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1. Introduction

Recently, a novel concept of artificial composite materials with Q-
shaped metal elements was introduced in [1]. The idea originated from
wide and intensive studies of isotropic chiral media and their electro-
magnetic properties in the microwave regime. Artificial chiral materials
for applications in microwave engineering possess microstructures with
small helical wire inclusions, which provide additional interaction be-
tween parallel high-frequency electric and magnetic fields. The helices
obviously lack mirror symmetry, and that is the reason for the name
"chiral”. In isotropic chital materials, chiral inclusions are randomly
distributed and the constitutive equations depend on scalar coupling
coefficients [2].

A typical chiral inclusion — a small wire helix — can be con-
sidered as an electric dipole connected with a magnetic dipole in such
a fashion that high-frequency electric field induces in space magnetic
field parallel to the original electric field component, and vice versa.
This causes optical or microwave activity — rotation of the polariza-
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tion plane of a linearly polarized propagating wave. Such chiral struc-
tures most effectively interact with circularly polarized waves, since
the right and left circular polarizations are the eigenpolarizations in
unbounded bii-sotropic media (see, e.g., (3,4]). However, one may sug-
gest other geometrical configurations which can provide stronger wave-
material interaction in other circumstances we deal with in microwave
engineering. One of such modifications was introduced in [1}, where
it was suggested to use particles shaped like the capital Greek letter
Q instead of chiral helical particles to ensure first-order effect on the
propagation factor in a partially filled rectangular waveguide. Such a
structure possesses mirror symmetry and is then non-chiral. The name
“pseudochiral” has been proposed by Saadoun and Engheta [1]. In a
regular microstructure with 2 -shaped conductive inclusions, there ex-
ists some interaction between electric and magnetic fields which lay in
orthogonal planes, and the material can be modeled by bianisotropic
constitutive equations.

In the present paper, we study another modification of such mi-
crostructure configurations which can be better suited for use in plane
non-reflecting coverings and antenna radomes.

We focus the analysis on linearly polarized electromagnetic waves
in plane layers. Consider a plane dielectric layer and let the z-axis of
a rectangular co-ordinate system be normal to its boundaries, and the
x- and y-axes lie in the plane of the interfaces. Let us introduce -
particles inside the slab and position them so that their stems stretch
along the z-axis and the loops are in the (z — z) plane. In a regular
two-dimensional set of that configuration, the z-component of high-
frequency electric fields induces, in addition to dielectric polarization,
a y-directed high-frequency magnetic field component and vice versa.
With one such set, the structure is bianisotropic, and a y-directed elec-
tric field component causes only electric polarization in the dielectric
matrix, but no magnetic field component.

To provide uniform operation for linearly polarized waves with
any electric field direction (or for unpolarized plane waves), we suggest
to introduce a second ensemble of ) particles, with the stems along the
y -axis and the loops in the ( ¥y —z ) plane. This set of particles interacts
with the electric field component polarized along the y-axis and the
magnetic field component directed along the z -axis. As a result, the
structure will interact more effectively with linearly polarized waves of
any polarization direction. Such a medium can be named as uniaxial
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omega medium, because there exists only one particular direction —
that one normal to the interfaces. The size of 2-shaped elements is
assumed to be small enough, so that the medium can be described
by effective averaged material parameters and the material is modeled
by uniaxial bianisotropic constitutive relations which couple electric
and magnetic fields. The idea of the uniaxial omega structures was
put forward in the letter [5]. Eigenwaves in still more general uniaxial
chiral omega structures were studied in [6, 7]. Another modification of
uniaxial bianisotropic media was considered in [8], where the coupling
dyadics were assumed to be symmetric.

In the following we develop the general theory of plane wave prop-
agation in our novel media and study reflection and transmission in
plane uniaxial bianisotropic layered structures. To the knowledge of
the authors, in the literature only numerical techniques suitable for
calculation of the reflection and transmission in general bianisotropic
slabs have been suggested [9, 10}. Here we construct analytical solutions
for the proposed structures and analyze their general properties.

