2)1/2

]7rH02) (kr)+4 Z Ko[r(4nq?/o?—k?)\ /3
g=1

a Z (r2+a2n2)1/2 -

(C6)
We shall later be taking a = f, and since kf < 1, k is negligible
in the Ky series in (C6). This series can therefore be found by taking

the limit as k — 0 using H0 )(kr) ~1- ] log (k 28 > After a little

manipulation this permits (C6) to be re—wrltten as

X g—ikvrit+aln?

) «a re”
o ~ —jnH,” (kr) + — + 2log —
X Ty S I H ) + g

2a

1
+2Z(m—5>; ka1 (CT)

The sum on the right of (C7) can be approximated using the
method of Appendix B, leading to
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o0 e_jk, /’-2 +a2n2
a E —— ] 7
JVr2 + o2n2
ne—oo VT + a“n

where 8= a(l +16)/2;6 =1/3/2;r > 0;ka < 1.

HP (kr)+=+2Re 1 [ .
o ( r)+r+ e log RN OYE

(C8)

Cy: Hankel Function Summation

A related Poisson sum for the Hankel function can be put in the
form

S HPKG + (ng — 1))/

am2x2 —k’) 1/2

2 _. > 2mmny e—lzl( o7
= Ze~iklzl L 94
kg© +2j ) cos ( 9 ) (m2n? — k2g2/4)1/2

(C9)

m=1

With kg <1 the right-hand side of (C9) can be approximated by

2 . 24 X e—2mn(|z|+iy)/g
k_e—JkIZI +Re Z ¢E ’
9 T m=1 m

where Re refers to the field of i, and |2| is used to mean the positive
value of (22)!/2. On summing the series it is found that

= 2 _. 2 _3n (|4
Y HE k(4 (ng—9)")! /%] m e~ TTRe logl1 ¢ ¥ (1)
n=-00

(C10)
subject to kg < 1.
Cs: Double Summation

Returning to (C6), take a = f, r = [6? + (pg — ¢)?]'/?, 0 =
0% + (m — mg)?f2V/2, ¢ = z— ¢, and sum over p, (—o0,00) to get
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®© R ikRmmy X (.
;oo n;oog—RTnp_ B p;w {“%Héz) k(6" + (pg — 9)*)'/?]
+ % ; Ko [(4q21r2/f2 — V%9 + (pg — ¢)2)1/2] }

(C11)

Now 4¢°7%/f? > k% for ¢ > 1 and (6 + (pg — $)2)/2 > f except
in an extremely limited region around ¢ =0 at m = mg and p=0.
Hence the argument of the Ky functions in (C11) are always much
greater than 2w when m # mg, and we can write

> 3 Koll ~am—mo) o Kol @ + 412 (Cn2)
g=1

p=-—00 g=1

where 6(m —mg) =0 unless m = my, when it equals 1; and [] refers
to the Ko argument in (C11).

There is one very slight improvement of this result that may be
necessary in the neighbourhoodof 2 =L, ( = ~L or 2 = -L, (=1,
when ¢ is close to +2L. If g is also close to 2L then g ¢ may get
small enough for the terms in p = £1 in (C11) to be noticeable. In
this case the term Ko[27"-‘1(a2 + #*)1/?] is augmented by 1(0[27"1(a2 +
(g — )>HV? + 1(0[2—?9(a2 + (9 + ¢)?)V?], although these terms are
negligible except very close to ¢ = +2L. As will be shown later, the
subsequent integrations on z and ¢ produce an almost negligible net
contribution, even when g = 2L. For simplicity (C12) is retained
unamended. Using the results that led to (C7) and (C8) gives, for
the Kp sum in (C12),

43 > Kol
p=-—o00 g=1
B+ (4 + 5% +a?)'/
(¢2 +a2)1/2

~ 6(m —my) - {f(a2 +¢?)"12 _ 2Re log

}

(C13)
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where now B = f(1 4 i6)/2. If g — 2L < f, corresponding terms in
(¢ £g) are to be added to (C13) on the right-hand side.

