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1. Introduction

Planar layered structures have played a significant role in mi-
crowave technology [see for example 1, 2]. This role is increasing day
by day thanks to the investigations of new configurations (including
different geometries or anisotropic substrates) as well as to the ad-
vances in material technology [3-5].

Printed antenna problems involving stratified complex substrates
have also been a matter of particular attention in recent years. It has
been demonstrated that, by properly choosing the layer thickness and
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material parameters, significant improvements can be achieved in the
performance of the printed antennas including the reduction or elim-
ination of surface waves. Also, a double layer structure allows for the
separation of active circuitry and radiating patches in hybrid or mono-
lithic integrated circuit technologies.

These potential advantages with the steady interest in high fre-
quency bands lead to the need for accurate analysis of such structures
with very general bianisotropic substrates. The analysis and the solu-
tion of the electromagnetic field problem becomes simpler if the Fourier
transformed domain- or spectral domain- approach is used. This is
mainly due to the fact that Green’s function convolution integrals in
the spectral domain are turned into algebraic products. Different meth-
ods utilizing conventional spectral domain approaches have been pro-
posed for the analysis of planar layered structures. Among those, there
are the quasi static approaches and the full wave solutions [6].

A large number of works can be found in the literature dealing
with the full wave solutions, all of which emphasize certain aspects but
are restricted to either lossless substrates and/or conductors, infinitely
thin conductors, magnetic bias in only one direction, purely diagonal
constitutive tensors, or single layered substrates. Although the method
proposed by Krowne [7,8], the propagation matrix approach, appears to
be general because it includes bianisotropic media, it lacks closed-form
expressions for dyadic Green’s function. As an alternative, a similar
scheme, called equivalent boundary method, has been presented by
Mesa [9,10] to derive a spectral dyadic Green’s function under the
assumption, however, of lossless.

In this paper a generalized spectral-domain approach based on
the transverse transmission-line method is presented. Such a method,
also called Immittance Matrix Approach (IMA), based upon the de-
composition of the spectral electromagnetic field into transverse TE
and TM modes to the vertical axis, is quite different from the prop-
agation matrix approach and the equivalent boundary methods. The
IMA, in fact, is able to deal with any number of layers with or without
losses and leads to compact algorithm for computing, besides, the far
field radiated pattern and very interesting conditions of radiation on
the horizon plane.

Up to now, this method has been used for the study of all the

configurations which provide directly for two decoupled equations re-
lating together sources and fields, one for the transverse TE modes and
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another for the transverse TM modes. This condition is satisfied, for
instance, by isotropic and, uniaxial and gyrotropic anisotropic layers
with their optical axes perpendicular to the interface.

The theoretical formulation presented in this paper shows how to
determine, via the Immittance Matrix Approach, the spectral dyadic
Green’s function of a single layered planar structure having a complex
bianisotropic slab, fed by a planar electric point-source. To this end,
firstly, we show how to decouple in a general unbounded bianisotropic
medium the Maxwell’s equations in spectral TE and TM waves with
respect to the direction perpendicular to the interface. Secondly, we
provide the conditions that must be satisfied by the constitutive tensors
of the medium in order to describe, in the two-dimensional Fourier
domain, the electromagnetic field via the transmission-line analogy.
Starting from the transmission-line representation of the TE and TM
spectral waves we, then, derive a general and very simple expression of
the spectral Green’s dyad for the single layered planar structure.

The method is demonstrated at the examples of a new synthetic
bianisotropic material, recently introduced by Engheta and Saadoun:
the pseudochiral € -medium [11-15]. There are four major mecha-
nisms of producing the dipole moment in a material (the electronic,
atomic, dipole and interfacial polarization). The electronic polarization
is caused by a slight displacement of electrons surrounding positively
charged atomic nuclei under the influence of the local electric field E’,
forming a dipole. The atomic polarization is caused by displacement of
differently charged atoms with respect to each other. The dipole polar-
ization, also called the orientation polarization, is caused by the change
of the orientation of equivalent dipoles in a medium. These three kinds
of polarizations are due to the locally bound charges in the atoms or
molecules. The fourth polarization is called the space charge or interfa-
cial polarization. Examples of the fourth polarization are provided by
the chiral and pseudochiral materials. The pseudochiral medium is an
artificial material which is obtained by diffusion of planar conducting
microstructures, having the shape of €2, into an isotropic dielectric
medium. In order to treat the homogeneous mixture, electromagnetic
scattering effects are not allowed, so the size of the inclusion has to be
smaller than the wavelength of the operating field. The resulting macro-
scopic permittivity, permeability and pseudochirality admittance can
be seen as a generalization of the Maxwell-Garnett mixing formula for
heterogeneous dielectrics. The (2-shaped conducting microstructures,
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inside the host dielectric medium, increase the coupling of electric and
magnetic fields as it happens with chiral media. The §2-medium differs
from the chiral one, and for this reason it is referred as pseudochiral
[11], both because the -shaped microstructures are not chiral geo-
metric entities, since they can be superimposed on their specular (mir-
ror) images, and because the induced electric and magnetic dipoles are
mutually orthogonal. The induction in the host dielectric medium of
an electric dipole and a magnetic one mutually orthogonal is the dis-
tinctive feature of €2-medium. The orthogonality among these dipoles
also implies that the orientation of the doping elements into the host
isotropic medium cannot be random but must be parallel to a unique
preferred direction. In fact, with a random distribution of conduct-
ing microstructures the total magnetoelectric coupling will result in
a null average. Therefore, the pseudochiral 2 -medium is a particular
bianisotropic medium. ‘

Finally, the expression of the electric field radiated by a pseu-
dochiral grounded slab is given. The expression of the radiated electric
field is such as to simplify the extraction of important information to
be used during the project, about the influence of frequency, constitu-
tive parameters, thickness of the slab, position of the electric source,
and, in particular, it is such as to obtain a nice condition of radiation
on the horizon plane. Eventually, we remark that, once the modeliza-
tion of the considered bianisotropic medium is deduced through the
transmission-line analogy, the number of iso/bianisotropic dielectric
layers is no longer an obstacle for the analysis.