As an example interesting for applications, we consider in de-
tail reflection from a plane metal surface covered with a lossy omega
layer. The example demonstrates that with the additional 2-shaped
wire elements absorption can be enhanced in a wide frequency range.
The additional material parameter can help to manage properties of
anti-reflection coatings, in a way similar to the effect provided by the
chirality parameter of bii-sotropic materials {11-13}. Another example
is the reflection and transmission through a plane slab. Here it is seen
that the material is prospective for potential use in antenna radomes
since a nearly transparent and non-reflecting covering can be designed.
Lossy slabs can be designed to serve as non-reflecting absorbers.

2. Eigenwaves in Uniaxial Omega Media

Constitutive equations for composite materials with two orthogo-
nal sets of (2-shaped elements arranged as explained in the Introduc-
tion we write for the harmonic time dependence (/) as

D:€'E+j\/€0#0?gm‘ﬂ
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B=f-H - j\/egitg Kme - E (1

Here we assume that the medium is reciprocal, so that the coupling
dyadics satisfy the reciprocity condition for bianisotropic media [14]

a—

R _ =T
EZET ﬁzﬁT Kem = K e (2

where T denotes the transpose operation, and the two sets of omega
particles may be different (in size or in number of the wire elements).
This corresponds to two different scalar coupling coefficients K, and
Ky:

_K-em == K:cj()go + Ky??oio
Kme =KyZo¥o — KzloTo (3)

If one of the coupling coefficients K, or K, is zero (i.e., if there is
only one ensemble of Q particles), the constitutive equations (1) are
equivalent to that given in [1], although the material parameters are
defined in (1] in a somewhat different fashion.

In the following we assume that the two ensembles are identical,
then K; = K, = K , and both the coupling dyadics are anti-symmetric

and proportional to the 90 degree rotator J = fjoZo ~ZoYo inthe z—y
plane:

I

B

Il
=i

In this case € and 7 are uniaxial dyadics with transverse (¢) and
normal components (n ):

E=cole, ]y +€a%02%) B = ol ]s + tinZoZo) (5)

where %, stands for the unit vector along the z-axis (normal to the
interfaces). It = ZoZg + Yoo I the transverse unit dyadic and the
rotator J can be expressed also as J = Z, x I; . The coupling provided
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by the omega particles is proportional to the dimensionless parameter
K . In lossless media all the material parameters €;n, p:»n and K in
(4) must be real.

To study electromagnetic waves in the uniaxial omega media we
Fourier transform the Maxwell equations in the plane of the interfaces
and eliminate the field components normal to the interfaces. Splitting
the fields into normal and transverse parts

E=En20+Er, H=Hn20+Ht (6)
the Maxwell equations take the form
c o= 0 2 o= E -
—jky x E+ 5570 Ey=—jw(@- H+ jK4/e€gtug 20 X E)
;=0 == = - &
—jke x H + 520 x Hy =jw(e- E + jK\/€pig 20 X Hy) (7)

Here, k; is the two-dimensional Fourier variable. The normal field
components can be expressed in terms of the transverse fields:

1 - - 1
ktXHt Hn20=

kt X Et (8)
Wty Whg oy,

En20=—

and eliminated, which converts (7) into the system of two vector
transmission-line equations

8 _ _ = P .
<6_ - k()K) Et = (]wuo,ut It - J ktkt> . (20 X Ht)
Z Wegen (9)

20 X ktzo X I_ct> -Et

0 _ =
— 4+ koK ) Z Hy=|j I —
<az+ ° )z‘”‘ : (""6"6“ Wholin

where we use the conventional notation for the free-space wave number
ko = w\/m .