Cs: Double Summation Approzimation

The Hankel function sum in (C11) is found from (C10) by taking
y=¢, |2| =0 ~|m—my|f and replacing n by p, to get

S 1 [k(e? + (og - )%)'/?]
p=-—00
~ :g ~3kflm—mo| _ ]Re {1og [1 e "(nm-monw]}
(C14)

Note that f in (C13) can also be written as 2Re 3, leading to a slight
simplification. Putting (C'13) and (C14) into (C11) gives

—JkRmnp

I P

P=—00 N=—00 mnp

J| kg

2 324 ,2\1/2
B

=2 {ﬂe—jmm—mol ~ Re log [1 _ e—%(lm—mo|f+¢¢)]

(C15)

Cs: Geometric Summation

To calculate S in (C1), (C15) has to be multiplied by
e~7k¢'/*fm and summed over m from 0 to oo . The term in &(m—my)
gives merely a multiplier e=7%¢'/fms The other terms can be dealt
with by replacing the sums by mtegra]s, though the first series is re-
ducible to a geometric series and can be summed exactly.
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Writing, temporarily, b = ke'/2f and ¢ = kf the first sum is

o0

m=0
mo—l 00
— Z e-—j(bm+cmo—cm)+ Z e-—j(bm+cm.—cmo)
m=0 m=mg
1 — e ib—c)m, . 1
_ ,—jem —jbm
= T e e T e (C16)

So far this result is exact, but now we use the fact that b+c <« 1
to expand the denominators. With z = j(b+c), we have the expansion
1/(1 —e %) =1/ +1/2 +2/12 4+ O(z?) . Hence (C16) becomes

eI (b=¢) (b—¢)? ibm, . 1 1
So=sm=o |1t 2 o |t I | pmet

(C17)
Reverting to the original notation and retaining only the leading

terms (it can be shown that the higher-order ones give a negligible net
contribution), one finds

e=3kSmo K fer/a 52
So x ———— —gkfelfmy | __JZ C18
O kf@r- T [kf(f—l)] (©18)

Ces : Logarithmic Sum

The remaining series is

o0
S1=) Relog [1 - e'z”fl'"""nge"””"’/g] g~ Ikse/im
m=0
[o.o]
= e 9/¢/*m §™ Relog [1 _ 6—27rfImI/ge—i21r¢/g] e—ikfet/Am
m=—m0

(where Re refers only to 1) (C19)
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Now except, for a particle very near the front face, at mo small, the
term e—27fIml/9 is minute for m < —mg. The excepted region forms a
very thin “skin” at the surface, and is of no interest for bulk material
properties. Hence there is negligible error in replacing —mgo by —oo
in the summation. The sum can now be replaced by an integral by
taking 27 fm/g as integration variable u, to give

[o o]
Sy = e“j"f‘l/n"‘ORe/ log [1 — e"“'e‘i"’] e~ Tke!29u/2m (g 1om £ du
-00

(C20)
where ¥ = 2m¢/g.
Hence Si = (g/2r f)e=7%/¢'/*mo]  where
o : ikel/2
I =Re/ log [1 - e"“'e’"”] e=ike!Pqu/2m gy,
—00
w .
=2Re/ log [1 - e‘“e’""] cos(nu)du (C21)
0

where 7 = ke'/2g/2m <« 1. Hence the angle in the cosine is very
small until u gets large, by which time e ™ <« 1 and the integrand is
negligible. Hence the cosine can be replaced by 1, and

w .
I= 2Re/ log [1 - e_(“*'"”)] du (C22)
0

Change variable by taking v = e~(¥+#¥) | to get

e~ _
I =2Re/ Mdv
0 v

= — 2ReLiy(e™*¥) = —2 [%2 + w]
(C23)

This result requires that |i| < 27, which is satisfied, since ¢ = 2n¢/g,
and |¢| < 2L, and g > 2L.
Hence

2
S = (gn/ f)e= Ko [é + & ';%'] (C24)
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C7 : Approximation for the Triple Sum
Collecting these results together gives

e Jk mnp

>y % eIketm

m=0 p=-—00 n=—00 Rfm.np
~ -271’ _jkfmo
FRIGEEN
+ e_jkel/Qfmo 47r 2g7r l ?_2_ _ m

k2f2g(e -1 f? g
1 (az + ¢2)1/2
—_— 1
(a2 T2ty Re Bl B+ 2+ 82+ a2) ) (€25)

with ¢ = 2 —¢; B= f(1 +146)/2; 6 =g/3'/2.

Appendix D: Evaluation of a Double Integral

This appendix is concerned with the evaluation of

1 1 2
I= / 1 / 1 i(2)i(C) g Fz — Q)dzdC (D1)

where i(+1) =0, and both 7 and F are even.

