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1. Introduction

1.1 Opening Remarks

Mankind has for generations marveled at the natural phenomena
of lightning. Little, however, was actually known about its true nature
until Benjamin Franklin experimentally determined that it consisted of
electrical charge being displaced. Following Franklin’s pioneering work,
the next major advances in understanding lightning took place around
the year 1920 by Wilson, 1916 [1]; Watson and Craib, 1920 [2]; Ap-
pleton, 1920 [3]. During this period, increasing numbers of scientists
began to investigate the fundamental reason for lightning’s existence
and behavior. This investigation has steadily grown and continues to-
day with large numbers of researchers considering the thermodynamic,
chemical and electrical mechanisms involved.

The study of the middle atmosphere’s electrical response to light-
ning has been limited in the past by insufficient observations. Models
developed to describe this region have therefore relied heavily on the
use of assumptions (4] and have not undergone the test of agreement
with data. Electrical measurements in this region, however, are slowly
but surely being made available and, at least for some cases, exhibit
behaviors different from conventional theoretical predictions {5]. This
fact was the primary reason the present investigation was undertaken.
The study to be described analyzes the atmosphere’s electrical behav-
ior using a computer solution of the general set of Maxwell’s equations
without constraining the electric field to be conservative (E = —V¢
is not assumed). What follows are two sections describing qualitatively
what occurs in a thunderstorm accompanied by a brief historical re-
view.

1.2 The Thunderstorm

Thunderstorms and thunderclouds are usually created in an envi-
ronment containing cold, dense air above warm, humid air. The warm
air ascends in updrafts and forms clouds as water vapor condenses out
while the cold air aloft descends. Such conditions ordinarily occur when
the earth is heated by the sun’s rays causing the air adjacent to the
earth’s surface to become strongly heated.

Thunderclouds have a large variation in size, ranging from the
small clouds seen in semi-tropical storms to very immense clouds com-
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mon at American Midwestern storm systems [4]. Some of the larger
storm clouds reach altitudes exceeding 20 km; however, the height of
a typical thundercloud is usually thought to be less than 12 km [6].
Actually the word typical should only be used for a given geographic
location in that the location determines what is typical. Within a “typi-
cal” thunderstorm, there is a turmoil of wind, water vapor, water drops,
and ice crystals acted upon by gravity, large temperature gradients and
electric fields [7]. The forces interact with the constituents of the thun-
dercloud by mechanisms not fully understood and generate charged
regions within the thundercloud. The upper part of the thundercloud
is composed of positive charge with the lower part containing a net
negative charge [8]. The geometry of the thundercloud becomes one of
an electric dipole. The charged sections of the thundercloud are of the
order of kilometers in diameter [6] and for simplicity are represented
as spheres in most models [9]. In addition to this large dipole repre-
sentation, there may also be a small amount of positive charge at the
base of the thundercloud. Figure 1.1 shows a schematic diagram for
the probable distribution of charge in a South African thunderstorm
including the small positive base charge [6]. The small positive charge
plays a role in shaping the electric field structure immediately within
its confines, but at altitudes of interest to this research (30-40 km) it
has a negligible effect and will not be included as a modeling variable.

The lightning that occurs in a thunderstorm is a result of local-
ized charge build up sufficient to cause electrical breakdown of the
atmosphere. Each cloud-to-ground stroke begins with a weakly lumi-
nous predischarge, the leader process [6], which usually propagates
from cloud-to-ground and which is followed by a very luminous return
stroke. The return stroke usually propagates from ground to cloud. The
predischarge initiating the lightning is given the name stepped leader
because it appears to move downward in luminous steps of typically
50-meter length with a time delay between steps of approximately 50
microseconds.

Once the stepped leader has neared the ground, the resulting
high electric field is sufficient to cause an upward-moving discharge
from the ground to the leader tip. When this connection is made, the
return stroke begins. The return stroke current typically rises to 10 to
20 kiloamperes in a few microseconds and falls to one-half of the peak
value in 20 to 100 microseconds [6]. Currents of the order of hundreds
of amperes may continue to flow for several hundred microseconds.
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Figure 1.1 Probable distribution of thundercloud charges P, N, and p for
a South African thundercloud according to Malan (1952).

Intracloud discharges occur between the upper positive and lower
negative charge centers. It is thought that the intracloud discharge is
very similar to the cloud-to-ground flash in that a propagating leader
bridges the gap between the charge centers followed by a high inten-
sity return stroke [6]. The total charge neutralized in an intracloud
discharge is the same order of magnitude as the charge transferred in
a cloud-to-ground discharge.

Historical Perspective

Since the 1950’s several electrical models describing the interac-
tion of thunderstorms with the atmosphere have been published. The
research groups responsible for this work and for the shaping of sci-
entific opinion on this subject, over the past 25 years, are rather few
in number. Holzer and Saxon have assumed concentrated charges in
a dipole configuration with spatially varying conductivities to obtain
temporally invariant electric field patterns in the lower atmosphere and
ionosphere. The lightning return stroke, however, generates transients
in the observed electrical field known as “field changes” [6]. Early work-



Finite element solution of the atmosphere’s response 303

ers attributed this temporal recovery to recharging within the thunder-
cloud. Tamura [10] is credited as the first to note that the surrounding
atmosphere is also involved. He defined solutions based on the conser-
vative electric field assumption (i.e., Vx E = 0, E ~ Egexp(— t/7),
7 =¢y/0 ) that depend on the conductwnty at the point of observation.
Kasemir [11] constructed the first dynamic model of the thundercloud
system using resistors, a capacitor, and a spark gap. His model con-
nected a current generator, a resistor, and a capacitor in parallel to
model the cloud ionospheric connections with the path to earth re-
placed by a resistor. More dynamic models began to follow. Anderson
and Freier [12] incorporated dynamic changes in dipole charge structure
with spatially varying conductivities. However, Anderson and Freier
omit the total set of Maxwell’s equations and a dynamic forcing cur-
rent in their modeling—only the quasi-static relaxation is included.

Additional transient solutions were developed based on the
‘monopole” model of C. T. R. Wilson by Illingworth [13], Park and
Dejnakarintra [14], Greifinger and Greifinger [15], and Holzworth and
Chiu [5]. Although these four models represent significant progress to-
ward a concise and accurate description of the lightning event, they
are all deficient for calculating upper atmosphere fields and currents
for the time scales of interest (i.e., 1073 — 10 seconds).