Second-order wave equation for the transverse electric field com-
ponent E; immediately follows from the transmission-line equations
(9) and it takes the form

0% - kik Zo X kizo X k) =
) E; + ,B%M_tzt + B%E——O tzo ). E:=0 (10)
0z k; ki



162 Tretyakov and Sochava

Because the dyadic in the last equation is diagonal, the eigensolutions
of (10) are obviously two linearly polarized vectors: one is proportional
to k; and another one — to Zy x k;. The first solution corresponds
to a TM -polarized wave, with the magnetic field orthogonal to the
ks vector, and the second one is a TE -wave. Bry and Brg are the
normal components of the propagation factors for the TM - and TE -
polarized eigenwaves, respectively:

Bar =% (Hiewpe — k) - KK
n

Bhe =2t (kBewm — ) — KK (11)
n

The transverse fields in these eigenwaves depend on each other
through wave impedances or admittances:

Et:;’?i.zoxf{t ngHt=2F7ﬂ:'Et (12)

where the dyadic impedances and admittances are diagonal:

EzO X ktZ() X kt =-1

bk, + 2T Yi=12,

K2 K2

and the upper and lower signs correspond to the waves propagating in
the positive and the negative directions of the z-axis, correspondingly.
The characteristic impedances and admittances can be found from
the vector transmission-line equations (9) after substitution of plane
linearly polarized solutions of the wave equation (10), which leads to

Z:{: - Z:EM

2
AL =l Y zkt ~ K2+ K, (13)
€0 k§€ntsy
Mol 1 ki ;
ZTE =1 / 1 - —2t— - K24+jK,| (14
* €oft | kf <\/ k§e, i "
koet/‘(‘n

k)2
YoM =, |20 L \/1 ~K2¥jK,| (15)
Fobe | _ ki kenbsy

kofnﬂt
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€€
YIE =, [ 22 \/ ~ K2¥ jKn (16)
- \/uout k%ﬁa o "

Here, the normalized coupling parameter K, has been introduced as

K

V€l

It is most important for the following that the impedances and
admittances are different for the waves traveling in the opposite z-
directions. As is seen from the above results, electromagnetic waves
in uniaxial bianisotropic Q structures can be modeled by the non-
symmetric vector transmission-line equations (9), with the normal
components of the propagation factors (11) and the characteristic
impedances (13), (14) or admittances (15), (16). The normal compo-
nents of the propagation factors do not change when the propagation
direction is reversed, but the impedances and admittances are non-
symmetric.

Similar properties can be observed for waves in magnetized fer-
rites or plasmas. For example, in a special case when a plane wave
propagates in a magnetized ferrite in a direction orthogonal to the bias
field, the propagation factors are symmetric but the wave impedances
are not. Another example is the Tellegen medium [15-18], i.e. the non-
reciprocal bii-sotropic material with zero chirality parameter. More-
over, comparing with the Tellegen media we see that the way how
the impedances and admittances depend on the material parameters
in the present case is similar to that in the Tellegen media. The nor-
malized coupling parameter appears in the position of the normalized
non-reciprocity parameter in the equations governing wave propaga-
tion in the Tellegen media. Of course, this analogy is rather formal,
and the physical effects in these two specific complex media are quite
different.

The previous analysis implies that the transverse electric and
magnetic field components E; and H; are both non-zero. Two spe-
cial cases of the wave propagation when either F; or H; vanish must
be treated separately. Assuming E; = 0, so that the electric field is
longitudinal ( E = 20 En ), we see from the Maxwell equations (7) that
the magnetic field is purely transverse with respect to the geometrical
axis, and it is related to the electric field as

K, = a7
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I-{ = Ht = Et X ZOE.,,, (18)

Whofy

The components of the propagation factor satisfy

ki =kdenn, B =k3K*® (19)

It is interesting to note that for this specific wave the normal compo-
nent of the propagation factor 3 depends only on the coupling coeffi-
cient but not on the other material parameters.