Using %F(z—( )= “32 3¢ F(2—() , an integration by parts with respect
toboth z and ¢ can be performed, the integrated part being zero since
i(£1) = 0. Hence

1 1
- /_1 /_1 /(2 (Q)F (2 — ¢)dzdg (D2)

The integration is over the square region shown in Fig. D1, which
also shows axes p and A rotated by 45 °.
We have

2= (n—-N/2Y% (= (u+N/2/? (D3)

p=(2+0)/2V% X=(¢-2)/2"/? (D4)
dzd¢ = didp (D5)
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Figure D1. Integration range for z and (.

The integration range for A and p is shown in the 45° rotated
square in Fig. D2.

The integration limits depend on whether the integration is first
with respect to 4 or to A. In the present instance it is more convenient
to choose p first, since it does not appear in F. Then for

0 < A <22 4 goes from — (2"/2 - A) to + (212 — )
—212<ax<0,p goes from — (212 + A) to + (22 + A)

Hence
21/2 (21/2-1) -\ A
_ 1/2 g (B g (Bt
o [ e [ e (52) (5 ]
0 (21/2+X) _ /\ /\
. 1/2 ./ /1« .7 ﬂ +
/_21,2 F(\2'/%) [/_(21/2“)1 ( o1z )z ( E )du] dA
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u=(2-3)
V2
]
H=-(V2+1) H=V2+1

Figure D2. Integration range for A and u.

If in the second integral we write —A for A it becomes the first.
In the first, split the range of p from 0 to (2!/2 —X\) and —(2'/2 — )
to 0, and write —u for g in the second range. On using the fact that
i is even, so that i’ is odd, it is seen that the integral in the second
range repeats that in the first. Finally, making a change of scale so
that A, go over into A\/21/2 and u/2'/2, (D6) becomes

I=—2/02F(/\) [/oz_Ai’<“;*)i'<“;*> du]d)\ (D7)

This result has the merit of separating the current integration out. For
example, if i(z) = (1 — 22)(1 + A22) the u-integration gives

2-2
g (B=A\ (Bt A
foor(52) e (5
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2 3 4 s T.3 A8
=3 6,\+,\)+4A(5 2) + 4 TR

44 A3 205 T

2 (44 2 AT A 2N
+24 (105 oA+ o )\+3 : +35) (D8)

Denote this function as I(\); or I(), A) if the A-dependence is
of concern.

Appendix E: Hertzian Vector and Fiber Loss

The Hertzian vector of a fiber located at (mf,nf,pg), oriented
along the z-axis, and carrying a current I(¢/L) at a point z = pg pg+¢
on the fiber, observed at a point z on a fiber located at (mof,0,0) is

—307 I(c/L) " emskVEImge (E1)
ElkO mnp

I, =
where ky = 27/ )\g

€; = matrix permittivity
k= 27rel/2//\0 =27/
€ = €,,/€;, where ¢, is the mixture bulk permittivity
Rpnp = [(m —mo)*f% +n 2 + (pg + ¢ — 2)? +a?)1/?
a = fiber radius, with a/L < 1,
2L = fiber length

Write i(/L) = —(307/e1ko)I(¢/L) (E2)

For complete penetration I is constant over the fiber cross-section, so
the current density is I/ma2. If E is the longitudinal electric field at
the fiber surface then the boundary condition is I/7a? = 0E where
o is the fiber conductivity. Using (E2) this can be put in the form

E = jri (E3)

where
r=¢;/15a%0 X (E4)

is a measure of the fiber resistivity for the purposes of this study.
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Appendix F: A Variational form for the Permittivity

The structure of the equation to determine the current i(¢) is of
the form

K / i(Q)d¢ = / (OG- 2)d¢; -1<z<1  (F1)

in which all integrations of the (normalized) variables are between the
limits +1, and both i and G are even functions of their arguments.
The constant K contains the permittivity € of the mixture, which
occurs nowhere else in this equation.

Ideally, (F1) would be solved for i(¢), and (F1) would then
give K, and hence e. Let the exact solution of (F1) be i(¢) = i0(¢),
where io(¢) satisfies (F1), i.e.