The final model discussed is Nisbet’s [16] computer simulation
of the dynamic development of a thunderstorm. His model segments
the atmosphere into regions consisting of capacitors, resistors, current
sources, and switches, whose function is to simulate electrical break-
down of the atmosphere. This is the only model available to date which
allows a complete cycle of simulated lightning to occur a large num-
ber of times, thereby examining the thunderstorm’s long-term prop-
erties. The model is based on the conservative field approximations
(E = —V¢) and therefore neglects the magnetic field’s influence on
the atmosphere’s electrodynamic system response. The mathematical
consequences associated with using the conservative field approxima-
tion will be discussed in a later section.

All of the previously discussed models provide insight into the
lightning phenomenon. However, there still remains a significant num-
ber of electric field measurements [5] that these models cannot explain.
Further modeling studies are therefore required that can account for
these discrepancies.
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2. The Model

2.1 Purpose of the Study

The purpose of this study is to investigate and produce qualita-
tive simulations of the atmosphere’s electrodynamic response to charge
perturbations associated with lightning and lightning like phenomena
(possibly thermonuclear detonations, i.e., the E.M.P. response) for vari-
ous conductivity profiles using the complete set of Maxwell’s equations.
The use of the complete set of Maxwell’s equations to compute the
electrodynamic response of the atmosphere to simulate lightning-like
charge perturbations has never been attempted and is the novelty of
this work. The principal motivation for this study is the lack of agree-
ment between models (including all lightning models reviewed earlier)
and recently published electric field measurements [5].

This study uses a computer program (TWODEPEP) (28] sup-
plied by IMSL to solve the partial differential equations governing the
electromagnetic response of the atmosphere to charge perturbations.
A complete description of the computer code used and its operation is
provided in Appendix A. The scope of the investigation does not in-
clude the atmosphere’ s response to the high current lightning transient
(i.e., propagating electromagnetic energy induced by the lightning re-
turn stroke’s current) and addresses the electrodynamics immediately
following the lightning column’s cessation.

A very wide range of possible electrical parameters must be con-
sidered when constructing a realistic model of the thunderstorm sys-
tem. The variables chosen for this research include three altitude-
varying conductivities and both monopole and dipole charge config-
urations . The temporal structure of the electric fields is investigated
for altitudes of 3040 km and radial distances of 0-30 km. A special
effort is made to identify unusual behavior in the simulations that may
then be investigated via experimental techniques.

The lightning event is modeled in terms of charge perturbations
located at typical altitudes of upper and lower thunderstorm charge
centers. This type of lightning model has been widely used when an-
alyzing the middle and upper atmosphere’s electrical field recovery
following lightning [17].

Since only the non-propagating portion of the lightning return
stroke is investigated in this study, the amount of charge reduced in
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the thundercloud during the lightning discharge is used as the input
parameter for the model for both cloud-to-ground and intracloud light-
ning.

In cloud-to-ground lightning, there exists a large negative lower
charge center that is reduced in magnitude following the lightning
event. This is conveniently modeled by applying the equivalence princi-
ple and introducing a positive charge into the center thereby reducing
the amount of negative charge in the lower center [9]. The charge intro-
duced during the cloud-to-ground lightning has a spherical Gaussian
profile and is centered about the z-axis at the height of the lower neg-
ative charge and will be referred to as a monopole of charge in later
sections.

The modeling of intracloud lightning is done in a similar fashion.
A negative charge of identical magnitude and temporal characteristics
as the positive charge perturbation is introduced at the center of the
upper charge. By superimposing the resultant responses of both the
intracloud and the cloud-to-ground simulations the intracloud response
is simulated. Since the simulations consist of two charge centers, the
corresponding responses will be identified as those of a dipole. A single
charge perturbation at either altitude is shown in Figure 1.2; this may
be described mathematically as follows:

Q,(t) = /0 in()dt

where

ir(t) =lightning return stroke current
Qy(t) =total displaced charge of the return stroke

The specifics of the introduction of the charges are discussed in a

later section and in Appendix A.
It is important to note that only the transient portion of the late-

time electric field recovery following lightning is considered here.
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Figure 1.2 Boundaries used for the electrical model of the atmosphere
with charge injection shown.

2.2 Discussion of the Model

Charging mechanisms

In thunderstorm research the most difficult phenomena to explain
have been the processes involved in cloud electrification. The difficulty
is twofold: on the one hand, there are a large number of possible mech-
anisms responsible for charge separation and current generation; while
on the other hand, it is usually impossible to isolate such mechanisms
and test each for its relative effect. Regardless of the mechanisms, what
is known is that a thunderstorm is sustained by charge separation which
can be approximated by net positive and negative charge centers. The
height of the charge centers is somewhat affected by seasonal changes
and the geographic location. Typical heights of 10 km for the upper
charge center and 6 km for the lower charge center are widely found in
the literature and have been selected for this research [18].

The magnitudes and profiles of the charge centers and currents
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vary significantly from storm to storm. Kasemir, for instance, has mea-
sured values ranging from 20 coulombs up to 1000 coulombs for thun-
dercloud charges and cloud electrification currents from less than 0.1
ampere to 10 amperes. Lightning return stroke currents are reported
to have an even larger range of values. The existence of such large
variations complicates selection of the currents and the charge deposi-
tion profile. After a review of the relevant literature, a judicious choice
of the forcing current and profile of charge deposition was made. The
charge perturbation used was developed based on Sunde’s [19] lightning
return stroke current model.

It is well known that the deposition of the return stroke current
is primarily responsible for the charge perturbation. The deposition
rate of the lightning return stroke current is proportional to the time
derivative of the charge perturbation. Therefore, the total charge de-
posited at time ¢ may be expressed as the integral of the lightning
return stroke current in time (i.e., time history of the induced charge).

t
Q) = /0 in(t)dt

where

ir(t) = lightning return stroke current
Q(t) = total displaced charge of the return stroke

Sunde’s [19] lightning return stroke model is selected for the re-
search primarily because of its extensive commercial and military use in
work requiring an analytic formulation of the lightning return stroke
current. This model was developed based on the statistics of a very
large number of measurements compared to some but includes the
fundamental attributes necessary to predict “average” electromagnetic
field behavior. The charge generation (in units of amperes or coulombs
/second) may be expressed in terms of this current temporally as fol-
lows:

i(t) = Io(exp(—at) — exp(—bt))
i(t) = lightning return stroke current (Sunde’s model)

where

a =10* seconds™!

b=0.5 x 10 seconds™!
Ip = proportional to amount of charge displaced during return stroke.
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The temporal structure of the forced charge generator is given as:

9Q(t)/ 0t = Ip(exp(—at) — exp(—bt))
0Q(t)/ 0t is identical to G used in section 2.3 Maxwell’s Equations.