In analogy, in the dual case when the transverse magnetic field is
zero, H = zoH, , the electric field is transverse, and it reads in terms
of the magnetic field

1
WEyE,

E = Et = — I_Ct X ZOHn (20)
For this polarization, k? = k3e:un , and the normal component of the
propagation factor is the same as in the previous case (19).

Since the eigenwaves in uniaxial omega media are the linearly
polarized plane waves, and waves of the different eigenpolarizations
do not couple at plane interfaces, it is possible to consider the T M -
and TFE -waves separately and to employ the scalar non-symmetric
transmission-line theory [19]. This contrasts with the situation we en-
counter in layered biisotropic media {17, 18], where two circularly po-
larized eigenwaves couple on interfaces, hence the vector circuit theory
[17] or the vector transmission-line theory [18] must be used.

Uniaxial omega media possess some novel properties as compared
to the above examples because they are reciprocal, while ferrites, mag-
netized plasmas and Tellegen media are not. Another feature important
for applications is the uniaxial symmetry of the suggested microstruc-
ture.

3. Reflection and Transmission in Slabs

In this Section we concentrate on reflection and transmission
properties of plane layers filled with uniaxial €2 materials. As is seen
from (9) and (10), the transverse electric field components of linearly
polarized TM and TFE waves satisfy non-symmetric scalar trans-
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mission-line equations. The normal component of the propagation fac-
tor is given by (11) and the non-symmetric impedances and admit-
tances by (13)—(16). Generalized scalar transmission-line theory has
been introduced in [19], and the basic results of the non-reciprocal and
non-symmetric transmission-line theory are applicable to the present
problem. Considering either T'M - or T'E -waves, let us introduce scalar
equivalent voltages and currents as the amplitudes of the transverse
field components:

Ez = ol —Zg X ;—Ig = éoi (21)

where &g is the unit vector in the direction of the transverse electric
field component.

The general solution of the equation (10) for linearly polarized
eigenwaves can be expressed as a sum of two plane waves propagating
in the opposite directions:

u=Ae %" + Be’#* =Y, Ae77P* — Y_Bel®? (22)

with scalar amplitude coefficients A, B and non-symmetric charac-
teristic admittances Yy . The superindices TM or TE have been
dropped, since the theory applies to any eigenpolarization.

Consider a uniaxial omega slab of the thickness d, excited by a
plane linearly polarized wave which comes from an isotropic half space
z2<0:

ui'n.c - e—-jﬁ1z iz‘nc — Yluinc (23)

The propagation factor ; and the characteristic admittance Y, can
be found as special cases of (11) and (15), (16) by replacing the material
parameters of the slab with that of the isotropic half space. The total
transverse field components in the half space z < 0 we write, defining
the reflection coefficient R:

u=e P12 | ReiPrz j = yle—jfﬁz _ R)flejﬂlz (24)

Assume that the slab is backed by another isotropic half space z >
d or the structure is terminated with a boundary, behind which there
are no fields. In the transmission-line theory both types of termination
can be modelled by a load admittance Y;. At an interface with an
isotropic half space (or with another uniaxial bianisotropic half space
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as well), the equivalent load admittance equals to the characteristic
admittance of plane waves in the corresponding medium, see [20, 21].
In the half space 2 > d the fields are proportional to the transmission
coefficient T':

u = Te~7P2* i = Yau (25)

where > and Y, follow from (11) and (15), (16) after replacing the

material parameters by that of the medium filling the half space z > d.
Demanding the transverse fields to be continuous on the inter-

faces, one can determine the reflection and transmission coefficients:

(N =Y ) (Yo +Y) = (Vi + Y ) (Yo — Y, )e %P4
T+ Y ) (Yo + YD) — (Y1 - Y )(Yao — Y, )e2Pd

R (26)

2(Y_ + Y, )Yie78d

A A A A S A A L

T =

An alternative reflection formula can be obtained from (26) by chang-
ing the sign of (26) and by replacing the admittances with the cor-
responding impedances. Transmission formula in terms of impedances
follows from (27) after changing Y to Z and the index 1 to 2 in the
numerator. In the special case when d — oo or Y2 — Y, (the matched
load admittance) (26) gives the reflection coefficient at a junction which
coincides with that obtained in [19)].
For a slab on an ideally conducting surface with Yo — oo or.