Ko / io(¢)d( = / o(OC(C —2)d¢; —1<z<1  (F2)

In the absence of knowing the exact function ip(¢) we can proceed
as follows: multiply (F1) by i(z) and integrate from —1 to +1 with
respect to z to get

/ / i(2)i(Q)G(C - 2)d¢dz
K =

/ i(0)dc / i(2)dz

This is, of course, exact if i(¢) = ip({). But if #({) differs from
i0(¢) by a small quantity €(¢)io(¢) then, as will be shown, (F3) will
give a value of K differing from its correct value Ky by an amount
proportional to €2; in other words, (F3) is in variational form. Not
only does this enable one to calculate a reasonable value of K for
a fair guess at the form of i, but the fact that (F3) is variational
means that it contains the integral equation (F1) implicitly embedded
within, so improvements of a trial function can be made directly from
(F3) without recourse to (F'1).

For convenience write M = [ i(¢)d(, so that (F3) can be written

(F3)

K=M"? / / i(2)i(Q)G(¢ — 2)d¢dz (F4)
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and put (¢) = ig(¢)[1 + €({)]; or i = iy(1 + €) for short. Then, if
K = Ko+ 6K , to first order in € it is seen that

6K = M~2 // 0(2)io(Oe(C) + (2 C(C — 2)d¢dz
—2M~3| / io(2)e(2)d2] // i0(2)io(Q)G(C — 2)d¢dz  (FS5)

Multiply (F2) by iy(2)e(z)dz and integrate:

KoM [ ip(@)e(z)dz = [ @@ - acaz (o)

There is a similar relation obtainable by interchanging 2 and ¢
on the righthand side of (F6).

Inserting this into (F'5) and using (F4), with K and i replaced
by Ko and 1o it is seen that (F5) is zero to first order in ¢€; the
variational structure is confirmed around i = 4.

Let I(¢) be a given trial function and I(¢)[1 + €(¢)] be a better
one, in which the form but not the amplitude of €(¢) is set. This will
not, in general, equal i(¢) and the two will differ by some additional
small amount A(¢), so that we can write

to=1(14+e¢+A) (F7)
Now
K =K(ig) = K[I(1+ €+ )]
=KI[I(1+¢€)] + Aa—aa-K[I(l + e+ A)]a=0 +O(A2) (F8)

But the variational character makes E%K [I(1+€+A)]a=o zero. Since
the latter is a function of (¢4 A) we have 8/0A|,_, = 8/8¢. Hence

%K{I(l +€)]=0 (F9)

determines the amplitude of € for optimum value of K for a given
variation of €(().

For example the simplest trial function, which must be even and
zero at the fiber ends, is 1(¢) = (1 — ¢?). An improved trial function
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would multiply this by a power series in ¢2, with the coefficients de-
termined by differentiation and equating to zero as required by (F9).
A first-order improvement would come from

1) = (1 -1+ AC®) (F10)
with A determined by

0
A Kl = )1+ ACP) =0 (F11)

in which K (i) is the form (F3). This determination of A (or, more
generally, the coefficients in any correction function) depends only on
the right-hand side of (F3), hence is not affected by the actual value
of K. In other words, the form of the fiber current does not depend
in any way on the value of the mixture permittivity, at least to the
extent that the approximations in Appendix C give rise to a function
G(¢ — 2) independent of e.

Appendix G: Current-Lattice Integrals

The integral needed involves I(\) of (D8) and the functions in
(C25). Since the process is different for the different parts, define

Fi()) = (a® + A%)71/? (G1)
R\ = (1/f) {log(a2 +22) — 2Re log [ﬁ + (N2 +82+ a2)1/2] }
(G2)

F3(\) =

29T [1 A2 /\] (G3)

=5t 7

6 ¢° g
where 8= f(1 +1i6)/2; 6 =1/3"/2,

In this formulation all lengths have been normalized to L; i.e.,
a, here, means a/L, etc.

Although all the needed integrals can be evaluated exactly by
elementary means, the result is long and complicated. If we make use
of the inequalities a®> <« 1 and 8% <« 1 a lot of simplification is
possible. As far as the fiber radius is concerned, a is so small that
only the lowest power, which appears in the logarithm, is needed. The
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same is almost true for B too, but since the outside multiplier in (G2)
is 1/(2Ref3) powers up to (3% can be considered; and in any case

Re(8°) = Re[(f/3"/%)%/?] = 0.