The term exp(—bt) controls the rise time of the charge genera-
tion inducing the perturbation, i.e., how rapidly the maximum return
stroke current, but not charge deposited, is attained. Since the amount
of charge exchanged during a return stroke is related to its time in-
tegration, omitting the term causes no appreciable change (for times
greater than 5 x 10° seconds) in the amount of charge displaced, and
therefore, no appreciable change in the simulated electrodynamic re-
sponse. The spatial structure of the deposited charge is given by a
modified spherical Gaussian profile:

D(palr, ) _ exp(—R/2))
ot T (271

where

p4 = deposited charge perturbation
A = variance

R=r*+(z-2)°

2/ = altitude of charge perturbation

The spatial distribution of the charge perturbation does not no-
ticeably affect electric field signatures far from its interior [17]. This
condition exists for our model (electric fields of interest are at least
20 km from the charge perturbation) and allows a certain degree of
freedom in the specification of the distribution. Also, since virtually
no published data is available describing the spatial structure of the
deposition of the lightning return stroke current, the selection is even
more arbitrary. The modified Gaussian distribution is used in the mod-
eling of many man-made and naturally occurring forced charge events
and so was chosen for this model [20].

The numerical formulation of the charge perturbation is listed
(FORTRAN statements) with comments in Appendix A. A total charge
of one (1) coulomb is induced in all simulations (1C = [[0Q/dt]dt)
with the initial conditions being that no charge or electric field is
present prior to the first time step.
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2.3 Geometry of the Region

Before describing the geometry, consider again the phenomenon
of interest: charge perturbations located at altitudes no greater than
approximately 10 km, induce electric fields throughout the atmosphere,
but only those fields induced within the middle atmosphere are to be
simulated. Therefore, the model constructed must meet two criteria:

1) If not obviously constrained, the geometrical limits of the model
will approximate the entire atmosphere’s electrical effect on the regions
where the simulations take place.

2) The boundary conditions of the region will be electrically equivalent
to those of the atmosphere.

The region selected (Fig. 2.1) is contained within a perfectly con-
ducting right circular cylinder with a radius of 60 km. A discussion of
how each of the boundaries was arrived at follows:

Lower Plate—The earth’s surface is electrically modeled as a per-
fect conductor. This assumption is based on the very large difference
that exists between the earth’s conductivity and adjacent atmosphere’s
conductivity. Typical values of 1072 to 10~2 mhos/meter [9] are given
for the earth’s conductivity, while 10714 to 10~!3 mhos/meter is the
usual range of the adjacent atmosphere’s conductivity. This difference
of more than 11 orders of magnitude makes the earth appear (electri-
cally) as a perfect conductor. This assumption is commonly used in
practical antenna engineering for frequencies whose range would corre-
spond to time scales of 10™° to 10*! seconds [21], ranges well beyond
the maximum and minimum time scales of this research (Minimum
time step used in the research is 5 x 10~% seconds with a total dura-
tion of 4 seconds.)

Upper Plate—The selection of 80 km for the height of the upper
boundary was a necessary consequence of the atmospheric conductiv-
ity structure being complicated by the Hall and Pederast components
above an altitude of approximately 70 km [17]. The tensor conductiv-
ity components result when the mean free path and velocities of the
charge carriers are sufficient to allow their trajectories to be altered by
the effect of the earth’s magnetic field [22]. The finite element routine
employed in the solution is not capable of modeling tensor conductiv-
ities; therefore, an altitude limit must be set in the vicinity of 70 km.
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Figure 2.1 Boundaries used for the electrical model of the atmosphere.

The 80-km altitude was selected based on the following considerations:

1) The relative magnitude of these two tensor conductivity com-
ponents is approximately proportional to the additional distance in
altitude (beyond 70 km) considered. The maximum value of either of
these components with respect to the parallel conductivity’s magnitude
(for the range of altitudes considered) is less than 10 percent [9).

2) The middle and upper atmospheric electric fields resulting from
lightning (with the exception of the ~ 10~* second propagating com-
ponent) are approximately vertically oriented i.e., the horizontal com-
ponent is negligible.

3) The off-diagonal tensor components of the high-altitude con-
ductivity only interact with electric fields that are not aligned with
the earth’s magnetic field. Since the earth’s magnetic field, with the
exception of the equatorial regions, is primarily vertically aligned, the
influence of both the Pederson and Hall components on the lightning-
induced vertical electric fields will be, to first order, negligible.

An obvious concern is the influence this 80-km altitude limit
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may have on the simulations. To investigate the maximum possible
error (assuming an electrically passive ionosphere) that this would in-
troduce in the solutions, two sets of simulations were done with the
80-km upper plate electrically described by: 1) The vertical electri-
cal field and charge density are set to a value of zero (E = p = 0).
2) The divergence of the electric field is set to the value of the charge
density divided by the permittivity of free space (V-E = p/eo). When
results were compared, little, if any, difference could be seen for the
time frames of interest (0—4 seconds) in any of the cases (all cases were
subject to this test). The largest difference occurred for the simula-
tion done using the exponential conductivity with charge perturbation
located at 10 km (Fig. 2.2), indicating that the simulations were rela-
tively insensitive to the boundary conditions at an altitude of 80 km
(outer cylindrical boundary of 60 km was used in all cases).

The probable reason for this behavior is that in general, for light
-ning-induced transients, the electrical properties of the atmosphere
below the point of observation of the field rather than above, govern the
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transients’ response. This may be explained by simply considering the
fact that, in general, the conductivity (true for all conductivities used in
this study) rapidly increases with altitude (i.e., resistivity decreasing),
and therefore its influence (restrictive effect) on total global charge
movement decreases. Hence, it seems reasonable to assume the middle
atmosphere’ s simulated response to low-altitude charge perturbations
is governed by the adjacent and lower altitude conductivity values.

Outer Cylindrical Surface—The lateral boundary had no dis-
tance constraint and could have been extended indefinitely. However
there exists a trade-off between accuracy and resolution: the smaller
the model dimensions the greater the accuracy in solving the differ-
ential equations. Therefore, the errors resulting from the adoption of
finite boundaries for the model must be weighed against those resulting
from degrading the numerical resolution of TWODEPEP by involving
too large a volume.

The simulations were found to be insensitive to increases in the
radial limit beyond 50 km for all cases. No visible difference could be
detected in the responses using either 50-km or 60-km radial bound-
aries when plotted together (comparative plot not included). Therefore,
selecting a 60-km radial limit is a measure taken to provide additional
confidence in the simulations.

