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1. Introduction

In the past several years there has been an increasing interest
in understanding fundamental electromagnetic properties of guided
waves in complex and composite materials. In particular, analytical
and experimental study of guided-wave structures utilizing chiral, and
in general bianisotropic materials have recently been the subject of re-
search interest to many researchers and engineers. Chiral materials in
general have attracted renewed attention in past several years [1-4].
The interest in wave guiding properties of chiral materials is primar-
ily motivated by the novel and interesting features these waveguiding
structures may possess and their possible applications to future design
of new devices and components in the optical, microwave, and mil-
limeter wave regimes. It is clear that in general waveguiding elements
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constitute an important part of most devices, and as a result the func-
tional characteristics of these devices depend, among many factors,
on guidance condition and propagation properties of gunided modes in
these waveguides. Furthermore, it is well known that guided modes in
any structures are affected, among other parameters, by the electro-
magnetic characteristics of materials used in these structures. This is
where the analytical, computational and experimental study of guided
waves in complex materials plays an important role. In this chapter,
we plan to provide some brief review of recent study of electromagnetic
properties of guided waves in chiral materials. The interested readers
are referred to a representative sample of articles listed in the bibli-
ography here and the references therein. The reference list is just a
representative sample of work in this area, and is, by no means, an
exhaustive list.

2. Review of Basic Formulation

Chiral materials belong to a subset of electromagnetic media
known as bianisotropic media [5,6]. These materials are circular polar-
ization birefringent, i.e., the eigenmodes of propagation in these media
are right— and left—circularly polarized (RCP and LCP) plane waves
[7-9]. These eigenmodes propagate with different phase velocities and
possess two unequal wave numbers [7-9]. The time-harmonic consti-
tutive relations governing isotropic reciprocal linear chiral media can
be given as

D =¢.E + i£.B (1la)
H =(1/p:)B +i.E (1)

in which the electric and magnetic effects are coupled via a parameter
shown as & and known as chirality admittance [6,8]. The other two pa-
rameters €, and . are the conventional permittivity and permeabil-
ity of the medium. The time-harmonic notation of exp(iwt) is assumed
here. It must be mentioned that the above constitutive relations are not
the only way of describing electromagnetic relations among E,B,D,
and H in these media. There are other sets of such relations for chiral
media. Two other commonly used sets are: D =¢ (E+ 8V x E) and
B = u (H+ B8V x H) where 3 is the measure of chirality [1,3], and
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the other set D =¢ E+ixyH and B =y H — ixE in which x rep-
resents the chirality of the medium {10,11]. Obviously, these sets are
physically equivalent, and the parameters in each set can be straight-
forwardly related to parameters of other set [10,12]. Here in this review
chapter, we use the constitutive relation and notations represented in
Eq. (1). The results can be easily transformed to other notations using
the relationships among these sets of constitutive equations.

In the recent past, there have been several treatments of basic
formulation of electromagnetic guided waves in waveguides filled with
chiral media. Among these one can mention the work of Engheta and
Pelet [13,14], Eftimiu and Pearson [15], Varadan et al. [16], Svedin
[17,18], and Hollinger et al. [19] to name a few. The name chirowave-
guide was coined to describe guided—wave structures wherein chiral ma-
terial is used [13,14]. In addition to the basic formulation, subsequent
studies on various aspects of chirowaveguides, such as mode coupling,
other geometries for chirowaveguides, potential applications, etc. have
been carried out by many researchers, and some of these studies will be
mentioned and reviewed here shortly. First, we briefly review the basic
formulation for the guided waves in homogeneous chiral materials and
the relevant results. The details of this analysis can be found in the
above references, e.g., in [14].

From a knowledge of chiral constitutive relations of Eq. (1) and
the source—free Maxwell equations, it has been shown [9] that the
source-free wave equation for the electric field E (as well as the other
three field vectors B, D, and H) in homogeneous chiral media can be
written as

V xVXE-=-2wutV xE-— W E=0 (2)

As is usually done in formulation of guided modes in general cylindri-
cal waveguiding structures [20], the transverse field components can
be expressed in terms of the longitudinal field components. Assuming
the longitudinal direction {or the waveguide’s axis) to be along the z
axis in a coordinate system and the guided wave to be propagating in
the z direction with propagator exp(yz) where v being complex in
general ! | the transverse components have been expressed in terms of

1 The complex wavenumber of v of a guided mode can be written
as v = if — a where 3 is the propagation constant and « is the
attenuation rate of that mode.
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E. and H, using the Maxwell equations and Eq. (1) {13,14]. They are
written as

E; =iaVE, +ibe, x ViH, + ¢V H, + de, x Vi E, (3a)
Hy = iaVH, — i(b/n?)e, x ViE, — (¢/n2)ViE; + de, x V:H, (3b)
where
Vi =V - 0/0ze,,
=—iy {[(k3 +£2) /2] +7°} / [(* +K}) (P + K2)],
b=—wp (v +5°) / [(P+k2) (P +K2)],
c=-2iwpley /[(VP+EL) (P +K2)],
d=wpcte (K —%) / [(v* +53) (* +£2)],
with
ki =0 & +wv/ e, + 128

k=wv €
nCEI/VEC/uC+£g'
Combining the source—free wave equation in Eq. (2) with the expres-

sions shown in Eq. (3), it was shown that a set of coupled equations
was found for the longitudinal components E, and H, [13,14].

and

K3+ k2
2

ViE, + [ + 7“’] E, + (2iw’uié)H, =0  (4a)

2 k'zf' +k?‘ 2 - 2,2 2
ViH, + T +7°| H, — (2iw*pzée/n;)E, =0 (4b)

It is worth mentioning that up to this step no assumption has been
made either on the cross sectional shape of the cylinderical waveguide,
on the dispersion characteristics of the chiral materials filling the guide,
or on the boundary conditions on the waveguide’s walls. It is assumed,
however, that guided modes propagate along the waveguide’s direction,
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i.e., the z axis, the cross-sectional shape is independent of 2z, and that
the medium is homogeneous.