Retain the form (a2 + A2)~1/2 for integrations with the constant
terms in I(A), and replace it by 1/X in the remainder. Thus the
integration involving the power of A° in I()\) becomes

9 3
/0 [m - 6—/\’\ + /\T] d\ = 4[log(4/a) — 7/3] (G4)

where the terms in square brackets can be recognized as part of the
polarizability expression for a cylinder. Equation (G4) is correct to
O(a). The net result of this process is

2 8 4 71 164 4 53
[ 19Rvar =5 [10g 4 - dEE log 2 - @]
88A2 [l 4 3931]

* 705 a

°8 " 1155 (G5)

The process starts with an integration by parts. Put T()\) =
A .
Jo I(A)dA, to give

1(})
= (40— 3\ + M/4) + 4A(8M/15 — A2 + 4X3/3 — TAY/12 4 XP/30)
+242(440/105 — X% + 8A3/15 + X*/12 — A%/15 + A8/140) (G6)

Clearly, 1(0) = 0 and it can be readily shown that 7(2) is also zero,
hence the integrated part vanishes, and

2 2
/ I Fy(A)dA = — / T F4(\)dA G7)
0 0

where

BA
(V2 +a) (A% + B2 + 212

F) = ;Re )
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Near A =0, I(\)Fy()\) varies as A?/(A\? + a?), which stays finite as
a — 0. Hence a good approximation for small a consists of ignoring
a to give the approximation

/ 2 B
/\F2()\) ~ ?Rem

The integration process now proceeds as in (G1), except that,
since (3 is not so very small, we also use

(G9)

2 pY/2)

o (BE+ 2212 B(B> + N /2|; ~ B(2 - B) (G10)

B

with the term in 8 not quite negligible compared to 2. We also have
Re(Blog B) = (f/2)llog(f/3'/?) — /6 -3/%] and Re(6) = f2/6
to give

2 8 432 4 T f
_/0 I()\)FQ()\)d/\——'{g [Iog 7 *§+m+z
164 432 38 P 5f

5 | B f " 15" 6.372 " 4
88A2 e L 312 2776 LT 35f
105 f 1155  6.31/2 ° 44
(G11)

+

The integration I(A)F3()) is straightforward, since all terms are
polynomials in A. We can re-write F3(\) as (2m/f2g)[g%/6+ A2 —)\g],
where the term in ¢2/6 integrates to zero since T()\), at A = 2, is
zero. Hence, it is found that

4:;?;9 [(39 —5) +2(3g — 7)A/7 + (59 — 7) A*/35]
(G12)

This is a very important term in the final formula. Since the smallest
value of g possible is ¢ = 2, the quantity in square brackets then

becomes 1 —2A/7+3A%/35 = (1 — A/7)? + 16A2/225. It is therefore
always positive, an important feature discussed in the main text.

/ * VF () dA =
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It might be added that since F3()) is an approximation, an im-
proved form might affect (G12) significantly. It turns out that the
next approximation involves a constant-term correction, in 32, which
is not only very small but also integrates out to zero. The next term
involves Re(3%) which is also zero. So (G12) should be considered a
quite accurate result.

Appendix H: Displaced Lattice Expressions
Determination of H,.

The material is based on expressions in Appendix C. The z-
displacement is handled by writing pg+g/2+ ¢~z for pg+¢—z; or,
equivalently, g/2+¢ —z for {—z. It will be recalled that the function
F in Appendix D has to be even on ¢ — 2, and this is no longer so if it
is merely a function of g/2+(—2. However, the p-summation includes
p= -1, for which the form pg + g/2 4+ { — 2z becomes —g/2 + ¢ — z;
the sum of the two restores the even characteristic, so by the time the
formulas of Appendix D are applied, the argument (g/2 + \) suffices.
For (C23) the angle v has to be reduced by 2= if it exceeds that
value. The result is that (C24) applies with ¢ replaced by ¢,, where

m=:tg/2+z—{ (Hl)

where the + or — sign is chosen to keep |¢m| < g. See Section Hj
for more details.

Determination of H,.

The summation on n in (C8) becomes a summation with n
replaced by n + 1/2 to account for the y-displacement of f/2. Now
f(n+1/2) can be written as (2n + 1)f/2, so the series becomes a
summation over odd integers only, with f replaced by f/2. Now it is
easily shown that if f(n) is any function for which

Y f(en) = F(a) (H2)

n=—0o0

then by separating the even and odd terms one can deduce

>~ fla(2n +1)/2) = F(a/2) - F(a) (H3)

n=—00
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When this is applied to (C13) the terms in f(a?+¢?)~!/2 cancel out,
and the logarithmic term becomes

B+ (82 + 02 + f2/A)V2)[B + (B2 + (3 — g)? + f2/4)1/?]
@ + F2J4) (9 — g)2 + [2/4)\/2
_Re log { [B/2 + (B2/4 +¢% + f2/4)\/?)