2.  Full Wave Analysis

In this Section we consider the formulation of the electromagnetic
problem in a general bianisotropic medium, the decoupling of the dif-
ferential equations describing the electromagnetic field and the formal-
ization of the electromagnetic problem in the pseudochiral medium.

2.1 Formulation of the Electromagnetic Problem in a General
Bianisotropic Medium

Let us consider an unbounded space filled with a general, lin-
ear, bianisotropic material described by four three-dimensional tensors
€ Qerny Qme, 4 and by the constitutive relations [13]:

=) ==em: =—=m
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D=¢- E+Q,, B
(1)

H':'_Q.me'E—*-y’_“l'B

The constitutive relations (1) can also be expressed in the form of D
and B as a function of E and H:

D=¢-E+g-H
H=7-E+p-H
where ¢ =Q,,, -pand 7= —p-Q,,

Under time harmonic excitations (e’“*), the generic entry of the
four constitutive tensors may be a complex quantity. Not all the en-
tries of the constitutive tensors are necessarily non zero. From con-
siderations of energy conservation [16,17], it can be proved that, for
non-dissipative materials, the entries of €, Qy,, ., 4 must satisfy
the following symmetry conditions:

(16)

+

=p* (2)

..Q_me = —Q-:m

T m

where superscript + denotes transpose and complex conjugate.
The time harmonic Maxwell’s equations in presence of electric J
and magnetic M sources are:

VxE=—jwB-M
{ o

VxH=jwD+J

In this part of the subsection, we do not restrict ourselves to any par-
ticular bianisotropic medium. The Full Wave Analysis based on the
Immittance Matrix Approach will be generalized to the study of bian-
isotropic media. The spectral domain Immittance Matrix Approach is
based on the two-dimensional Fourier transform defined by:

~ +oo oo ‘
¥(a,y, B) = / Wi,y )T 4y dy

(4)

+c0

1 too | .
\Il(m’ Y Z) = 471'2 / \Ij(a> Y, B)E“J(m-kﬁz) da dﬁ
—00 — 00
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By changing the Cartesian coordinate system Q(z,y, 2) into the asso-
ciated one Q(v,y,u) defined by the matrix T :

Ay sin(6) 0 cos(6)] [ Az Ay
PIR ORI IR P
A, —cos(6) 0 sin(6)] LA, A, (5)
a = £sin(d)
with {

B = & cos(8)
in the spectral domain defined by (4), the Maxwell’s equations become:

( OF, .
oy~ P
o, .
ay" = jwBy + j¢E,
aHu — ijv
d o ®)
o, .
6; = —jwD, + jé¢H,
B,=LE,
. { ~
. Dy = —;Hu

By using the constitutive relations we derive:

1) two linear relations among the longitudinal components and
the transverse ones of the spectral electromagnetic field:

{ Ey = f1(£7 EU)EU.)FIU)FI‘IA)
Hy = f2(€a E'U)Eu,-gv)i:[u)

2) the subsystem of partial differential equations describing the
transverse spectral electromagnetic field:

(7)

v
oy
o1

a—y=—Qu'I—Q_IV‘V

=-Cy;-I-Cyy-V
(8)
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with - -
v-le] o elw] e

The matrices Cyy,Cvv,Crv,Cyr are the entries of the su-
permatrix C so defined:

[ cn 612] [613 814]
C C
C_ [_vz ....vv] _ | lea 2] Lews coa (9b)
Cn Ci [031 032] [033 634]
Ca1 €42 €43 C44
and the formal expressions of ¢;;(4,j = 1,2,3,4) are reported

in Appendix.

In general, C has sixteen elements. Therefore, system (8) repre-
sents a set of partial differential equations of the first order (coupled
transverse transmission-line equations) and shows a coupling between
the V and I vectors. System (8) can be decoupled when:

Cyy =0
C=0
When (10) holds, relations (7) and (8) become, respectively:

(10)

(. E+woy, -~ Oy =
E, = — g -
Wey,

S (11a)

§—wryy = Tyv =
yu yv
= — By, —

H,
Wiy Hyy

and

’61:“_(_3‘/{'1

dy

o1
—=-Cp-V
Oy
where o;; and 7;;(4,j = v,y,u) are the entries of the matrices o and
7 in the new reference system Q(v,y,u). By virtue of (10), it can be
established that the decoupling between V and I is always satisfied
when the constitutive tensors are of the form:

(11b)
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[€zz 0 €xy
€= 0 ¢y O
[ €22 0 €
o0 o™ o ]
Qo = Q(em) 0 Q(em)
Lo o™ o |
) Q(mﬁ) 0 (12)
Qe = |0 o ol
Lo o™ o |
[ Lo 0z
B=10 py O
Ltz 0 ez

From (2) and (12), Q. is completely determined by Q. Tensors
€ and p are Hermitian; when they are real, they are symmetrical. ¢
and p are made of four independent elements. In general, €, has
four elements. Therefore, in order to decouple the Maxwell’s equations
in the spectral domain, the constitutive tensors have to contain a total
of 12 independent elements.