Zy — 0 the reflection coefficient reads

_Yl - Y+ — (Yl + Y_)6_2jﬁd
T Yi4Yy - (Vi - Y )e%Ad

R,

_ (@& -24)Z 4 (2 +Z2.)Z, e %P0 o8)
A+ Z)Z_+ (2, — Z_)Z e %Pd

and for a slab backed by a magnetic wall (Y2 — 0 or Z; — o0) we
have
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Zy—Zy —(Zy+ Z_)e~%bd
Zy+ Zy— (21— Z_)e"%Pd

(M =Y )Y_ 4+ (Y14 Y)Y, e %P
T+ YY- + (Y - Y)Y, e%Pd

Rm:"_

(29)

As a check, one can easily see that with symmetric parameters Y_ =
Y., Z_ = Z, the above results simplify to the well-known formulas of
the conventional transmission-line theory. Multilayered structures can
be treated with the present technique as well, using the generalized
impedance transmission procedure discussed in [19].

4.  Analysis and Numerical Results

The novel uniaxial @ microstructures suggested and studied
above are expected to enhance interaction of linearly polarized elec-
tromagnetic waves with plane shields. Let us now examine the re-
flection and transmission formulas for layers of these composite ma-
terials in view of potential applications in low-reflecting screens or
radomes. Considering plane-wave reflection from an uniaxial omega
slab in air (Z; = Z3, Y1 = Y5 ) one can easily see that the reflection
coefficient (26) equals zero when the impedance Z; equals the free-
space impedance Z; (or, what is equivalent, Y = ¥;). This means
that the characteristic impedance for the waves traveling in the slab -
in the direction of the incident plane wave matches the impedance of
the waves in free space. Obviously, there is then no reflection on both
the interfaces. For the TM ~p01arxzed fields the equation Y, =Y; is
satisfied when

(ut — €, COS% ¢ — -El—sin2 qb) (30)

n

__J
2cos¢

and for the TFE -polarized fields the no-reflection condition reads

(,;t cos’ ¢ — €, + ;tl— sin? qb) (31)

n

__J
2cos ¢
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Here, ¢ is the incidence angle. For normal incidence ¢ =0 and both
(30) and (31) simplify to

K= % (ﬂt - ft) (32)
For layers filled with simple dielectrics (K = 0), the last relation
means u; = €;, which is the well-known condition for parameters of
non-reflecting dielectric slabs.
The transmission coefficient for a slab with the parameters satis-
fying (30) or (31) is an exponential function

T=¢~i0d (33)

We can conclude that for a slab with given arbitrary permittivity
parameters ¢, and any permeabilities u,, there exists a specific
value of the coupling parameter K , such that the reflection coefficient
is zero for any given polarization and an arbitrary incidence angle. The
effect is specific for materials modeled by non-symmetric transmission-
line equations. Indeed, for any symmetric admittances (30)—(32) reduce
to the known formulas for simple dielectrics with K =0.

Starting the analysis from the case of the normal incidence, let
us consider an example of a slab with magnetic losses, so that u; =
W —3ju" , but with no dielectric losses (€, is real). Assuming for simplic-
ity that the real part of the magnetic permeability and the dielectric
permittivity are equal, ¢, = ', the requirement (32) is settled when
K isreal and K = pu'"/2.