Azis of Symmetry (z-azis)—Since r = 0 defines an axis of sym-
metry and since there are no discontinuities in the charge distribution,
the derivative of the vertical electric field (0FE,/0r) with respect to
radial distance reduces to zero on this axis.

The differential forms of the four boundary conditions are sum-
marized as follows:

1) At ARC = +1 (z-axis), (0E,/0r) = 0.
2) At ARC +2,+4 (upper and lower boundaries).

V'Ezp/GO)ET =0
3) At ARC = -3 (outer radial boundary), p = E, = 0.

2.4 Conductivities

The three altitude-varying conductivity profiles selected for com-
parison (Fig. 2.3) are the Gish [7] model, and exponentially-varying
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conductivity [5 x 10~ exp(Z/6000 m) mho/m], and a profile con-
structed based on data obtained during a thunderstorm campaign on
8 August, 1981, conducted at Wallops Island Virginia [23]. The Gish
and the exponentially-varying conductivities are both widely used in
atmospheric electrical models [13]. The Gish conductivity has a greater
rate of change versus altitude and a wider range of values than the ex-
ponential. This difference provides a measure to correlate with the re-
sulting field simulations. The third conductivity profile, approximating
the measurements, displays and even greater rate of change and range
of values than the Gish profile, and therefore extends the possible corre-
lation. This third profile is based on measurements and will be referred
to as the REAL conductivity in the following discussions for simplicity.
It is believed that the three conductivity profiles are representative of
the conductivities in the (nighttime) mid-latitude atmosphere.

2.5 Mazwell’s Equations

To those familiar with classical electromagnetics, the analysis of
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the post-stroke atmospheric response may appear relatively simple at
first. A charge imbalance induced in a conducting region would be
expected to decay exponentially with time at a rate determined by the
local relaxation time of the region. The corresponding electric fields,
being proportional to the overall charge distribution, would also be
expected to decay in this manner. When electric field measurements
obtained from parachute-borne payloads [24] are considered, however, a
significant deviation from the exponential decay is at times observed. In
some cases & gradual peaking is observed hundreds of milliseconds after
the return stroke has ceased. This behavior suggests, at least for some
circumstances, that a more complicated description is required and
that a careful analysis of the governing equations should be undertaken.

Beginning with Maxwell’s equations, a single equation is derived
where the electric field is dependent on the charge density only as
follows:

VxE=-u,0H/0t (2.2)
V x H =J + 8D/t + any additional sources of charge movement

(2.3)

V-D=p (2.4)

V-H=0 (2.5)

J =0E (2.6)

D =¢E (2.7)

The wave equation is developed using the above equations as follows:

1) taking the curl (2.2)
VxVxE=—p,0(V x H)/ot (2.8)
2) using the vector identity
VxVxE=VV-E-V’E
3) substituting (2.3) for V x H in (2.8)
4) substituting (2.4), (2.6), (2.7) in (2.8) results in the wave equation

V x V x E = —y00E /0t — o€, 0°E /0t* (2.9)
or
Vp/eo = V?E — pgodE 0t — poegd*E/0t* (2.10)

The resulting second order partial differential equation (2.10) is
analytically solvable for only the simplest cases. The types of solutions
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required for altitude-dependent conductivities are not obvious. If one
wishes to pursue this problem further, assumptions must be made or
a numerical methods approach must be applied. The most common
assumption used in the past is to define the electric field as the gradient
of the electric potential (E = —V¢), the conservative field equation.
The mathematical consequence of this is to constrain the electric field
to decay exponentially in time. This can be shown as follows:

if E=-V¢

V x E =V x (=V¢) = 0 (vector identity)

VUxVxE=0 (the curl of a constant, in this case is 0)
then (2.9) reduces to

0= —uoaa—E‘-/(’}t — H0€062-E/6t2
The general solution of this partial differential equation is:

E(z,t) = Ei(z) exp(—t/7(z)) + Eo(z)

Z is a position vector in any general coordinate system

7(z) = eo/0(2)

This type of solution has a definite range of validity. However,
for the general case, a computer solution of (2.10), not limited by the
conservative field assumption, would provide more information about
the true time-dependent shape of the electric field.

The last equation required for the simulations is the continuity
equation. This is derived by taking the divergence of (2.3) and sub-
stituting in (2.4), (2.5), (2.6), and (2.7) (the order is unimportant) as
follows: :

V- (VxH)=V-(0E +¢0E/ot + J,)
V - (V x H) = 0 (vector identity)

0=V 0FE +¢,0E/0t + J,)

0=V -(0E)+V-(60E/0t) + (V- T)
0=0V-E+Vo-E +¢0(V-E)/ot+GC,
0=o0p/eg+Vo-E +0p/ot+C, (2.11)
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where

Js

= source current inducing the charge perturbation
V-Js =G, = source charge generator creating perturbation

Equations (2.10) and (2.11) are derived from Maxwell’s equations
and describe the electrodynamic response of the atmosphere to charge
perturbations. They are in required input format for TWODEPEP
and in Appendix A are converted to FORTRAN statements. Only the
vertical component of (2.10) is investigated and, therefore, only two
equations are required.

3. Electric Field Simulations

3.1 Introduction

The electric field simulations are presented in two sections. Each
section contains vertical electric field simulations at nine different lo-
cations. The first section contains the atmosphere’s electromagnetic
response to positive monopole charge perturbations (located at 6 km
and 10 km) for all three conductivity profiles. These results may be
operated on linearly (using the principle of superposition and scaling)
to simulate the electric fields resulting from charge perturbations of
any given magnitude whose centers are located at 6 km and 10 km.
This includes lightning and other similar events (possible nuclear det-
onations).

The second section contains vertical electric field simulations in-
duced by dipole charge perturbations. These simulations model light
-ning-induced vertical electric fields that will be compared to observa-
tions. The experimental data selected [23] measured both the conduc-
tivity and vertical electric field concurrently. However, the payload’s
position relative to the lightning was unknown, causing the comparison
(section 4) to be more qualitative than quantitative.

Figures shown in sections 3.1 and 3.2 are identified with a heading
containing the following information:

SIMULATION 1st entry - 2nd entry - 3rd entry
Ist entry = altitude of charge perturbation in kilometers or DI
if dipole is used
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2nd entry = radial distance of simulation in kilometers from the
vertical axis
3rd entry = altitude of simulation in kilometers

3.2 The Monopoles

3.2.1 Electric field simulations for a charge perturbation located
at 6 km

A) Z =30 km

The interesting characteristics of these simulations (Figs. 3.1-3.8)
are as follows:

1) the maximum value of the electric field for all simulations oc-
curred 100 ms or more after the forced charge perturbation had ceased.