2.2 Decoupling of the Differential Equations Describing the Elec-
tromagnetic Field.

Equations (11.b) are two coupled first-order vector differential equa-
tions for the two field quantities V and I. We can combine these two
equations, eliminate one of the field quantities and obtain the uncou-
pled second-order vector differential equations for one field quantity:

2
%y—‘;:gVI'QIV'V:D.ZY‘V

521 (13)
5?}—2=QIV'QVI'I=_D_YZ'I

The eigenvectors V and I are of the form:
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V(a,y, ) = V(a, B)e™

I(e,y, ) = Lo, B)e™?

The spectral wavenumbers k, are the eigenvalues of D?Y or, equiv-
alently, DYZ. The dispersion relation satisfied by the spectral wave-
number is:

(14)

det [k2U — D?*] = det [k2U ~D¥?] =0 (15)
where U is the unity matrix. The solutions of (15) point out the
existence of a double mode of propagation that we associate to an

ordinary (k{”)) and to an extraordinary (k) vertical wavenumber
defined by:

4
o 7Y + DF + /(DR - D§)* +4DF D
Yy 9
; (16)
2
0 = o DfY +Dg —+/(DF - D)+ 4Dy DF
LY 2

The relations of proportionality among the components of the eigen-
vectors V(a, ) and I(e, ) have a double determination related to
the expressions of the two eigenmodes of propagation:

~1(‘oye) . \I’(o’e) — sz :i: M%Y +4sz

—(0e) ~— € =

v

i (17)

H,SO,e) _ glo® _ 2D7y

ﬁl(’o,e) g Mgy £ /M2, +4P,,
with

M(zy,yz) = ngY,YZ) _ Dggy,YZ)
(18)

— NEY.YZ) y(2Y,YZ)
P(ZY.YZ) - D12 D21

By virtue of (17), the spectral electromagnetic field can be decomposed
into two sets of TE(y) and TM(y) waves different for the two eigen-
modes, whose transverse components satisfy transmission-line equa-
tions.
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TE() waves satisfied by H,, Hy, E,

4 ~
6E(o:e) 5 el =
61; = — [821‘320,&) + C22:l HS)O;C) —_ _ng'é )H‘(}O,e)
< aﬁéo,e) _ [643 + c44‘I’£oye)] E(o}e) —_— __Y(o,e) E(o,e) (19)
6 - (0,8) i - TE U
)
e
\ H!(lo,e) =Y, E'(‘o,e)

TM(j) waves satisfied by E,, E,, H,

{ ~
aESo,e) . [cu‘l’g”e) + 612] I’_'I(o,e) _ Z(o,e)}“'I(o,e)
— n = —dgpp Iy

Oy \I,go,e)
< T (Ole) _ _ (20)
afg; = [ess + c34\If§°'e)] Ele®) = V5P Ele®

E}So,e) =Z, H,(‘o'e)

\

The transmission lines are characterized, respectively, by the spectral

wavenumbers along 5k given by (16) and by the characteristic

impedances:

(
ngﬂf;e) - Z'g'%e) = JWitobyy
\r =5

(21)

ﬁ

720 500

TE

n;o,e) —
M - =

2.8 Formalization of the Electromagnetic Problem in the Pseu-
dochiral Medium.

In this subsection we consider a pseudochiral medium in which the
conducting microstructures are oriented as in Fig. 2.3.1.
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Figure 2.3.1 Spatial orientation of planar, {)-shaped conducting
microstructures in the hosting isotropic material.

In such media a time varying electric field, polarized along the Z-
axis, originates not only an electric dipole but also, due to the presence
of the conducting microstructures, a magnetic one directed along the
7/ -axis. Similarly, a time dependent magnetic field polarized along the
¥ -axis produces a magnetic dipole and induces an electric one directed
as the T -axis. It is easy to demonstrate that the constitutive relations
of this 2 -medium are:

D=¢-E+%,, B
(22)
H=Q, E+u ! B

with
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€z 0 O
e=|0 ¢, O
[ 0 0 e,
C0 jQ: 07
Q=10 0 0
[0 0 Ol
"0 0 0 (23)
.Qmez ch 00
L 0 0 0.
(hzz O O
p=10 py 0
L0 0 py,

Note that the constitutive tensors of a pseudochiral medium are a par-
ticular determination of (12). By specifying (9.b) with the constitutive
tensors of the pseudochiral medium (23), the supermatrix C becomes:

- [cy,, o ]
C = 24
= [ 0 Cn @4
where
T [ — ey
C, =e 73 Weyy Wit (250)
Wlyy Wikyy
]_ WEyy Weyy + FEQ sin(8)
C,,=¢€ 2. 2 2 (256)
—Weyy + jEQ sin(6) £ oW ByyCun

Wilyy

€ij, 4ij(i, 7 = v,y,u) are the entries of ¢ and y in the reference system
Q(v,y,u) related to the corresponding ones of e and m in the reference
system Q(z,y,z) through a linear transformation defined by the T
matrix:
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Figure 2.3.2 ’k,(,o)
(ezx == 4€g, €yy = €3, = 260, fxz = Mzz = B0, Hyy = 2u0, f =10 GHz,6 = %)ﬁ

as a function of the spectral wavenumber &.

€cc = €z + ,u,yyﬂg

€vy = €xg SIN2(8) + €2z cos>(6)

€wv = €yu = (€22 — €cc) SIN(6) cos(8)
€uu = €z CO82(8) + €, sin*(6)

Tuy = JliyySlesin(6)

Ouy = —JbyySle cOS(6)

Tyw = —J Py e 8IN(6)

Tyu = JlyySlc cOs()

How = Pz SI0°(6) + p2z cOS*(6)
Huv = pou = (Hzz — fizz) sIn(6) cos(8)
P = Mz COS2(8) + pa, sin?(6)

As expected, due to the particular form of the constitutive tensors,
matrix C is in a block diagonal form and, then, the spectral elec-
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Figure 2.3.3 ik,(,c) as a function of the spectral wavenumber £.