-;—Re log

(W2 + f2/4)1/2

[6/2 + (8*/4+ (¥ — 9)* + [2/4)'?]
(@ = 9)? + P2/A172 } (H4)

In this expression, ¥ = z2—(+¢/2 and 8= f(1+16)/2. Both 8
and f/2 are small compared to ¥ or ¢ —g, except in a very limited
region where these may be small; but even so, (¢2+ f2/4)1/2 will then
be O(f/2) or more. Hence the expressions in (H4) can be expanded
in powers of 8. Now a term like log[8 + (8% + y?)!/?] comes from
integrating (82 + y2)~'/2 with respect to 8. Provided y* > 2, as
it is here with y = (¥ + f2/4)!/2, an expansion can be made in the
form 1/|y| — B2/2|y|® +--- which integrates to 8/|y|— B3/6|y|>+---.
As can be verified, the terms in 8 cancel in (H4), while Re(33) = 0;
so to a high order (H4) is negligible.

Determination of Hs.

A similar expression to (C15) is produced except that the term
in 8(m —myp) is absent, and f(m — mg) becomes replaced by (2m +
1 — 2mg) f/2 for the x-displaced lattices. This makes virtually no
difference after the m -summation, and the remainder of the expression
follows the same route as that leading to (C22). The only difference of
significance comes in ReLiz(e~*¥) since now |¢| can exceed 2. For
(C23) to be valid the angle has to be between —27 and +27, and
since Liz(e~*¥) is periodic in ¢ with period 27, one arrives at the
specification of (H1). With z — ( = A the integration corresponding
to (G12) becomes, apart from the factor 2wg/f?,

- (1, 04397 (A +39)
/0 I F3(N)dA = /0 () [5+ - JRRCAS 21 P
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2 ) 2 2 — _
+ / IO |5 y ; 29" Q-39 (H5)
19 g g
(valid for 2 < g < 4)

Although there is nothing intrinsically difficult in this expression,
since all terms are polynomials in ), the actual integration is rather
messy. Since the main interest is in the neighborhood of g = 2, the
integrals were evaluated there, with results as reported in equation
(5.3).

The best way to handle (H5) is to add and subtract an integra-
tion of the second term from 0 to g/2. Recalling that the integration
(from zero) of I()\) vanishes at A = 2, the term in 1/6 does not
contribute, and (H5) reduces to

/ * I)Fa(0)aA
0
2 /2
= (/) [ 1) - rg)ir ~ (1/g) / IN(g—20dA (H6)
0 0
If we write I;()\) = fo (A)dX, (with I;(2) = 0), and I,()\) =

fo n-1(A)dA, n > 1, then (H6) can, by repeated integrations by
parts, be put in the form

2
7 /0 I(NFa(NdA = 215(2) +2(g - 2)1a(2) — 212(g/2)  (HT)

The I, (/\) are obtained by repeated integration of (D8). For the
record, g fo I(/\)Fa(/\)d/\ = 213(2) + (g — 4)12(2), again without the
initial factor 2mwg/ f2.
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Appendix I: Isolated Fiber Current
From reference 4, (A8) and (A9) one finds

A = [~log(2L/a)—38/15}/[21og?*(2L/a)—log(2L/a)247/30+1597/180]
(11)

B = [log(2L/a) — 5/6]/[41og*(2L/a) — log(2L/a)247/15 + 1597/90]
(12)
From (A3), the charge density is, (normalizing z with respect
to L),

7(2)/EC = 2(1 = A2% + Bz%) (13)

The current is proportional to the integral of the charge den-
sity. The proportionality constant is not important here. Noting that
i(+£1) = 0, the integration of (I3) gives

i(2) =(1-2%) - (1 —2YA/2+ (1 - 25)B/3
=(1—22)[1 — (1 + 22)A/2 + (1 + 22 + 2*)B/3] (14)

_Keeping terms up to _z2 in the square brackets gives a factor
1—A/2+B/3+2%*(—A/2+ B/3] Comparing this to (1+ Az2) in (4.4)
gives

A=(-A/2+B/3)/(1-A/2+B/3) (15)
From (/1) and (I2), this gives the formula quoted in (6.14),

Ao log(2L/a) — 253/120
~ 3log?(2L/a) — (227/20)log(2L/a) + 56/5

(16)
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Summary

This study deals with dielectric mixtures in the “dense” region -
defined here by the interpenetration of the exclusion spheres circum-
scribing the loading particles. Previous studies based on dipolar and
multipolar expansions, or on Waterman’s T-matrix using spherical har-
monic expansions, are all invalid inside the exclusion sphere because
of their electromagnetic requirement of out-going waves, which does
not hold inside the exclusion sphere. Non-interpenetrating exclusion
spheres also ensures the non-contacting of particles when averaging
over particle orientations and positions, a very convenient practical
consideration.