2) The magnitude of the electric field decreases (in all cases) as
the radial distance is increased.

3) The temporal structure (peak magnitude of each may be con-
sidered normalized to a value of one) of the electric field for a given
conductivity is not sensitive to radial position. This seems to indicate
that the electric fields are mapped horizontally at this altitude.

B) Z =40 km

4) The vertical electric field waveforms reverse polarity for simu-
lations done at R = 0 km, 10 km.

5) The maximum value of the electric field for all simulations oc-
curred 30 ms or more after the forced charge perturbation had ceased.
Generally, the time delay, magnitude, and duration of the Z = 40 km
electric field simulations are less than the previously shown Z = 30 km
simulations.

6) For simulations where R = 20 km and 30 km, the electric field
magnitude decreases relatively rapidly (after the maximum value is
reached) for times less than approximately 2 seconds. This is followed
by a much slower rate of decay for the remainder of the simulation
(total duration of 4 seconds).

3.2.2 Electric field simulations for charge perturbations located
at 10 km

A) Z =30 km
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The interesting characteristics of these simulations (Figs. 3.9~
3.16) are as follows:

1) The maximum value of the electric field for all simulations
occurred 100 ms or more after the forced charge perturbation had
ceased.

2) The magnitude of the electric field decreases (in all cases) as
the radial distance is increased.

3) The temporal structure (peak magnitude of each waveform
may be considered normalized to a value of one) of the electric field
for a given conductivity is not sensitive to radial position. This seems
to indicate that the electric fields are mapped horizontally at this al-
titude. These three conditions were also observed for the 6-km charge
perturbation.

B) Z =40 km

4) The vertical electric field waveforms did not reverse polarity
for simulations done at R = 0 km, 10 km (a polarity reversal was
noted at these positions for the charge perturbation located at 6 km).

5) The maximum value of the electric field for all simulations oc-
curred 30 ms or more after the forced charge perturbation had ceased.
Generally, the time delay, magnitude, and duration of the Z = 40 km
electric field simulations are less than the previously shown Z = 30
km simulations.

6) For all cases, the magnitude of the simulated electric field de-
creases relatively rapidly (after the absolute maximum value is reached)
for times less than approximately 2 seconds. This is followed by a much
slower rate of decay for the remainder of the simulation (total duration
of 4 seconds).

3.8 The Dipole

The vertical electric fields resulting from two charge perturba-
tions of equal magnitude and opposite polarity (negative upper, posi-
tive lower) are simulated and approximate the charge displaced during
and intracloud lightning discharge. The upper and lower charge per-
turbations are located at 10 km and 6 km respectively. The temporal
and spatial structure of each is described in Section 2.2 and also in
Appendix A.

All three altitude-varying conductivities are used.
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Figure 3.1 Electric field simulations
monopole of charge located at 8 km.
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Figure 3.2 Electric field simulations at Z = 30 km, R = 10 km
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Figure 3.3 Electric field simulations at Z = 30 km, R = 20 km for a
monopole of charge located at 6 km.
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Figure 3.4 Electric field simulations at Z = 30 km, R = 30 km for a
monopole of charge located at 6 km.
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Figure 3.5 Electric field simulations at Z = 40 km, R = 0 km for a
monopole of charge located at 6 km.

g 1 1 1 1 1 1
-~

~
~

~

1.50

Exponential Conductivity
Gish Conductivity
REAL Conductivity

ELECTRIC FIELD IN VOLTS/METER
0.69

0.42

.15

1]

-0.12

.86 2.48 3.19 3.72

o
°
-1
o
@
~
-
~
S
-

SECONDS

Figure 3.6 Electric field simulations at Z = 40 km, R = 10 km for a
monopole of charge located at 6 km.
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Figure 3.7 Electric field simulations at Z = 40 km, R = 20 km for a
monopole of charge located at 8 km.
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Figure 3.8 Electric field simulations at Z = 40 km, R = 30 km for a
monopole of charge located at 6 km.
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8.8.1 Electric field simulations for a dipole
A) Z =30 km

The interesting characteristics of these simulations (Figs. 3.17—
3.24) are as listed:

1) The maximum absolute value of the electric field for all simu-
lations occurred 100 ms or more after the forced charge perturbation
had ceased.

2) The absolute value of the electric field decreases (in all cases)
as the radial distance is increased.

3) The temporal structure (peak magnitude of each waveform
may be considered normalized to a value of one) of the electric field
for a given conductivity is not highly sensitive to the radial position.
This seems to indicate the electric fields are, as was the case for the
monopole simulations, mapped horizontally at this altitude.

4) The electric field waveforms show (for the R = 0 km, 10 km,
and 20 km simulations) a slight field inversion for times greater than 3.5
seconds. The maximum value of the inverted electric fields for all cases
was less than twenty percent (20%) of the corresponding non-inverted
electric field values.

5) Overall, there is a high degree of similarity in the temporal
structure of the dipole and monopole vertical electric field simulations
at this altitude.

B) Z =40 km

6) The vertical electric field waveforms (for all cases) did not
reverse polarity.

7) The maximum value of the electric field for all simulations oc-
curred 30 ms or more after the forced charge perturbation had ceased.
Generally, the time delay, magnitude, and duration of the Z = 40 km
electric field simulations are less than that of the previously shown Z
= 30 km simulations (this characteristic was observed in the corre-
sponding monopole simulations).

8) The electric field simulations for R = 10 km, 20 km, and 30
km showed a high degree of similarity. However, the on-axis (R = 0
km) electric field simulations for the exponential conductivity varied a
great deal (both temporally and in magnitude) from those of the Gish
and REAL conductivities.
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Figure 3.9 Electric field simulations at Z = 30 km, R = 0 km for a
monopole of charge located at 10 km.

8.4 Spatial Distribution of the Simulated Vertical Electric Fields
of Lightning

This section contrasts the vertical and horizontal (distance) de-
pendence of the simulated vertical electric fields corresponding to in-
tracloud and cloud-to-ground lightning (Figs. 3.25-3.28). The altitude
variation is displayed by superimposing the vertical electric field simu-
lations for the on-axis (R =0 km) cases at altitudes of 30 km, 40 km,
and 50 km. The horizontal dependence is likewise shown by superim-
posing the vertical electric field simulations at a altitude of 30 km for
radial distances of 0 km, 10 km, 20 km, and 30 km.

There are two general characteristics that can be identified in
these comparisons:

1) The initial rise time and early-time rate of decay the electric
field simulations increases as altitude is increased.