‘As can be seen from Eq. (4), the two Helmholtz-type differen-
tial equations for £, and H, (and consequently their corresponding
transverse components) are coupled, and the coupling is primarily due
to the chirality of the medium, i.e.,£.. 3 This is one of the interesting
characteristics of chirowaveguides. This suggests that neither E, nor
H, can be identically zero unless both are zero. If both E, and H,
are zero, one can show that E; and H; should also vanish identi-
cally. Therefore, no TE, TM, or TEM modes exist individually in a
chirowaveguide. If the medium is a simple non—chiral dielectric mate-
rial, & = 0, and thus the two equations will be decoupled and TE and
TM modes can exist [14]. Coupled differential equations of this sort
are often encountered in problems of wave propagation in gyrotropic
waveguides [22,23]. There are standard mathematical techniques to
solve these coupled differential equations. Following a technique sim-
ilar to that used by Kales for magnetically biased ferrite waveguides
[22], the coupled Egs. (4) were transformed into a new pair of decou-
pled equations, and then this new set was solved to find expressions for
E. and H, [14]. Solutions of these equations depend on the geometry
of the waveguide and the boundary condition for field components at
the waveguide’s walls. In the next section, we will review characteris-
tics of guided modes in certain specific chirowaveguide geometries and
boundaries.

3. Metallic Paralle-Plate Chirowaveguides: A Review

The salient features, such as dispersion relations, field distribu-
tions, and cutoff frequencies of guided mode propagation in metal-

2 The medium can be transversely or longitudinally piecewise ho-

mogeneous. In that case, in each homogeneous region, Eq.(4) can be
applied.
. ® The coupling of E, and H, mentioned here and in [13,14] is
- due to the chiral property of the medium. It is also possible that the
geometry of the waveguide’s boundary would cause couplig between
E, and H,. A good example of such a boundary is an open dielectric
waveguide with elliptical cross section [21].
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Figure 1. Parallel-plate metallic chirowaveguide with thickness d. The
inside region is filled with homogeneous isotropic chiral materials with
complex parameters €, ¢, &

lic parallel-plate waveguides filled with isotropic lossless homogeneous
chiral media were studied and addressed by Pelet and Engheta [14].
The effect of chiral material loss, phenomenologically introduced as
the imaginary part of €, or u., on characteristics of guided modes
in such chirowaveguides were also analyzed by Mariotte and Engheta
[24]. Specific detailed analysis was carried out by Mahmoud [25] on
the phenomenon of mode bifurcation which was originally introduced
by Engheta and Pelet [13,14] and on the characteristics of dominant
mode in parallel-plate chirowaveguides. In this section we present a
brief overview of some of properties of guided modes in such waveg-
uides.

The geometry of the problem with a Cartesian coordinate system
is shown in Fig. 1. Here the direction of propagation is assumed to
be in the z direction, and the two perfectly conducting plates, sep-
arated by a distance d, are parallel with the z — 2z plane. The two
plates are infinitely extent in both z and 2 directions. All quantities
of interest are independent of z. The region between the two plates
is completely filled with a homogeneous, isotropic, reciprocal chiral
medium described by the constitutive relations Eq. (1). The bound-
ary conditions on the perfectly conducting walls require the tangential
components of electric field vanish on the walls. For the sake of gen-
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erality, we assume here that the chiral material is lossy and that all
material parameters are, in general complex quantities. The electric

field components satisfying the wave equations (2) and (4) and the
boundary conditions can be written as follows

B=-n/2 {kev/Basin(v/5) + k- v/ 2 \/@Z@ sin( /52 |

+F2\/§_{k+ Sy cos(v/S1y) + k- \/_sm(gggi cos(\/S_gy)}

By =2 { - /Basin/5i) + VST ()}
1y Fay [21 ] /85 cos(v/5ry) - \/——sum\AE"d/ ) cos(+/Szy)
So

n(v/52d/2)
E, =SF; {cos (V/S1y) — cos \/\/:Zg) cos(1/Sa y)}
+51F2{sm<\/'s"1y)— 2 sy ) | 5

where S; and Sp are defined as S; = k2 + 2 and S; = k? + 12,
with v =if—a being the complex guide wave number of this guided
mode with 3 as the propagation constant and o as the attenuation
rate. F1 and F, are two arbitrary coefficients. When F) is taken to
be zero and Fy # 0, the transverse components of electric field are
even function of y coordinate, whereas when F» = 0 and F; # 0,
the transverse field components are odd functions of y. The latter is
referred to as odd mode, and the former as even mode.* The details
of the analysis leading to the above results can be found in [14]. The
longitudinal component of magnetic field is given as