The effect of the extra material parameter K on the reflection
from a slab at normal incidence is shown in Fig. 1. The absolute value
of the reflection coefficient is presented as a function of the normal-
ized frequency (f — fo)/fo and the magnetic loss ratio u”/u’. The
slab thickness is d = A\g/5, where the free-space wavelength \¢ corre-
sponds to the frequency fo . The material parameters are u; = u' —ju”
with ¢/ =5, ¢ =5 and the coupling parameter K = 5. The reference
picture for the corresponding simple isotropic slab with K = 0 is given
in Fig. 1b. Obviously, there is no reflection from the simple isotropic
slab when the imaginary part of the magnetic permeability is zero, since
i/ = ¢ and the admittances match. With increasing magnetic losses in
the isotropic slab, transmission is decreasing but the admittances mis-
match and the reflection increases. For the uniaxial €2 layer with the
parameters taken in the present example, the input admittance match
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Figure 2. Absolute values of the transmission coefficient through a uniax-
ial omega slab in air as a function of the normalized frequency (f— fo)/ fo-
The slab thickness d = \o/5, the magnetic loss ratio p”/u’ = 2, ¢, = 5
and the coupling parameter K varies. Normal incidence.

that of free space when u” =2K (see (32)) or the magnetic loss ratio
p" /i’ = 2. This effect appears to be useful for potential application,
as it allows one to provide low reflection from a lossy layer when the
permittivity and permeability are not equal. The transmission coeffi-
cient can be either small if the slab is lossy or it can be close to unity
in the absolute value for a small loss ratio and (or) small thickness. For
extremely low frequencies, when (f — fo)/fo — —1,ie. f — 0 the
reflection is, of course, always zero.

Figure 2 displays the transmission coefficient at normal incidence
for an uniaxial Q slab in comparison with a simple isotropic lossy slab.
The parameters are the same as in Figure 1, with the magnetic loss
ratio p”/u’ = 2. The reflection coefficient for K = 5 is zero, and we
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Figure 3. Absolute values of the reflection coefficient from a uniaxial
omega slab in air as a function of the incidence angle. The material
parameters are y; = 5—310, un, = 5, €, = €, = 5, the normalized thickness
kod = 1.0 and K varies. {(a). T'M-polarization. (b). 7' E-polarization.
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Figure 4. Absolute values of the transmission coefficient through an uni-

axial omega slab in air as a function of the incidence angle. The parame-
ters are same as in Figure 3. (a). T M-polarization. (b). T E-polarization.
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Figure 5. Absolute values of the reflection coefficient for a metal screen
covered with a uniaxial omega slab (normal incidence). p; = 2-310, ¢ =
2, the coupling parameter K varies.

see that the transmission coefficient can be small as well, even for thin
slabs. For example, it is below 50 dB for the thickness d = Ao/5 (the
point where the normalized frequency equals zero). It can be observed
that the additional field interaction reduces transmission not only for
the special coupling parameter value (32).

Angular dependence of the reflection coefficient from omega slabs
in air is demonstrated in Fig. 3. The material parameters are again
the same as in Fig. 1 and the normalized thickness kod = 1.0. It is
seen that the reflection coefficient remains small in a wide range of the
incidence angles. Transmission properties of the same slab are illus-
trated by Fig. 4. Transmission decreases with the increasing coupling
parameter for all incidence angles and, naturally, converges to zero for
very oblique angles.
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Figure 6. Same coefficient as in Figure 5 as a function of the incidence
angle. The normalized slab thickness kod = 1.0, p,, = 2, ¢, = 2.
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Next we study reflection properties of the uniaxial omega layers
on an ideally conducting surface and on a magnetic screen. Reflection
from a boundary covered by a lossy layer can be reduced if, in analogy
with the previous case, the coming wave does not reflect from the air-
slab interface, but only from the boundary. In this case, i.e., when
Zy = Z4 , the reflected wave suffers attenuation due to losses in the
layer. Provided that (30) or (31) is hold, the reflection coefficient from
a metal-backed slab is