2) The magnitude of the vertical electric field simulations de-
creases as radial distance is increased, while the temporal structure
remains relatively unaffected.
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Figure 3.10 Electric field simulations at Z = 30 km, R = 10 km for a
monopole of charge located at 10 km.
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Figure 3.11 Electric field simulations at Z = 30 km, R = 20 km for a
monopole of charge located at 10 km.
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Figure 3.12 Electric field simulations at Z = 30 km, R = 30 km for a
monopole of charge located at 10 km.
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Figure 3.13 Electric field simulations at Z = 40 km,
monopole of charge located at 10 km.
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Figure 3.14 Electric field simulations at Z = 40 km, R = 10 km for a
monopole of charge located at 10 km.
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Figure 3.15 Electric field simulations at Z = 40 km, R = 20 km for a

monopole of charge located at 10 km.
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Figure 3.18 Electric field simulations at Z = 40 km, R = 30 km for a
monopole of charge located at 10 km.
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Figure 3.17 Electric field simulations at Z = 30 km, R = 0 km for a dipole

with (=) 10 km upper charge and (+) 8 km lower charge simulating
intracloud lightning.
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Figure 3.18 Electric field simulations at Z = 30 km, R = 10 km for a
dipole with (—) 10 km upper charge and (+) 8 km lower charge simulating
intracloud lightning.
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Figure 3.19 Electric field simulations at Z = 30 km, R = 20 km for a

dipole with (—) 10 km upper charge and (+) 6 km lower charge simulating
intracloud lightning.
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Figure 3.20 Electric flield simulations at Z = 30 km, R = 30 km for a

dipole with (—) 10 km upper charge and (+) 8 km lower charge simulating
intracloud lightning.
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Figure 3.21 Electric field simulations at Z = 40 km, R = 0 km for a dipole

with (=) 10 km upper charge and (+) 6 km lower charge simulating
intracloud lightning.
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Figure 3.22 Electric field simulations at Z = 40 km, R = 10.km for a
dipole with (—) 10 km upper charge and (+) 8 km lower charge simulating
intracloud lightning.
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Figure 3.23 Electric field simulations at Z = 40 km, R = 20 km for a
dipole with (—) 10 km upper charge and (+) 8 km lower charge simulating
intracloud lightning.
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Figure 3.24 Electric field simulations at Z = 40 km, R = 30 km for a
dipole with (—) 10 km upper charge and (+) 6 km lower charge simulating
intracloud lightning.
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Figure 3.27 Vertical distribution of simulated electric fields at Z = 30
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Figure 3.28 Vertical distribution of simulated electric flelds at Z = 30
km for a dipole with (-) 10 km upper and (4) 6 km lower charge centers
using real conductivity.

4. Comparison of Simulations and Measurements

Part of the motivation of this study was to simulate the electro-
magnetic scenario that was present during the Wallops Island, August
8, 1981 experiment [23]. The third conductivity profile (REAL) selected
for the study was, as stated earlier, obtained primarily from this data
(near-surface conductivity profile was extrapolated using Markson’s
[25] aircraft data). Therefore, simulations done using this conductivity
(3.3.1 Dipole and 3.2.1 Monopole simulations) could be compared to
the experimental electric field data. Since the relative position of the
lightning with respect to the probe (rocket-borne payload containing
nose-tip probe and Gerdien condenser) was unknown, the temporal
structure, not the magnitude, was the focus of the investigation.

4.1 Description of the Experiment

The experiment was conducted on August 8, 1981, during a
thunderstorm at Wallops Island, Virginia. The collected data shows
lightning-related electric field waveforms that, for may cases, deviate
significantly from a simple exponential time decay. All measurements
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were taken at altitudes equal to or greater than 25.5 km. The specific
waveforms selected for comparison are shown in Figs. 4.1-4.3. Figure
4.1 shows a vertical electric field waveform that was recorded at an
altitude of 40 km. The waveform has two interesting features: 1) A po-
larity reversal that occurs approximately 4 seconds after the transient
onset. 2) The tapering off of the electric field to a nearly constant value
of 0.25 volts/meter.

Figure 4.2 shows an electric field waveform that was attained at
an altitude of 47.5 km. The electric field remains strictly positive for
the duration of the transient and shows again the asymptotic approach
to a nearly constant non-zero value.

Figure 4.3 shows electric field schema (resulting from intracloud
and cloud-to-ground lightning) obtained at altitudes of 25.5 km to 47.5
km. In both waveforms the maximum electric field value is delayed by
30 ms or more.

4.2 Comparison of the Waveforms

A careful study of the simulated electric field waveforms revealed
that several of these closely resembled the temporal structure of the
measured electric fields. What follows is the identification of the charac-
teristics observed in the measurements and simulated by the computer
model:

1) The polarity reversal and waveform shown in Fig. 4.1 (mea-
surements) were approximated by the simulation shown in Fig. 3.20.
Both of these waveforms are temporally quite similar;.they tend to
track one another fairly well.

2) The electric field behavior shown in Fig. 4.2 described and
modeled by Hale [24] using a double exponential (i.e., the sum of two
exponentially decaying terms with different time constants) was ob-
served to some degree in all simulations. Figure 3.7 of the simulations
bears the closest resemblance to this waveform.

3) The late-time gradual field recovery shown in Fig. 4.3 (alti-
tude of 47.5 km) was simulated in Figure 3.9 (altitude of 50 km). Hale
[24] attributed this phenomenon to “slow recharging” of the electric
field (assuming Hale's statement implicitly indicates and active cloud
charging current). However, since all forced charge perturbations have
ceased (in the model) long before this behavior is observed in the sim-
ulated electric fields, it seems to be explainable in terms of a passive
atmospheric response as well.
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5. Conclusions

5.1 The Results of the Study

Four conclusions my be drawn from this study:

1) The conservative electric field approximation, when used to
analyze the atmosphere’s transient electrodynamic response, will lead
to solutions that are generally incorrect.

2) The late-time response (late-time (T}) is defined here as T} >
37(X), where 7 = €p/o(z),z is the position where the simulation
occurs) of the simulated electric field is relatively insensitive to the
value of conductivity at the point where the simulations occur.

3) The temporal structure of the simulated electric field imme-
diately following the onset of the initial maximum is approximately
proportional to exp(—t/7(z)) (defined above), i.e., exp(—t/T(z)) fol-
lows or tracks the simulations for this time regime. The electric field
simulations maintain this similarity for approximately 27(X).

4) The amount of energy deposited in the atmosphere, based on
the results of this study at altitudes of 40 km and above is much
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greater than a conservative electric field model (assuming identical
model parameters) would predict. This phenomenon, of relatively large
energy deposition in the middle atmosphere and above, may explain
in part the reported correlation of high-altitude electron precipitation
to lightning events [18].