4 It should be noted that the definition of eveness and oddness for
guided modes used in this chapter is different from that used in Refs.
[14,26]. Here, the eveness and oddness of modes are chosen based their
transverse electric field components, whereas in [14,26] it was defined
according to the longitudinal components. So the even (odd) modes
here correspond to odd (even) modes described in these references.
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A cos (v51d/2)
H, _Ziic:;f—?—{cslﬂ {cos <\/§1-y) wos (V322/2) cos (\/_—y)}

k3 sin (v/51d/2)
+ .4_...__._+ . 25651172 {sm( Sly) s ( P_Sld/2) sin (\/ y)}
(6)

The transverse magnetic field components can be obtained from a
knowledge of the transverse electric field components via the following

Yy iwe XSC Yy

The dispersion relation for guided modes in this type of chirowave-
break guides has also been analyzed [14,24]. It has the following form

A=A - Ag=0
with A; and As defined as

Ay = [VI=(B+i0) ke + V1= (B +ia)/k)?) -
. (k+d\/1 —((Bria) ks +k-dyI—((B+ ia)/k—)z)

2

£ [VI=(B+i)/k)? - VI—(B+1a)/k))
(mﬂ —((B+i0)/ks)” — k-dy/T=((B+ ia)/k~)2)

sin

2
(8)

The above dispersion relation is vahd for chirowaveguides filled with
lossy, as well as lossless chiral materials. It presents the relations of
a versus w (w — o relation) and B versus w (w — B relation).
These two relations can be plotted separately. Figure 2 presents these
two plots for the case of parallel-plate chirowaveguide with parameters
g, = 2¢,, W, = p,(14+0.57) and & = 0.001 mho where £, and p, are
permittivity and permeability of free space. Here p. is assumed to be
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complex. ® In this Figure, the normalized frequency Q (= wd+/p.¢,)
is plotted versus normalized Bd or normalized ad. Here even and
odd modes are denoted by (p) and (i), respectively. As described in
detail in [14, 24], some of the interesting features can be highlighted
here: first, we see from Fig. 2 that at w = 0, the values of 8 = 0
and oeutof = mr/d with n = 0, 1, 2, ... would make A; = 0
and A, = 0 simultaneously. However, as the frequency is increased,
the plot for A; = 0 and the one for Ay = 0 would result in two
different sets of values for a and (. This is indeed the phenomenon
of mode bifurcation in lossy chirowaveguides, which for the lossless
chirowaveguides was originally studied in [13,14]. As discussed in detail
in [14,24], the guided modes corresponding to A; = 0, for which F
in Eq. (5) is zero, are called even modes; and the ones resulting from
Ay = 0, for which F; = 0, are odd modes. For the lossless case,
it was shown that the plot of dispersion relation consists of a set of
bifurcated modes originating from common cut-off frequencies which
can be obtained by setting 8 = 0. This leads to A; = Ay =0 from
which the following expression for the cut—off frequencies for the loss-
less case is obtained:

nmw

Qe = wed/ Y€, = —F—=
Ve +1

withn=0,1,2...  (9)

5 As we pointed out in [24], in this example the loss is phenomeno-
logically assumed to be represented as imaginary parts of complex per-
meablility g, = p, (¢ + ). In principle, all three material parame-
ters may be complex for lossy chiral materials [27,28]. However, here
to demonstrate the effect of loss in chiral materials and its underlying
physical insights on characteristics of guided modes in chirowaveguides
without introducing mathematical and numerical complexities of all-
complex parameters, we assume in this theoretical example that y. is
complex. The analysis given here can be easily expanded to the case
of all three parameters being complex.
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Figure 2a,b. The dispersion diagrams: (a) w —  diagram and (b) w — «
diagram for the parallel-plate metallic chirowaveguide in Fig. 1. The
material parameters are taken to be €. = 2¢p, ptc = po{1 + 0.5¢) and &, =
0.001 mho. In (a) and (b), even and odd modes are denoted by (p) and

(i), respectively.
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Figure 2¢,d. The dispersion diagrams: Parts (c) and (d) are the w — 8
and w — a diagrams for lossless material parameters ¢, = 2¢q, u, = g,
and £, = 0.001 mho.
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We should mention that this mode bifurcation does not occur when
& =0, since for the nonchiral case, A; = As = 0. The phenomenon
of mode bifurcation was further studied in detail by Mahmoud [25]. He
also pointed out that the dominant mode in the parallel-plate lossless
chirowaveguide is an even mode and does not have any odd counter-
part [25]. We also notice that for the lossy case, for large frequencies
the values of 8 and « each approaches two different asymptotes. For
the w — # diagram, these asymptotes are indeed the linear function
representing w versus Re ks, and for the w — o diagram, this is the
graph of w versus Im k... Therefore, in this case, we have two asymp-
totes in the w — 3 diagram and two asymptotes in the w — o diagram.
When &, = 0, ki = k and we get one asymptote in each diagram.
Furthermore, as the loss disappears, (i.e., y” — 0 in this example),
the asymptotes in the w — a diagrams in Fig. 2 approaches the ver-
tical axis, i.e., Imky — 0 Therefore the w — o diagram will then
represent the evanescent modes in these waveguides. In the lossless
case, the asymptote for the w — 3 diagram is either k4 or k_ de-
pending on the sign of & [14,24]. In this limit, the starting points for
dispersion curves in the w ~ 8 diagrams in Figs. 2 will become the
non—zero cutoff frequencies in the parallel-plate chirowaveguides. It is
worth noting that in the non—chiral limit for the lossless case when
& = 0, one of the modes of the bifurcated pair approaches conven-
tional TM mode, whereas the other approaches the usual TE mode in
the parallel-plate waveguide [14]. As is well known, in parallel-plate
waveguides filled with non—chiral isotropic materials, the dispersion
curves for TE modes overlap those of the TM modes. Therefore, the
two curves of bifurcated pairs in the parallel-plate chirowaveguides be-
come a single curve as & approaches zero. It appears that introduction
of chirality in the material of these waveguides would have a tendency
to bifurcate the set of otherwise degenerate modes. This theoretical
observation is particularly supported by the fact that the dominant
mode in these waveguides, which in the nonchiral case it is a TEM
mode and unlike the higher-order modes it is not degenerate, would
not become a bifurcated pair when the chirality in introduced in the
material [25]. Figure 3 presents the sketch of the electric and magnetic
field distribution in a parallel-plate chirowaveguide filled with chiral
materials with parameters €, = 2¢_, p, = p,(140.5i) and & = 0.001
mho.
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. Figure 2e,f. The dispersion diagrams: For comparison, here are also