(€zz = 4eg, €yy = €32 = 2€0, fhgx = P2z = Ho, Hyy = 20, [ = 10 GHz,6 = %)

tromagnetic field in a pseudochiral medium can be decomposed into
two spectra of TE(yJ) and TM(y) waves. In this case the vertical
wavenumbers for the ordinary and extraordinary waves are given by:

k) = :t:\/ = ”2‘;2 — 2% (26)

4

In (26) we have:

([ ds = eyyiyy

dy = -—syvfz + eyy,uyys_,,:zw2

do = €cuttovt® + Exz€yyCrzlizaiiyylhzzw?

. — (€xz€azbionbiyy + €cveyybizattz:)w € (27)
€cv = Eyp + yy Q2 sin?(6)

8ij = €iilljj + €5 i

i = €ilyi — € (6,5 =2,0,9,2,u)
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In contrast of the isotropic and bi-isotropic case [18,19] and like the
anisotropic one [20], the vertical wavenumbers in a pseudochiral
medium are function not only on & but also on é. The behaviors
of vertical wavenumbers for the ordinary and extraordinary waves, for
a particular cut in 8, are shown in Fig. 2.3.2 and Fig. 2.3.3.

In the a— 3 plane the zeros of k!(,o) lie into two ellipses defined by:

2 2
s A (28a)
ton Caatlyy W €pzllyy
az ﬂ2
, —1 (28b)

2
W5 €yy Lz, W€yl

The zeros of kée), if there, are the solution of the following two systems:

( a2 ’32
2 o T3 =1
Wratyyee W Czzllyy
4 2 (29)
Q" Sy p Syz
p) +— =1
| WeyyllyySzz W E€yylyySax,
( a2 ,32
2 +— =1
Wo€yylyy W Eyy iy
¢, . (30)
Q”Szy B Syz
3 + = =1
\ W CyyllyySzz W EyylyySy,

Therefore, the zeros of kg(,e) are given by the intersections of the ellipses
(28a) and (28b) with the ellipse

2 2
o°s B°s,,
vy y

w2e s w2 s 1
yyHyySzz yyMyySzz

When some specific conditions are imposed on the electromagnetic
parameters, for the corresponding values of a and 3, the discrimi-
nant of (26) vanishes. In this case the wavenumbers of the ordinary
and extraordinary waves are the same. Thus, we are in a monomodal-
ity regime. This means that the €2-medium suffers only an ordinary
wave. The condition that must be satisfied by the electromagnetic pa-
rameters and the wavenumbers a, 8 to obtain the monomodal regime
of propagation along the ¥ -direction is:
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~ ﬁ
conl 2
C
<
200 b
—
N . > oL
200 400
-6
Fi ure 2 3 4 a b) LOCi k(o) — 0 C) elli se a2szu + ﬁzsuz = 1
£ »3. L] ¥y T P Wgﬁyyi"yg'szt azev‘!l“ﬂﬂszz v

(ezz = 460,6,,%, = 2€p,€2z = €0, fhzz = Myy = 2040, P2z = 3po, [ = 10 GHz,
Q. =1073Q71).

(dgy “4eyyﬂxz#§yﬂg)a4 + dgzﬂ4 = 2(daydyz + 25yyﬂz2ﬂ§yﬂg)02ﬁ2
"25yyﬂyyw2[32yszz = 2izz(€xzSyz + eyy#yy#zzﬂg)}a2

"25yyﬂyyw2(3zz3yz - 2€zzlizz8zy)ﬁ2 + dgzef,yugyw‘i =0
(31)
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Figure 2.3.5 Locus of monomodality (k,(,o) = k§e) } in the o — 3 plane
(€zz = 460,53”/ = 2€0,€2; = €0, fhzz = Hyy = 200, Bzz = 3o, f = 10 GHz,
Q. =1073Q71),

In Fig. 2.3.5 is shown the behavior of the locus of monomodality in the
a — 8 plane.

Both the propagation and the polarization of the spatial electro-
magnetic field are affected by the spectral wavenumbers kz(,o'e) of the
ordinary and extraordinary waves. In fact, the i-th component of the
spatial electric (magnetic) field can be written in terms of its two-
dimensional Fourier transform:

_L [y - jez+k{’*)(c,B)y~jBz
Ei(z,y, 2) > éi(a, Be v dadp (32)
—00 J—0o
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Figure 2.3.6 Modulus of the characteristic impedances for the ordinary
and extraordinary TE(Yy) waves. (€;5 = 6eq, €4y = €5 = 2€0, fizz = fizz =
10, Hyy = 210,82 = 1073Q-!, f = 10 GHz,6 = )

When the spectral waves are confined to propagate in the z—2 plane,
i.e. in the plane parallel to that containing the conducting microstruc-
tures, the spatial electric field is given by a superposition of linearly
polarized waves. The generic component of the spectral field is circu-
larly polarized when:

kP (0, B) = €2 | (33)

The proportionality constants ¥.(a,3) and ¥x(a,3) can be eval-
uated directly, by specifying (17) with (23). From (19) and (20), once
the proportionality constants ¥.(a,3) and ¥(a,B) are known, it
is easy to deduce the primary constants associated with the spectral
transverse transmission lines and, then, the corresponding differential
elements for each spectrum.