The conservative electric field assumption, if used, constrains the
resulting electric field to decay exponentially in time ( E will be pro-
portional to exp(—t/7(z).

All vertical electric field simulations presented strongly deviate
from the simple exponential decay (above premise). This deviation
is most pronounced prior to the initial maximum and at late times.
The evidence that suggests the second conclusion stated above can be
briefly stated as follows:

—All vertical electric field simulations conducted at altitudes of
40 km and 50 km showed a large difference in the initial versus late-
time rate of decay. The late-time behavior was, in all cases, relatively
gradual compared to the initial decay following the peak (the maximum
of the electric field waveform) and is relatively independent of altitude
and of the conductivity at the position of the simulation.

The evidence that suggests the third conclusion requires a gen-
eral inspection of all electric field simulation; therefore, no summary is
presented.

The evidence that suggests the fourth conclusion can be briefly
stated as follows:

—The electric field simulations (for all cases), at altitudes of 40
km or greater, showed a much longer temporal duration than could be
explained if the conservative electric field assumption were assumed.

—The electromagnetic energy dissipated (joule heating) in a re-
gion of space is given by the integral:

dissipated energy =/ / _ (0F2dvol)dt
o Jregion

Therefore, the late-time duration of the electric fields (referred to
as late-time tails by Holzworth and Chiu [5] greatly increase the total
energy dissipated.
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Appendix A: Computer Code

The partial differential equations describing the electrodynamic
response of the atmosphere are developed into the exact form required
by TWODEPEP for input data. The equations (2.10 and 2.11) are
listed below:

Vp/ey = VZE — pgo0E /0t — jige,0°E /0t? (2.10)
0=o0p/eg+Vo-E+0p/ot+Gs (2.11)

where

Js = source current inducing the charge perturbation
V -Js =G, = source charge generator creating perturbation

Vertical (axial) symmetry is assumed in this study with spatial
position being defined using a cylindrical coordinate system (r, ¢, Z).
The development proceeds as follows:

V?E =|V?E, — E./r? — 2(0E¢/0¢)/r*|ar+
[V? — ¢ — Ey/r* + (O, /09) [r*]ag+
[V2E,]a,

where a(r, ¢,2) is a unit vector in the respective direction.
Axial symmetry eliminates all terms that vary with respect to, or
are functions of, ¢. The above equation therefore reduces to:

V2E = |V?E, - E,/r?a, 4+ [V?E,|a,

where

V2E, = 8*E,/02* + 1/r(0/0r(rOE,/0z))
V2E, = 8%E,/0r? + 1/r(8/0r(rOE,/0r))

Only the vertical component (a,) of equation 2.10, in conjunction
with equation 2.11, is required for a unique solution, via simulation, of
the system (for linear systems, 2 equations with 2 unknows will have
only one (1) unique solution; this is discussed at length in Chapter 3,
[26]. A more detailed discussion of this specific development is given
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by Holzworth and Chiu [5]. The variables simulated in the study are
E, and p and the equations are given as:

10€00°E,/0t? = —Vp/eg + V2E, — pgodE, /0t
U=0E,/8t, V=E,

V2E, = 9(0E,/da)/8z + O(0E,/0r)/or)/dr)/0r + 1/r(OE,/0r)
Vp=0p/02, Vo =2080/02

in program: r -z, z =y, oU/dz - UX
oU/oy — UY, 0V/dx - VX, 8V/oy - VY
SET =1

oXxX=v

OXY = VY — USET(2)/8.854D — 12
F1=VX/X — SIGMA (X,Y)*12.56637D — 7*U
C1 =1.D0/9.D16

C2=1.D0

SET = 2

— 0p/Ot =0/eg+ VoE, + G,

Vo =00/0z = SIGMA(X,Y)/FH(X,Y)

U=p

Cl=-1D0

F1 = SIGMA(X,Y)*(U/8.854D — 12 + VSET (1)/FH(z, y))
— GPH(z, Y, T)

Several excerpts from TWODEPEP’s 5th Edition Manual, con-
taining the most frequently referenced information, are listed as an
aid, followed by the program. They contain definitions of the program
variables and provide a brief overview of the software’s operation and
construction.

The boundary conditions are realized in the program using the
ARC functions as follows:

ARC = +1 (vertical axis, r =0 km)
When cylindrical symmetry is present, the vertical axis represents

a line of symmetry. This condition requires that the value of all param-
eters tend to a local minimum or maximum in the limit as the vertical
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axis is approached, i.e., lim,_,o = 0 where F represents all program
parameters.

ARC = +2, +4 (upper and lower boundaries)

Both of these boundaries are modeled as perfectly conducting
surfaces, and, as previously discussed, the radial component of the
electric field at these boundaries becomes negligibly small (E, = 0)
in the limit as z approaches zero (lower boundary) or 80 km (upper
boundary). Therefore, for these boundaries, V-E = p/ €g is expressible
as 0F,/0z = p/ey,

ie., lim V-FE OF,/0z = p/e
" 20 km 80 km( ) / pleo

ARC = -3

The vertical electric field (E;) and charge density (p) were as-
sumed to be negligibly small at a radial distance of 60 km. It was
found that simulations done using these conditions were insensitive to
changes beyond 50 km. Therefore, selecting a 60 km radial limit is a
measure taken to provide additional confidence in the simulations.
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**** The vertical electric flelds resulting from

*®¢* charge perturbations located at either 6 km or 10 km
**e* are simulated using TWODEPEP.

21 100 1

SET=1

**e* Equation 2.10 is described using Fortran statements
**** in SET = 1. The parameters of this SET are:

hbdad U=dEz/dt, V-Ez. The vertical component (az) of equation
*#e* 2.10 is solved for and formulated as follows:

**** The z-component of the vector laplacian + Del**2(E)
222 Del**2(E) = d/dz[d/dz(Ez)l + (l/r)d/dr[rd/dr(Ez)]

see® Del**2(E) = d/dz[d/dz(Ez)] + d./dr[d/dr(Ez)] +

none (l/r)d/dr[Ezl

®*¢* in the statements, r = x, z = y,

bt d./dr[d/dr(Ez)] = d/dx(0XX), OXX = d/dx(VX)

b d/dz[d/dz(Ez)] - (1/8.854D-12)d/dz(Uset(2)) = d/dy(0OXY)
sess OXY = VY - USET(2)/8.854D-12

S80S Fl = (l/r)d/dr[Ez] - SIGMA(X,Y)([12.56637D-7](U]