shown the corresponding diagrams for the non—chiral cases: {e) and (f)
present the w — § and w — a diagrams for the lossy non-chiral case of
€ = 2€0, e = po{l + 0.57) and & = 0 mho; and (g) and (h) illustrate the
diagrams for the lossless non-chiral case of €, = 2¢g, . = o and £, =0
mbho.
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(9)

(h)

Figure 2g,h. The dispersion diagrams: (g) and (h) illustrate the diagrams
for the lossless non-chiral case of €, = 2¢y, u. = g and &, = 0 mho.
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Figure 3. Sketch of (a)-(b) the electric field component, and {c)—(d)
the magnetic field components across the cross section of the parallel-
plate chirowaveguide (Fig. 1) as a function of y/)\, where ), is the free
space wavelength. There are two sets of plots for the electric field and
magnetic field components : (a) and (c) field profiles of the odd mode
of the first pair of bifurcated modes and (b) and (d) field profiles of
. even mode of the first bifurcated modes. The material parameters are
€. = 2¢€g, pte = po{1 + 0.5¢) and £, = 0.001 mho.
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Figure 4. Rectangular metallic chirowaveguide with dimensions a and
b. The chiral material is assumed to be lossless.

4. Metallic Rectangular Chirowaveguides

The problem of guided wave propagation in a rectangular waveg-
uide with perfectly conducting walls and filled with lossless homoge-
neous chiral material has been studied recently in [29] where the finite—
difference method (FDM) was used to solve the two coupled equations
(4) for E, and H,. The dispersion diagrams were then obtained and
plotted. Another approach to solve this problem was used by Cory [30]
where he considered coupled differential equations for transverse vari-
ation of transverse field components and found a zero—order solution.
Here we only review the highlights of the results in [29], such as dis-
persion characteristics of guided modes in such waveguides using the
FDM. The reader may be referred to [29] for some detail of numerical
analysis of this problem.

In applying the finite-difference method for this problem, a rect-
angular waveguide with dimensions a = 2b filled with chiral material
with parameters ¢, = &,, Y. = p, and & = 0.001 mho and 0.0005
mho is assumed (See Fig. 4). The dispersion diagrams are given in Figs.
5 and 6. As in the parallel-plate chirowaveguide, the cut-off frequencies
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Figure 5. Dispersion diagram for the chirowaveguide in Fig. 4 with di-
mensions a = 2b. Here the non—chiral mode is TE;g. (From P. Pelet and
N. Engheta, “Modal analysis of rectangular chirowaveguides with metal-
lic walls using the finite—difference method,” J. Electromagnetic Waves
and Applications, Vol. 6, No. 9, 1277-1285, September 1992. Copyright
@ 1992 VSP BV.)

are lower in the chiral (£, # 0 mho) case than in the non—chiral case
(&: = 0 mho). Similar to the parallel-plate chirowaveguides, three re-
gions in these diagrams can also be identified: the fast—fast-wave region
for which the phase velocity v, of the guided mode in the waveguide
is greater than the phase velocities v = w/k4+ and v_ = w/k_ of the
bulk eigenmodes, the fasi-slow-wave region for which v, is greater
than vy but smaller than v_, and the slow-slow-wave region for
which v, is greater than vy and v_. Special attention must be paid
to the mode bifurcation phenomenon. It can be seen that such bifurca-
tion occurs for the modes which reduce to the non—chiral TE;; mode
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Figure 6. Dispersion diagram for the chirowaveguide in Fig. 4 with di-
mensions a = 2b. Here the non—chiral mode is TE;;. (From P. Pelet and
N. Engheta, “Modal analysis of rectangular chirowaveguides with metal-
lic walls using the finite—difference method,” J. Electromagnetic Waves
and Applications, Vol. 6, No. 9, 1277-1285, September 1992. Copyright
@ 1992 VSP BV.)

in the absence of chirality. However, bifurcation is not seen for the mode
which approaches the non—chiral TE;; mode when & = 0 mho. This
again supports the observation stated in the previous section. Since in
the non-—chiral case, the TE;; dispersion curve corresponds actually
to both TM;; and TE;;, and since chirality will effectively influence
TE and TM modes differently, the dispersion curves are going to split
when &. # 0 mho. However, the TE, mode has no TM;q counter-
part in the non—chiral case. As a result, in the chiral case the equivalent
dispersion curve is not bifurcated.
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5. Metallic Circular Chirowaveguides: A Review

The case of circular cylindrical waveguide with perfectly conduct-
ing wall and filled completely with isotropic lossless chiral materials
have been analyzed by Eftimiu and Pearson [15], Svedin [17], Mah-
moud [25], and Hollinger et al. [19]. Rao has analyzed the attenuation
properties of circular chirowaveguides when the attenuation is due to
the lossy walls [31].