The behaviors of the spectral characteristics impedances are shown
in Figs. 2.3.6-2.3.7.
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Figure 2.3.7 Modulus of the characteristic impedances for the ordinary
and extraordinary TM(y) waves (€zz = B¢, €yy = €,; = 2€0, fizz = fzz =
Mo, Myy = 240, = 1073Q-!, f =10 GHz,6 = %)

3. Pseudochiral Slab Embedded in an Isotropic Half-
Space

In this Section we consider the spectral electric Green’s dyad, the
radiated electric field with some numerical examples for a pseudochiral
grounded slab with a planar electric source.

3.1 Spectral Electric Green’s Dyad

Let us consider a planar structure (Fig.3.1) formed by a grounded
pseudochiral slab described by (23), in presence of an isotropic half-
space, fed by a planar electric source inside the slab:

J = [Ju(z, —h, 2)& + Jo(x, —h, 2)3] (y + h) (34)

where 6,(y + h) is the Dirac function.
The elements of the first and third row of the spectral electric
Green’s dyad may be obtained in a straightforward manner by making
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o Pseudochiraf.SIab'

Ground Plane

Figure 3.1 Planar pseudochiral slab fed by an electric point-source.

use of the equivalent transmission lines. To this end, in the previous
sections we have decomposed in the two-dimensional Fourier domain
all the field components as superposition of TE(y) and TM(y) waves
and drawn equivalent circuits for the TE(y) and TM(y) fields:

N +oo . . 3 3
E(a, y,8) = f Gloyy, Bly) - Iy, B) dy = EJM + EJ™ + EF
—o0

(35)
Once the transmission line problems are solved, the final step of the
formulation consists of the mapping from the Q(v, y, u) coordinate sys-
tem to the Cartesian one (z,y,2). Because of the coordinate trans-
form relation (5), ]g) and E, are linearly related to E, and E,,
Similarly, J and J. are superposition of J,, and J,. When (5) is
used, the elements of the first and third row of the spectral electric

Green’s dyad in each region are given by:
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r — ATM a2 TE ,32
Gezk = Ag 1B 2
- aﬁ
Ga:z,k = (AI’IC‘M + A’IgE)-a2+—l32
- VA a
Cak = ngﬁ A T

4 k @ (k =1,2, 3) (36)
> B
Cuok = v,k 4™

VR MR o + B
éz:z:,lc = é:rz,lc
132 e a2

where
, F(TE,TM) h .
agero _ yremw L 2 ) e a )
Fy (d)

(TE,TM)
| agrmao _ gemmo L W) g g )

1 Fl(TE,TM)(d)
A(TE,TM) _ _(TE,TM)_(TE,TM) e—k,y inhlk, (d
3 =mn 5 FrETn gy o [ky(d + )]
\ 1
ko =va?+ B2 — wleu
TE jw:u“U‘U TE _ .7"‘-)_/*‘
= — N =
! bre ko
é k
T™ __ ™M T™ _ _2
N jwevv 2 jwe
Zy1 = Zyo = Vet f
Weyy

VI P

Zys = —
Y, wWe
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F{TETM () = niT®T™ cosh(kyz) + n{"% ™™ sinh(k,z)
F{TETM0 () = 0™ T cosh(kyy) — n{™>™ sinh(kyy)

Six elements of the spectral electric Green’s dyad for each one of the
three regions into which the structure is divided have been determined.
To complete the evaluation of the elements of the whole dyadic func-
tion it is necessary to determine the terms of the second column. The
elements Gi;(i = z,y,2;j = y) can be obtained via the reciprocity
theorem appropriately modified for a bianisotropic medium:

/ J1-EgdVi = | J,-EV avy (38)
Vi Va

with V3 = volume of source J; and Vo = volume of source Ja.
The so-called modified reciprocity theorem states that the reaction of
source J, caused by source Jy in a bianisotropic medium is equal to
the reaction of source J caused by source J; in the complementary
medium. If a bianisotropic medium is characterized by the following
constitutive relations [16]:

B=(-E+u-H
D=¢-E+¢(-H

its complementary medium is characterized by the following constitu-
tive tensors:

(39)

Ec — &t

§_c —_ gt

cm gt (40)
§£=-¢

In (40) the superscript ¢ stands for transposed tensor form. The
medium is reciprocal if the complementary medium is identical to the
original one. Bianisotropic media that satisfy the symmetry conditions
are reciprocal if { and { are purely imaginary matrices. It is easy to
show that the pseudochxral medium is reciprocal. So, as in the case of
the isotropic slab [18], the elements Gy, G,y of the spectral Green’s
dyad can be obtained by applying the Parsevaal theorem to (38):
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Gii(a,y2, Blm) = Gii(auy1, Blye) (G=wyi=2,2) (41)

If we, now, consider the transmission-line equations and the discon-
tinuity relations appropriate to the point-source excitation case, there
are no difficulties to generalize the TM(%) equivalent circuit to the
case of a 7 -oriented electric source and derive the Gy, term.