When the particles are elongated, typically cylindrical with an
aspect ratio which may be 100 or more, the dense region starts at a
very low geometrical volume loading, such as 10 =% or less. Even S0,
classical formulas of the Clausius-Mossotti form seem to work reason-
ably, well into the dense region, though they are much poorer for the
loss factor. Eventually they “blow up” and give non-physical negative
permittivities if the loading becomes too great.

Although a useful engineering formula is the hoped-for outcome
of a scientific study such as this, the initial goal adopted for the present
research was to come up with an analysis of a mixture configuration
which would be fully valid in the dense region. Of the two features
relating to interpenetrating exclusion spheres, the invalidity of the ex-
isting methods, for electromagnetic reasons, seemed more fundamental
than the potential for particle contact on averaging, important though
this must be for an eventual practical formula representing random-
ized loading particles in a matrix. This problem of randomizing particle
positions and orientations seems to be an extremely difficult one when
particles may contact each other (though not interpenetrate); and in
the absence of a T-matrix formulation which can handle this feature
well under non-contacting conditions, even the electromagnetic aspects
of mutual interaction between particles under interpenetrating exclu-
sion sphere conditions is a difficult one. The configuration that lends
itself well to an initial investigation consists of aligned particles in a
regular rectangular lattice, and this is the prime ob ject investigated in
this study. By nesting four sublattices together a reasonable amount of
spatial overlap is obtained; and a very primitive orientation averaging
pertinent primarily to weak mixtures, gives a simple factor, occur-
ring in prior calculations, which goes part way to accounting for the
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randomizing of the loading particles and providing comparisons with
earlier formulas.

The analysis abandons the excitation/scattering concept of ear-
lier formulations, and instead produces an integral equation for the
fiber current, with an extremely complicated kernel that contains the
unknown mixture permittivity embedded therein. Several mathemati-
cal appendices reduce this kernel to a manageable form, using certain
approximations valid in the dense region. Some of these appendices
stand alone: for example Appendix B gives a new sum formula, Ap-
pendix C handles the triple lattice sum, and Appendix A deals with
effective fiber diameter under current-penetration conditions. Eventu-
ally a variational form for the mixture permittivity is obtained and
suitable forms for the fiber current are used to obtain a result that is
recognized to be of Clausius-Mossotti form.

Numerical comparisons with both measured resuits and with ear-
lier formulations show that the new formula is no better in predicting
the loss factor, though it has a negative array factor which prevents the
expression from blowing up and giving non-physical negative values of
permittivity.

In the discussion it is shown why some prior formulas, though
technically invalid in the dense region, nevertheless may be able to
give usable results. The poor prediction of the loss factor, however, is
essentially due to ignoring inter-particle contact. At about 1 or 2 per-
cent volume loading, the material undergoes a sort of phase change, and
a three-dimensional web of conducting material is produced through-
out the sample giving rise to, among other things, a measurable DC
conductivity.

It is concluded that a valid way of randomizing particle orien-
tations and positions is essential to an improved calculation of the
mixture loss-factor. This is both a difficult geometric problem and,
in the absence of a valid equivalent of the T-matrix, also a difficult
electromagnetic problem.

Although a spherical harmonic expansion (or, equivalently, a mul-
tipole expansion) is not valid, for reasons already discussed, the anal-
ysis did encounter something that could be considered its equivalent:
the expansion of the fiber current in terms of suitable basis functions.
In the absence of any guidance as to the form these could best take, a
simple power expansion was used. It turned out that the second term,
which had a relative value of about 1/2, had very little effect on the
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outcome; leaving the dominant effect to the first term which, outside
the exclusion sphere, behaved like the classical dipole term. This is pos-
sibly the reason that prior formulas, based only on this term, do better
than expected into the dense region, at least as far as the permittivity
is concerned.
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