In these studies, electromagnetic properties of guided modes in
such waveguides were studied, and relevant quantities such as disper-
sion relations, cutoff frequencies, field distributions, and polarization
characteristics of guided modes were analyzed. It was found that due to
the geometry of the problem, field quantities were expressed in terms of
Bessel’s functions as expected, and the two wave numbers ki played
important roles. As in the case of the parallel-plate chirowaveguides,
the cut off frequencies have been lowered by introduction of chiral-
ity in the medium. More importantly, the mode bifurcation was also
observed for degenerate modes in such waveguides [17,25]. More specif-
ically, since the waveguide’s cross section is circular, in the non—chiral
case any mode with any azimuthal dependence can have a degenerate
counterpart mode whose fields are the same as the original mode but
rotated 90° in the azimuth direction. For instance, in the non-chiral
case, TE;; mode can have a degenerate counterpart, which is again
TE;;, but its whole field distribution is rotated 90° around the z
axis.® When the chirality is present in the material, such modes will
become hybrid modes and they will have bifurcated dispersion curves
in the dispersion diagram. However, if the mode in the non—chiral case
is azimuthally symmetric, then in the chiral case, such a mode will
again become hybrid but bifurcation phenomenon will not occur. For
detailed description of electromagnetic characteristics of modes in cir-
cular metallic chirowaveguides, the reader is referred to [17,19).

Open dielectric circular chirowaveguides and the effect of chirality

of the waveguide’s material on guided modes have also been analyzed
by Svedin [17].

6 More explicitly, if the azimuthal dependence of the first TE;
is singp, the azimuthal dependence of the degenerate counterpart is
cos .
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6. Dielectric Slab Chirowaveguides

Open dielectric slab chirowaveguides are another canonical case
of waveguiding structures with chiral materials. Owing to their pos-
sible applications in future devices and components, these guided—
wave structures have been the subject of studies by several researchers,
namely, Engheta and Pelet [26,36-37], Cory and Rosenhouse [32],
Uslenghi and his co-workers [33-35], Oksanen et al. [38,39], Mahmoud
[40] to name a few. The problem of chirowaveguides with impedance
walls has been studied in detail by Mahmoud [41], and Oksanen et al.
[42] .

The open single slab homogeneous chirowaveguides can be con-
sidered in two different cases: symmetric case where the chiral slab
is surrounded by the same non—chiral medium in both sides; and the
asymmetric case where the two surrounding media are different non-
chiral materials (See Fig. 7). We have analyzed the first case, and the
second case with a perfect conducting layer as one of the surround-
ing media [26]. The mathematical techniques used to solve the guided
wave propagation in these chiral slabs are similar to those used for the
metallic parallel-plate chirowaveguides. It was found that for the sym-
metric chiral slab of thickness d and material parameters €., ., &,
surrounded by the free space with parameters ¢, and p,, the dis-
persion relation for guided (bound) modes were A = Ay - Ag =0,
with

Ay = [wj/sﬁl sm(\/_ d/2) 77 cos(\/_ d/2)]

x |k_+/Szcos (\/—S—gd/Z) \/_sm(\/ggdﬁ)]

+ -w\s/sﬁg sin(\/S_gd/2) k-V5 e cos (\/S—zd/Q)]

0

X k+\/—cos (\/S_ld/2) w’i°/‘.§_lsn(\/5_1d/2)j| (10a)
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Perfect Conducting Ground (b)

'Figure 7. Symmetric (a) and grounded (b) lossless chiral slabs with
‘material parameters €, ., and &,..
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Ay = !iw\j%? cos (\/gzdﬂ) + Zﬂ-i’%{—-'sf—l-sin (\/-S_Id/Q)}

X |k—+/Szcos (\/§;d/2) + %cos (\/g-g—d/2)}
+ -w\e/sﬁj cos <\/§;d/2) sm (\/§;d/2)J

x | kyy/S1sin (\/s—ld/z) +:;)::'°/§_t_cos (\/STd/Q)j] ‘(mb)

Here S, = % —w?ue,, S1 and S, have been defined earlier with

=1iB, 7 and n, k4, k- have all been specified before. The cutoff
frequencies w. can then be obtained by setting 8 = we/p,€, in the
above dispersion relation . Thus we get

mm
P 0.5
7 d i‘/!_“.c /&2 1 Ec.e_a_.l
,LLOEO {( 8c§c+ Sc€c+ ) MOEO

for m =0, 1, 2, .... The electric field expressions for the inside and
outside the chiral slab have also been obtained [26]. For the inside the
slab where —(d/2) <y < d/2, we have

Eep =% ki\/S1 [cf)s (\/E‘Ty) I,c_k:_cos (\/S';y)} % (12q)

(11)

e k4 sin
E- —:!:1,5\/._[008 (\/—y)+re‘s’°§( sgy)]eiﬂz (12b)
o[ () e ()