Cl 1.D0/9.D16

0XX vX

oxXYy VY-USET(2)/8.854D-12

NUDPT 3.D0

F1 (VX/X-SIGMA(X,Y)*12.56637D-7*U

**#® UPRINT is used to reformat the output data file
UPRINT A

c2 1.DO
F2 U
SET=2

e##* Equation 2.11 is represented in Fortran statements
**¢* in this SET. U = pho, the charge density

®*** The GRAD(SIGMA) = SIGMA/FH(X,Y), which multiplies
s*e* VSET(1); (VSET(1) = Ez)

Fl1 SIGMA(X,Y)*(U/8.854D-12+VSET(1)/FH(X,Y))-GPH(X, Y, T)
C1 -1.D0
NUPDT 3.D0

NOUT 1
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ws#* The value of 6.D3 in D3EST will be changed to 10.D3

sess for simulations done using the upper charge perturbation

D3EST

1.DO/SQRT(X*X+(Y-6.D3)**2+1.D-5)

ses* UPRINT is used to reformat the output data file

UPRINT

NX

NY

HX

HY

TF

DT
DTINV
ALPHA
YA
XGRID
YGRID
IX

184
ADD.

v
4.00

3.D0
10.D3
10.D3

4.D0

1.D-2

1.DO/(T)**0.55

1.D0

3.D4

0.D0, 2.D3, 5.D3, 25.D3, 60.D3
0.D0, 6.D3, 12.D3, 20.D3, 80.D3
1,-3

2,4

*ss* One of the following conductivity profiles is selected

ss#s by deleting "****" in its first four (4) columns

“s** When changing conductivities, it is important to replace

ssss "ssss” i the first four columns of the previously

sss* simulated conductivity. Failure to do so will generate

s*#® an error
s*#s THE CONDUCTIVITY:

FUNCTION SIGMA(X,Y)

wse* EXPONENTIAL CONDUCTIVITY

oo

SIGMA=5.D-14*EXP(Y/6.D+3)

IF (Y.LT.4.D3) F1=2.94DO/EXP(4.5D-3*Y)
IF (Y.GE.4.D3) F1=0.DO
F3=0.369DO/EXP(1.21D-4*Y)
F2=1.39D0/EXP(3.75D~4*Y)

e#*¢ GISH CONDUCTIVITY

E2 2 1]

SIGMA=1.D-13/(F1+F2+F3)
IF(Y.LT.5.D3) F5=9.DO/EXP(Y/360.D0)
IF(Y.GE.5.D3) F5=0.D0

343
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e

seee

aane

seee

SBES

*eae

(211

L iddd

"

sene

sene

L il

"N

F4=0.369D0/EXP(Y/7700.D0)
REAL CONDUCTIVITY
SIGMA=6.D-14/(F1+F2+F4+F5S)
RETURN
END
The function GPH(X,Y,T) is the charge perturbation
in terms of Fortran statements. The user-supplied
terms are defined as follows:
SD = uysually defined as the standard deviation, controls
the charge perturbation’'s radial profile
DQ = amount of total charge generated during the
charge perturbation
YO = vertical location of the charge perturbation
V = in this subroutine, V is defined as the variance
(not used as a user-supplied term in this routine)
THE CHARGE PERTURBATION:
Tl = decay or fall time of the charge perturbation
FUNCTION GPH(X,Y,T)
SD=3.D3
DQ=1.D+0
YO0=6.D+3
V=SD*SD
DR=X*X+(Y-Y0)**2.DO
IF(DR.LT.63.D6) BAR=EXP(-DR/(2.D0*V))
IF(DR.GE.63.D6) BAR=0.DO
Tl=]1.D-4
AUG=T/T1
The use of the exponential operator requires arguments
that are within the range: -30.0 < argument < 30.0
IF(AUG.LT.30.D0) ER=EXP(-AUG)
IF(AUG.GE.30.D0) ER=0.DO
PHO = spatlal structure of charge perturbation
ER/tl = sets the total amount of charge exchanged to
be independent of the value of Tl
PHO=DQ/(2.D0*V*3.14159D0)**1.5*BAR
The total charge contained within the spatial

Baginski

distribution of PHO is found by integrating PHO over the volume

Lidd

a

b TOTAL CHARGE = I PHO(R’)*(4.*3.14159*R'*R’)dR’

0
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sene

‘oo

eone

‘use

sSuee

,He

"Hee

e

sSees

"R

aese

L1l 1]

20w

"een

seex

ey

END.

= 1.DO0
where a = Infinity
R’ = SQRT(X*X+(Y-YO0)**2.)
YO = {s altitude of charge
perturbation
PHO is converted to spherical
coordinates
The integral and solution are
found on page 307 of TABLE OF
INTEGRALS, SERIES, AND PRODUCTS,
Gradshteyn and Ryzhik, 1980
GPH =PHO®*ER/TI
RETURN
END
FH(X,Y) Is used to define the gradient of the
conductivity that appears in equation 2.11.
Each of the three conductivities require a separate
form of FH(X,Y) shown below. Changing the value of
FH(X,Y) is done using the same procedure as described
for the conductivity
FUNCTION FH(X,Y)
IF(Y.LT.4.D3) F1=2.94DO/EXP(4.5D-3*Y)
IF(Y.GE.4.D3) F1=0.DO
F3=0.369DO/EXP(1.21D~4*Y)
F2=1.39DO/EXP(3.75D-4°Y)
GISH=1.D-13/(F1+F2+F3)
FH FOR EXPONENTIAL CONDUCTIVITY
FH=6.D3

FH FOR GISH CONDUCTIVITY
FH=1.D-13/((4.5D~3°F1+3.75D~4*F 2+1.21D~4*F 3)*GISH)
IF(Y.LT.5.D3) F5=(9.D0/EXP(Y/360.D0))
IF(Y.GE.5000.D0)F5=0.D0
F4=0.369D0/EXP(Y/7700.D0)
SIGMA3=6.D~14/(F1+F2+F4+F5)

FH FOR REAL CONDUCTIVITY
FH=6.D-14/(SIGMA3*(4.5D-3"F1+3,75D-4*F2+F4,/7700.D0

+F5/360.D0))
RETURN
END
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List of Symbols

Quantity Symbol Unit

Charge gor Q coulomb
Current iorl ampere

Charge Density p coulomb/meter 3
Current density J ampere/meter 3
Conductivity o mho/meter
Electric field intensity E volt/meter
Electric potential ¢ volt

Dielectric displacement D coulomb/meter 2
Inductive capacity of free space ¢, farad/meter
Magnetic Flux P weber

Magnetic flux density B weber/meter 3
Magnetic field intensity H ampere-turn/meter
permeability of free space Lo henry/meter