(Y} + Y. )e~26d

Re =~ v — Y_)e-2 (34)
and for a slab on a magnetic wall we find
—2jpd
R, = (Zr+2Z-)e (35)

T 22y — (21— Z_)e~%Pd

where the characteristic admittances for the TM - and TFE -polarized
waves traveling in the negative z-direction are

- Lo €npit — sin® ¢ - V to  pepncos

In Fig. 5 the reflection coefficient from a metal screen covered with
an ) slab is depicted as a function of the normalized thickness kod for
normal incidence. The permeability equals p; =2 — j10 and the per-
mittivity is € = 2. Curves are shown for several values of the coupling
parameter K . As is established by the above analysis, the reflection
becomes extremely small even for rather thin slabs, provided the con-
dition (32) holds. With the increasing frequency (i.e., the normalized
thickness kod ), the reflection coefficient for K = p”/2 sharply de-
creases. Also, for other values of the coupling parameter, reflection can
be reduced considerably. In contrast, for real but negative coupling
parameter, the reflection coefficient increases and the structure is a
nearly perfect reflector when K — —u”/2. The sign of the coupling
coefficient depends on the orientation of the wire loops with respect to
the z-axis direction.

Figure 6 shows the angular dependence of the reflection coeffi-
cient for the same structure and the same material parameter values
as in Fig. 5. The normalized thickness kod = 1.0. It is seen that the
absorption is increased in a wide range of the incidence angles.
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The effect of increasing absorption is well known for lossy chi-
ral composites [11-13]. It appears that the uniaxial omega structures
can probably offer more practical possibilities as compared with the
isotropic chiral materials. In the assumption that the material param-
eters are constants, the reflection coefficient can be small in extremely
wide frequency bands. Also, only one condition imposed on three ma-
terial parameters has to be satisfied to have a low level of reflection.

5. Conclusion

A new configuration of composite microwave materials has been
suggested, which offers novel possibilities in applications. Electromag-
netic properties of the material are described by uniaxial bianisotropic
constitutive relations. The general theory of eigenwaves in uniaxial
media has been addressed, and it has been established that the wave
phenomena can be modelled by reciprocal but non-symmetric scalar
transmission lines for any linearly polarized fields. The transmission-
line model leads to simple analytical expressions for reflection and
transmission coefficients for plane layers. The analysis reveals and the
numerical examples demonstrate possible prospective application. It
appears that the input impedance of a lossy layer on an ideally con-
ducting surface or in free space can be matched with the free-space
wave impedance by tuning the additional coupling parameter. The
impedance matching condition is frequency-independent (provided the
material parameter values can be assumed to be constants) and that
suggests a wide frequency band for prospective anti-reflection coverings
and antenna radomes.

In the numerical examples given here to demonstrate basic novel
features of the uniaxial omega materials we have assumed for simplicity
that the slabs have magnetic losses but the other two material param-
eters are real. In practice, all three parameters are complex for lossy
media, however, the impedance match requirement can be satisfied for
all complex parameters as well. Practical possibility of achieving the
desired values of the material parameters and their frequency depen-
dence have not been considered in the present study. Based on the
similarity of the physical processes of the field coupling in the omega
composites and in the chiral structures, one can expect that the num-
ber of particles and their sizes will be close to that in the chiral com-
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posites design, for the same degrees of chirality or omega coupling. In
the fabrication of the omega composites, the printed circuit technology
can be employed, since the omega structures comprise regular arrays
of plane conducting elements. Uniaxial composites can be realized as
multilayered structures.

We can also comment that it is not necessary to have a high
degree of additional coupling to design a low-reflecting layer. In the
given examples, one can compromise between the coupling parameter
value, the magnetic losses and the slab thickness. If the impedances
match, the thickness is essential for the transmission properties, but
not for the reflection. Comparing with the requirements known for
the chiral low-reflection screens, it seems easier to achieve the desired
effects with the omega composites, because in the chiral screens rather
high degree of chirality is required.
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