T Here, the materials are taken to be lossless and the modes un-
der consideration are assumed to be guided (bound). Therefore, the
wavenumbers of such modes are expressed as v = i3, and the attenu-
ation rate a = 0.
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where
[e = (S:gé (v/514/2) F ne/Sok+ 5 (V514/2)
° w%v&&% (V524/2) F nev/Sok- Gy (V524/2)

and for the region above the chiral slab, i.e., d/2 <y, we get

Eomzik+\/‘§1—
[0 (Brarz) vy o (Vaa) | eV (130
Be, —:{:lﬁ—-\/——

(2 (VBw2) 4 (VEsapa)] VG (i

a2 (V) #1252 ()

e~ VSow=4/2) bz (13¢)

For the region below the slab where y < d/2, the electric field ex-
pressions can be written straightforwardly using the symmetry. The
magnetic field can also be obtained from the above field expressions
using the Maxwell equations.

The dispersion diagram of the symmetric slab chirowaveguide is
shown in Fig. 8. This plot is for material parameters ¢, = 2¢,, 1, = p,,
and & = 0.0005 mho. Figure 9 also presents plots of normalized field
intensities of electric field components of lowest odd guided mode in the
dielectric slab chirowaveguide. It can be easily shown that the cutoff
frequencies and the field expressions approach those of the non—chiral
slab waveguides when £, — 0. In this limit, A; = 0 provides the
dispersion relation for odd TE and TM modes of the non—chiral slabs,
whereas Ap = 0 gives up the dispersion relation for even TE and
TM modes [43]. So we note that for the non—chiral case, TE and TM
modes of the same order and the same parity (odd or even) share the
same cutoff frequencies. However, when the chirality is introduced, i.e.,
& # 0, then as can be seen from Eq. (11) for modes with n # 0 the
cutoff frequencies would split. Such splitting of cutoff frequencies for
- n # 0 modes can be observed in Fig. 8.

The grounded asymmetric slab chirowaveguides have also been
analyzed using similar analyses. The results for the dispersion relations
and field expressions can be obtained in [26,37].
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Figure 8. Dispersion diagram of symmetric chiral slab in Fig. 7(a). (From
N. Engheta and P. Pelet, “Surface waves in chiral layers,” Optics Letters,
Vol. 16, No. 10, 723725, May 15, 1991, Copyright @ 1991, Optical So-
ciety of America)

7. Mode Orthogonality and Mode Coupling in
Chirowaveguides

As in conventional non—chiral cylindrical waveguides, modes in
cylindrical chirowaveguides satisfy certain orthogonality relations.
Such relations have been studied and reported in the literature [44]. It
has been shown that in lossless chirowaveguides with arbitrary cross
sectional shape, the following orthogonality relation can be written

/ / (em x b% + €5, x hyy) - 2dS = 4P, Sgn(n)bmn (1)
S
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Y/A

Figure 9. Sketch of normalized electric field intensities in the symmetric
chiral slab in Fig. 7(a). The material parameters are ¢, = 2¢g, g = o
and £ = 0.0005 mho. (From N. Engheta and P. Pelet, “Surface waves
in chiral layers,” Optics Letters, Vol. 16, No. 10, 723-725, May 15, 1991.
Copyright @ 1991, Optical Society of America)

where en,, h,,, e,, and h, are parts of mth and n th guided modes
in the guide, ie., E;, = enexp(ifmz), Hn = hpmexp(iBnz),E, =
enexp(ifnz), and H, = hgpexp(iBrz), % is the unit vector along the
waveguide’s axis, P, is the power carried by the nth mode, 6, is
a Kronecker delta, and * is the complex conjugation. The surface in-
tegral is carried out over the transverse plane of the waveguide [44].
Another form of orthogonality relation, which is valid for lossy as well
as lossless chirowaveguides, has been studied, and it is given [44] as

/ (em xh, —e, xhy,)-2dS =0 (15)
s

The above orthogonality relations are similar to those given for gy-
rotropic waveguides [45].
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These orthogonality relations enable one to obtain expressions for
mode coupling in chirowaveguides due to perturbation. As was shown
in Eq. (4), the chirality of medium would result in coupling of longi-
tudinal components of electric and magnetic fields in such waveguides.
Without chirality in simple non—chiral metallic cylindrical waveguides
these two components are decoupled. When chirality is introduced
these components, and their corresponding transverse components, are
coupled. Therefore, one can regard such mode coupling as coupling
of modes due to chirality as perturbation in an otherwise non—chiral
waveguide [46]. As can be shown in [46], these “perturbed” modes can
be expressed in terms of ”unperturbed” modes, i.e. modes in non—chiral
waveguides, i.e.,

E' =) am(z)eme’* (16)
-~ .
H ~ Z am(2)hy, ePm? 17

where e, e#m* and h,,e#* are normalized unperturbed modes
(with e, and h,, depend only on the transverse coordinates), and
am(2) are expansion coefficients, which in general vary with 2. Follow-
ing standard techniques in deriving the coupled—mode equation, one
can get the following coupled equations for coefficients an,(z) :

daﬂ-('z) i(Bm—Bn )z

where Cpy is the coupling coefficient defined as

w— 1 * _ * . ‘
Con = g / / Witebe (em - h% — €% -hm) dS (19)
S

As can be seen the coupling coefficients Cyp,, are directly proportional
with chirality admittance {. When & = 0, then unperturbed modes
are decoupled as expected.