3.2 Radiated Electric Field

In order to present an example of determination of the radiated
field evaluated by applying the spectral theory, we consider an electric
point-source located in the z — z plane:

-

I = 80(2)80(y + R)6o(2)(JaX + J.Z (42)

The spatial electric field radiated in the spherical coordinate system
can be evaluated by appropriately applying the equivalence theorem
in the interface plane y = 0. Following such an approach the radiated
electric field is given by:

( e—jw\@ r _
EB(Ta 97 ¢) = _—"T— Sin(ﬁb)Ez (a’, Oy :8,)
—jufepg T
) Ey(r,0,¢) = e—r-— (43)
K - [sin(8) Bx(e/, 0, 8) + cos(0) cos(#) Bx(e!, 0, 8]
where
{ Eﬂ:(ala 0: ﬂ’) = é:m:,.’i(al; 0; :3,)']9: + éa:z,S(a,, O,ﬁ,)Jz (43 )
- ~ . a
EZ(G—") 0) ﬂ’) = Gz..":.3(a,: 03 ﬁ')Jx + Gzz,3(0',; 0) 18,)']2
o = w. /e sin(0) cos(¢) (435)
B' = w+/em cos(0)

The expression obtained for the radiated field is cumbersome to
treat. However, when 6 and ¢ are fixed to some particular values,
which provide much insight into the physical properties of the medium,
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the expression for the radiated field can be simplified. It is of interest
to study the behavior of the electric field radiated on the horizon plane,
that is the  — z(¢ = 0,7) plane. In this plane the electric far-field
has the expression:

Eg(?",e,(ﬁ = 03’”) =0

e—jw\/’cﬂ r _
Eyp(r,6,6=0,m) = S {sin(G)E._, [twy/easin(d)]  (44)

+cos(0)E, [tw+/ep sin(ﬂ)]}

The electric field radiated on the z — z plane is, generally, zero. For
particular values of the incidence angle, depending on the electromag-
netic parameters of the two media, the radiated waves can propagate
along the interface plane. In contrast of the isotropic case, due to
the bianisotropy of the pseudochiral slab, the conditions for the ra-
diation on the z — z plane are not the same when we consider the
radiation along the Z-axis or along the Z-axis. Different conditions
hold, also, for the ordinary and for the extraordinary waves. Along
the Z-axis of the z — z plane, when # = 0,w, the radiated pattern
A@ =0,7,¢ =0,7) = re 9V TE,(r,0 = 0,7,¢ = 0,7) for a pseu-
dochiral grounded slab depends linearly on k4(6 = 0,7,¢ = 0, ).
Since k4(8 = 0,7m,¢ = 0,7) = k5(0,+w,/ep) = 0, as expected, the
radiated pattern along the Z-axis of the horizon plane is, generally,
zero unless kyd = jnr (n € I), that is:

)
d=d) = V Cuy o7 '
€22 Wy [ hpp€yy — i€ Bor€yy > e for d;

with

e

Pyy€zz > pe  for do

d=dp = |22 nr
\ Haz Wy thyy€rp — 1€
(45)

When the first of (45) holds, the ordinary wave propagates in the
2 — zplane along the Z-axis. When the second of (45) holds, it is the
extraordinary wave that propagates in the z — 2 plane along the Z-
axis. On the Z-axis of the horizon plane the modulus of the radiated
pattern depends, in short only on J, and e€,, :
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|A(9 = 0’7{’¢ = 0)’”)' = ~z
A
6 (0, 2w /ER) sin (mrd) J,

Jwezz

(nel)
(46)
Along the Z-axis of the z — 2 plane, when (6 = §,¢ = 0,7) the
radiated pattern A(0 = 3,¢ = 0,m) = re/ V¥ E,(r,0 = L,¢ =
0 7) for a pseudochiral grounded slab, once again, depends linearly on
k50 = 5,6 = 0,7). Since ky(0 = 2,qb—071')—k:(:l:cu\/_,O)—O
as expected, the radiated pattern along the 7 -axis of the z — z plane
is, generally, zero. In this case the condition of radiation on the z — 2
plane is:

[62[12;1,23;6“ — €lflyy (ﬂyyfa:zfzz + lllzzeccfyy)
+ meﬂyyﬂzzezxfyyfzz] (Wd)4 (47)
+(Hzz€yySzz — €USay) (nTwW)? + pryyeyy (nm)* = 0 (nel)

The solutions of (47) point out the existence of two positive values of
d, the first one associated to the ordinary wave and the second one
associated to the extraordinary wave. On the Z-axis of the horizon
plane the modulus of the radiated pattern depends, in short only on
Jz and €z :

€ » ¥

8rne (£ V/ER,0) (er) 7.

3(‘)63.2

A(9= g)¢:0a7r)’

(nel)
(48)
Conditions (45) and (47) generalize the corresponding ones for isotropic

bi-isotropic and anisotropic grounded slabs. It should be noted that,
when:

3
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_ [2€4y€ 2 tizzblyy — €L(Eyylas + Exatiyy)|[€t(€z7 + €5,) — €4y 82,
Eyybhng iy E(EL — Eyylts;)
2, — [2€,0€yybyytay — EM(Exaliyy + €ty )€1 (Bny + 1y,) — HyySz]
#mﬂﬁyﬁll(fﬂ - eyyp'zz)

2
ch

(49)
the radiation of the electric field on the z — z plane occurs, for the
same value of d (d;, do respectively), both along the Z- and the
Z-direction. Then, by varying in an appropriate way the value of the
pseudochirality admittance, it is possible to allow or to avoid the ra-
diation of the electric field along two perpendicular directions of the
T — 2z plane.

Similarly, when the thickness of the pseudochiral slab is:

d nw Szy + 5y,
3 =
Wy/HE Y €ccllay — €2zlh2,

CyyHyySz2 (nel)
Szy + Syz
€z €rzlizz by + Ly (ecceyyu’za: - ezzsmy)

€cclhza — €2z K22

€n—2

€l —

(100)
the radiation of the electric field on the z — z plane occurs, for the
same value of the pseudochirality admittance ., both along the Z
and the Z-direction.

3.8 Numerical Ezamples of the Radiated FElectric Field

In this subsection some examples of radiated patterns are shown for
different values of the electromagnetic parameters of the pseudochiral
slab under planar excitation conditions. Fig. 3.3.1 shows the radiation
pattern in the y — 2 plane (¢ = 7w/2) for an electric point-source
aligned along the Z-axis.