The coupling of modes in and among waveguides filled with chiral
materials have been studied by several researchers, namely, Chan and
Uslenghi [34,47,48], Mazur et al. [49], Cory and Rosenhouse [50-52],
Chein et al. [53], etc. In their analyses, they have shown interesting
properties of mode coupling in such waveguides, and they have pro-
posed some novel applications for coupling of modes in these guided-
wave structures.
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8. Partially Filled Chirowaveguides: A Review

In the metallic chirowaveguides reviewed so far, the guiding re-
gions have been completely filled with chiral materials. In the case of
open chirowaveguides, the regions where guided modes are mostly con-
fined are also made of chiral materials completely. However, the cases
of waveguides wherein the guiding regions are partially filled with these
materials are of equal importance. This is mainly due to the fact that
in such structures, there are more parameters involved, e.g., sizes of
the chiral and non—chiral regions, which can affect propagation char-
acteristics of guided modes.

The waveguides partially filled with chiral material can be catego-
rized into two general cases: partially filled chirowaveguides wherein the
chiral materials are placed longitudinally along the waveguides’ axes;
and those within which chiral materials are transversely located.® In
the first case, since the materials are placed along the waveguide’s axis
(i.e., the structure is homogeneous in the z direction, but not in the
transverse directions), electromagnetic properties of guided modes are
independent of the z coordinate (of course, with the exception of prop-
agator exp(iBz)). As a result, modes will not be reflected. However, if

-the material is transversely located, i.e., the homogeneity is along the
transverse directions, guided modes can be reflected and transmitted
due to inhomogeneity along the z direction.

The various forms of partially—filled chirowaveguides of first kind
have been analyzed by several researchers. Among these one can men-
tion Toscano et al. [54,55] who analyzed the dispersion characteris-
tics of guided modes in parallel-plate waveguides which are partially
and longitudinally filled with chiral material, Monte and Uslenghi [35]
who studied the modes in circular cylindrical dielectric—chiral cables,
Mahmoud [56] with his analysis of circular chirowaveguides with di-
electric linings, Saadoun [57] with work on the effect of a chiral rod
in waveguide with arbitrary cross section, and Tretyakov and Viitanen
[58] who considered perturbation techniques in cavity resonators and
waveguides due to a biisotropic inclusions.

8 Of course, one can also assume that the chiral material is inhomo-
geneous in both the transverse and longitudinal directions. Here, we
restrict ourselves to the cases where the material homogeneity is either
in the transverse or in the longitudinal directions.
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Figure 10. A slab of chiral material transversely located in a parallel-
plate waveguide. The electromagnetic quantities here are independent of
z direction.

The second kind of partially filled chirowaveguides, i.e., trans-
versely located chiral materials in a chirowaveguide has also been an-
alyzed for some cases. Rong studied circular chirowaveguides periodi-
cally loaded with metal grating [59]. Mariotte and Engheta studied the
reflection and transmission of guided modes at a dielectric—chiral in-
terface and at a chiral slab in a parallel-plate chirowaveguide [60,61].
For the slab case, the lossy chiral material was also considered [61].
They considered a chiral slab of thickness a located transversely in a
parallel-plate waveguide. The slab is placed between the plane z = 0
and z = d as shown in Fig. 10. The incident wave is assumed to be
a TEM mode, incident from the region z < 0, and polarized with
the electric field intensity E, along the y direction. The reflected
and transmitted waves outside the slab region can be expressed as a
sum of the modes in the parallel-plate waveguide, and the wave in-
side the slab can also be expanded in terms of all the positive- z -going
and negative- z -going hybrid modes in parallel-plate chirowaveguides.
Since the modes in the chiral slab (both propagating and evanescent)
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Figure 11. Normalized power of TEM and TEj;p modes in the reflection
and transmission waves for geometry of Fig. 10. Here d/)\g = 0.56,a/d =
0.5, and ¢, = 2¢g and p. = pp. Normalization is with respect to the power
(per unit length in the z direction) of the incident TEM mode. (From
F. Mariotte and N. Engheta, “Reflection and transmission of guided
electromagnetic waves at an air-chiral interface and at a chiral slab in a
parallel-plate waveguide,” IEEFE Trans. Microwave Theory and Techniques,
Vol. MTT-41, No. 11, 1895-1906, November 1993. Copyright @ 1993,
IEEE).

are hybrid, the boundary conditions for the electric and magnetic field
components require that higher order modes of TE and TM be consid-
" ered in the air region (z < 0 and z > a) in addition to the dominant
TEM mode. Of course, some (or sometime all) of these higher order
modes are evanescent and the rest are propagating. Following these
steps and satisfying boundary conditions at the two air—chiral inter-
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Figure 12. Normalized power of TEM and TE;p modes in the reflection
and transmission waves for geometry of Fig. 10. Here d/)\g = 0.56,a/d =
1, and €, = 2¢p and p, = po. Normalization is with respect to the power
(per unit length in the z direction) of the incident TEM mode. (From
F. Mariotte and N. Engheta, “Reflection and transmission of guided
electromagnetic waves at an air—chiral interface and at a chiral slab in a
parallel-plate waveguide,” IEEE Trans. Microwave Theory and Technigues,
Vol. MTT-41, No. 11, 1895-1906, November 1993. Copyright @ 1993,
IEEE).

faces (i.e., 2 = 0 and z = a), the relations between the reflected
and transmitted waves with the incident TEM mode are analyzed {60].
The detailed analysis can be found in [60]. Figures 11 and 12 show
the normalized power carried by the reflected and transmitted modes
as a function of chirality for a chiral slab with thickness a/d = 0.5
and 1, respectively. The other material parameters of the chiral slab



A review of recent study of guided waves in chiral media 341

are taken to be g, = 2¢, and p. = p,, and the waveguide thick-
ness is d/)\, = 0.56, where A, is the free space wavelength. For this
value of d/A,, the parallel-plate waveguide can operate above the first
non—zero cutoff frequency, and therefore in addition to the dominant
TEM mode, the next higher order mode, i.e., TEjo can also propagate.
Owing to the chirality of the slab, the modes in the slab are hybrid,
and as a result TE;s mode can be excited. That is why in Figs. 11
and 12, the reflected and transmitted power are represented for TEM
and TE;o modes separately. When chirality goes to zero, TEjp modes
vanish, and only TEM modes contribute to reflected and transmitted
power. One can also note that for the transmitted power in the region
z > a is virtually switched from TEM to TEjp and back, as the slab
thickness a/d increases or chirality &. increases. This is mainly due to
the fact that the polarization of the transverse portion of electric field
effectively “rotates” as the wave traverses the chiral slab, and there-
fore when the wave exits from the slab the relative values of E; and
E, at z = a plays an important role in exciting transmitted TEM
and TE;p modes. Needless to say, the geometry of the waveguide, i.e.,
dimension d has also affected such rotation and contribution to these
modes. This characteristics can have possible applications for design
of novel devices such as TE « TM converters and polarization filters.
As mentioned in [60], we should notice that here in the case of chiral
slab inserted in the parallel-plate waveguide, the reflected wave can
possess a cross polarization for its electric field in the transverse plane.
This is primarily due to the effect of bounded structures (or waveg-
uide’s walls) which were not present for the unbounded case. In the
unbounded situation where there is no waveguide, and there is a two
dimensional chiral slab with thickness a illuminated with a normal
incident linearly polarized wave, the reflected wave does not contain
any cross polarization for its electric field. The transmitted wave is of
course linearly polarized with a plane of polarization rotated by an an-
gle ¢ = wu . [62]. This effect in chiral slab inserted in parallel-plate
chirowaveguides may potentially be exploited for measuring the chiral
properties of the slab using reflection properties.

When the loss is introduced in the chiral slab as an imaginary
~ part of complex €, or complex u., the reflection and transmission
" properties of these guided modes in the parallel-plate waveguide are
affected [61]. Figure 13 presents the normalized absorbed power as a
function of chirality admittance for the chiral slab of thickness a/d =
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Figure 13. Normalized absorbed power in the slab shown in Fig. 10 as
a function of £,. Here d/A\g = 0.56,a/d = 0.5, and ¢, = 2¢ and p, =
uo(1 + 0.5%) for one curve and ¢, = (2 + 0.5¢)eg and g, = po for the other
curve. Normalization is with respect to the power (per unit length in
the x direction) of the incident TEM mode.

0.5 inserted transversely in a parallel-plate waveguide of thickness
d/Xo = 0.56. The other material parameters of the slab is g, = 2¢,
and g, = (1 +0.51) for one of the curves and ¢, = (2 +0.5i)¢, and
Yo = p, for the other curve.

9. Potential Applications

Some of the interesting features and characteristics of guided
modes in chirowaveguides could be a basis for novel and interesting po-
tential applications in optics, microwave and millimeter wave regimes.
These potential applications include conceptual ideas for some novel
mode converters and directional couplers and switches [13,46-48,51]
and distributed coupling via chirality [49], idea of chiral layers as an-
tenna substrates and superstrates [36,37,63], possible applications to
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phase shifter [57], etc. Guided—wave structures with chiral materials
can also be used to measure chiral material parameters. This technique
has been used by Hollinger et al. [64] to experimentally characterize
microwave chiral composites in circular waveguides, and results of ro-
tary dispersion and axial ratio of chiral samples have been reported.
The analysis of reflection and transmission properties of a chiral slab
inserted in parallel-plate waveguides should be expanded to include the
inverse problem, namely, to express the material parameters in terms
of reflection and transmission coefficients from chiral slabs in parallel-
plate waveguides. Care must be taken in addressing the uniqueness of
the results. In that case, the chirowaveguides can potentially be used
" to obtain material parameters in terms of reflection and transmission
information.

10. Summary

In this chapter, we briefly review certain electromagnetic charac-
teristics and features of guided modes in cylindrical waveguides con-
taining isotropic chiral materials. Basic formulation for guided mode
propagation in chirowaveguides were reviewed and the cases of parallel-
plate metallic chirowaveguide, metallic rectangular and circular chi-
rowaveguides, open dielectric chirowaveguides were mentioned. Mode
coupling in such guided-wave structures was also reviewed. Further-
more, partially filled chirowaveguides were also addressed and reviewed.
It must be noted that, in addition to waveguiding properties of chiral
materials, the electromagnetic characteristics of guided modes in bi—
isotropic (materials with four parameters) and bi-anisotropic media
have also been studied extensively in recent years. The reader is re-
ferred to the work of Uslenghi and co—workers [65,66], Paiva and Bar-
bosa [67,68], Tretyakov and Viiatanen [58], Viitanen and Lindell [69],
and Mazur [70] to name a few.
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