Fig. 3.3.2 and Fig. 3.3.3 show the radiation pattern in the z — y
plane (8 = n/2) for an electric point-source aligned along the Z -axis.
The role of the pseudochirality can be examined by comparison with
the chiral and isotropic cases (Fig. 3.3.4) from the point of view of the
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Figure 3.3.1 Examples of radiation on the horizon plane (¢z; = 460, Pzz =
1oy Pyy = 2M0, hzz = Mo, = 107 30~1 f = 10 GHz,d = 8-103 m,h =
d/3,n =1; a) €y = €, €z = €0; b) €yy = 1.1€0,€5, = L.1€0; C) €y = €22 =
1.560).

radiation. From Fig. 3.3.4 it is observed that the pseudochiral material
exhibits an increased directivity in the radiation pattern.

Finally, in Fig. 3.3.5 we show the effect of the chirality admittance
& on the radiation along the Z-axis of the horizon plane. For some
practical applications (for example: planar integrated antenna arrays)
it is important to know and control the radiation on the horizon plane
through the ¢, parameter. According to (44), the value of the far-field
radiated by a chiral grounded slab along the Z-axis of the horizon
plane is given by [19]:

9

A@=0m,6=T)|= V“ )22 (n£0el)
\/1+ €, —1 1-+-175£C2 |
(51)

where it is well evident the role of the chirality admittance &.. A
general reduction of the radiation in the Z-axis is observed, when a
chiral slab is used.
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Figure 3.3.2 Radiated patterns in the z — y plane for different values of
the pseudochiral admittance Q. (€5 = 4€p, €y = €,, = 1560, figy = iy, =
B0, thyy = 20, f = 10 GHz,d = 1.57 - 1073 m, h = d/3).

4, Discussion

In this paper we have generalized the spectral domain Immittance
Matrix Approach to the case of bianisotropic layers. Starting from
the Maxwell’s equations, written in the two-dimensional Fourier do-
main, we have recognized that, when the constitutive tensors satisfy
some general topological conditions (12), by introducing appropriate
proportionality relations (17) between the transverse components, the
spectral electromagnetic field in an unbounded bianisotropic medium
admits a simple solution in terms of TE(y) and TM(y) waves, which
satisfy transmission-line equations. In this way we have obtained an
important result: when the constitutive tensors assume form (12), the
Maxwell’s equations in the two-dimensional Fourier domain provides
the circuit modelization of the medium.

These results have been applied 1) to an unbounded pseudochi-
ral medium; 2) to a pseudochiral grounded slab embedded in an un-
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Figure 8.3.3 Radiated patterns in the r — y plane for different values
of €. (eyy == €pp T €0, fizz T Pzz = L.Spg, fyy = 240,82 = 10‘.39—1»)( =
10 GHz,d = 1.57-1073 m,h = d/3; 8) €z; = 6€p; b) €zz = 8€o; €) €zz =
10¢).

bounded isotropic half-space, fed by an electric planar deep point-
source.

In respect of the item 1) the proportionality relations (17) lead to
the decoupling of the spectral electromagnetic field in TE(y) and
TM(y) waves satisfying the transmission-line equations. The deter-
mination of the spectral wavenumbers ky has allowed us to recognize
the existence of a double mode of propagation associable to an ordi-
nary/extraordinary wave, strongly affected by the value of the pseu-
dochirality admittance. In studying the bimodal propagation we have
recognized that the spectral field can be subdivided in surface ( k, real)
and volume (k, complex) waves. We found in implicit form the zeros
of k, and the conditions which must be satisfied by the electromag-
netic parameters in order to reduce the two waves of propagation in a
single one.

In 2) the introduction of the equivalent circuits has been used to
evaluate the spectral electric Green’s dyad associated with the pseu-
dochiral grounded slab in a simple and closed analytical form which
can be easily managed by the designer. In the expressions of the ele-
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Figure 3.3.4 Radiated patterns in the y — 2 plane for different media.
(€ze = €yy = €xz = €0z Mzz = Moz = Hyy = uo, f = 10 GHz,d = 1.57 -
1073 m,h = d/3,&, = 1073071, Q, = 1073Q71).

ments of the spectral electric Green’s dyad the effect of the separation
of the spectral electromagnetic field in TE(y) and TM(y) waves is
well evident. It is important to note that the expression of the spectral
electric Green’s dyad is not formally affected by the complexity of the
layer; so the spectral Green’s dyad is formally the same both for an
isotropic and a pseudochiral grounded slab. The differences are all con-
strained in the formulation of the secondary constants of the TE(Y)
and TM(%) equivalent transmission line, proper of the grounded slab.

Another feature of the Immittance Matrix Approach is that to de-
rive directly, in a closed form, without evaluating Sommerfeld-type
integrals, the electric field radiated by the grounded slab.

The presented theory allowed, also, to derive the conditions that
must be respected by the electromagnetic constants of the medium,
thickness of the slab, position of the source and working frequency in
order to control the radiation on the horizon plane. The conditions
for the radiation on the horizon plane along the T - and along the Z-
axis, for the ordinary and for the extraordinary waves are shown in
subsection 3.2. It is to be pointed out that in literature there is no
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Figure 3.3.5 Values of the radiated pattern normalized to A/d versus £,
for different ¢, in the z-axis (A = wavelength, d = thickness of the slab).

mention of the conditions of radiation on the horizon plane of such
bianisotropic structures. In subsection 3.3 several numerical computa-
tions of the electric radiated field are shown, in the case of electric Z-
and Z-oriented point-source.

In Fig. 3.3.1 is reported the case of radiation maxima at the horizon
for an electric 2 -oriented point-source, under the validity of (45) and
(46) with n # q[(n,q) € I]. As shown in Fig. 3.3.2, the electric fields
radiated by an electric Z-oriented point-source present a symmetry
with respect to the 7-axis (¢ = 7/2). The radiation maxima pro-
gressively widen towards the Z-axis (¢ = 0,7) for decreasing values
of Q.. In Fig. 3.3.3 several radiated patterns in the 2 —y plane for
different values of €,, are plotted. As it is well evident, the amplitudes
of the radiated patterns are strongly affected by e,,.

In general, the radiated patterns depend, when the electric point-
source is aligned along the Z-axis only on the eyy, €,2, tizr parameters,
while, when the electric point-source is aligned along the Z -axis, on
the €z, lyy, 12> pParameters.
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To study the role of the pseudochirality (£2.) admittance and the
chirality (&) admittance in these planar structures Figs. 3.3.4 and
3.3.5 have been presented. Fig. 3.3.4 gives a comparison among the ra-
diated patterns for the three different cases of isotropic, chiral and
slabs fed by electric horizontal point-sources. The comparison shows
an increase of the value and directivity of the far-field in the y — 2
plane for the € slabs. This effect can be explained with the fact that,
on the contrary of a chiral material, where the induced dipoles are ran-
domly distributed in the host dielectric medium, in an 2 -medium all
the induced dipoles lie in the z —y plane. Therefore, the pseudochi-
rality . admittance controls in a stronger way than the chirality &
admittance the value and the directivity of the radiated pattern in
the y — z plane. Fig.3.3.5 gives some information about the reduction
of the radiation in the horizon plane achieved with chiral slabs. This
figure shows that, under certain circumstances, this radiation can be
lowered by using chiral slabs in conjunction with high values of the per-
mittivity €.. This means that in the far-field region the effect of the
surface electromagnetic waves, traveling with wavenumbers parallel to
the interface plane, together with the volume ones becomes negligible
with increased chirality. More details about it can be obtained from
the expressions of the spectral dyadic Green’s function given in [19].
This result may lead to an increased radiation efficiency of the struc-
ture, when a metallic patch is photoetched on the interface plane, that
is when chiral slabs are used in applications, such as printed antenna
arrays.

5. Conclusion

In this paper we have studied the circuit modeling of a planar struc-
ture with a general bianisotropic slab by using the transmission-line
analogy. This important result has been found: when the constitutive
tensors assume form (12), the circuit modelization is always possi-
ble. We have applied this result to the study case of a bianisotropic
pseudochiral ©Q grounded slab embedded in an unbounded isotropic
half-space, fed by an electric planar deep point-source. The study case
has been extensively investigated by deriving in a closed analytical
form the spectral (Fourier) dyadic Green’s function of the structure
and by obtaining important information on the properties of radiation
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of the structure together with conditions to control the radiation on
the horizon plane.

Numerical evaluations of planar structure radiated fields, backed
with a slab of different anisotropic material, have been presented along
with important information on the electromagnetic constants of the
medium, the thickness of the slab, the position of the source and work-
ing frequency. Lastly, a comparison among the radiated patterns of
isotropic, chiral and € slabs has been provided, together with some
information about the reduction of the radiation in the horizon plane
of chiral slabs. A reduction of the radiation on the horizon plane can
be obtained by using chiral slabs with high permittivity. .

Appendix

Ezxpressions of the ¢; terms (i,j = 1,2,3,4) for a very general
bianisotropic medium

Hyy HyuOyy F Py Ty = Py (Tuy + )

) .
e = —j€ = + ¢
W(eyybyy = OyyTyy) CyyMyy = TyyTyy
—jw €yy (Uquyu - ,u'uu.uyy) + Tyy (Uyyuuu - oyu.ﬂ'uy)
Eyylyy — TyyTyy

Tuy (Tyullyy — ayy“yu)]

Eyylyy — TyyTyy

i€ HyvOyy — Hyy Oy

Cyylyy = OyyTyy

—jw |:€yy (.uuyy'y‘v — .u"u.'uuyy) + Tuy(”'yyo'yv - u"yva'yy)

Cyylyy — TyyTyy

Cl2 =

— OyuTh

Tyy (.uuvo'yy - l‘l’uyo'yv)
EyyHyy — TyyTyy



214 Toscano and Vegni

. (epttyy = Ty Ty)
Cl3 = —jE~orYy — Tyy yv

Eyyllyy = TyyTyy

€yy (ﬂyy"ruv - ﬂ'uy’ryv) + Eyv (uuyTyQ - uyyfuy)

Tyy

+ jw
Eyylyy — Oyy

Oy (Tuy Tyw — TunTyy)

Eyylyy — TyyTyy

g2 Tyy - Eyyuy — Epublyy + Oy (T — Tuy)
Cia = —] f ( ) + J f —
WEyytyy ~ OyyTyy Eyytyy — TyyTyy
+ jw Auyy(enyuu - eyufuy) + Tyu (Unyuy - Eyy#uy)

Eyylyy — TyyTyy

+Tyy (€yubuy — OyyTyu)

EyyHyy — TyyTyy

Hyy Ty — HoyTyy

co1 = j€ —
Cyytyy — OyyTyy

eyy(#vyp’yu - Au'vu.u'yy) + T’uy (uyyggu - a“yuo'yy)

Cyyblyy — TyyTyy’

+ jw

+ Tyy (luvuo'yy - /"vyoyu)

CyyHyy — TyyTyy

Eyy(/“vyu'yv - “vv“yy) + Tvy (Hyyo'yv — /Lyvo'yy)

Eyyllyy — OyyTyy
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Co3 = —jw
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