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1. Introduction

The scattering from open-ended metallic waveguide cavities is an
important subject in radar cross section (RCS) reduction and elec-
tromagnetic penetration/coupling studies, since this problem serves as
a simple model of duct structures such as jet engine intakes of air-
crafts and cracks occurring on surfaces of general complicated bodies.
There are a number of analysis methods for treating cavity diffraction
problems, but most of them do not rigorously take into account the
scattering effect arising from the entire exterior surface of the cavity.
In addition, the solutions obtained by these approaches become less
accurate when the size of the cavity tends to the low-frequency or the
high-frequency limit. In the previous papers [1-3], we have considered
a finite parallel-plate waveguide with a planar termination at the open
end as an example of simple two-dimensional cavity structures, and
solved the plane wave diffraction rigorously by means of the Wiener-
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Hopf technique. It has been verified that our final solution is uniformly
valid for arbitrary incidence and observation angles as well as for arbi-
trary cavity dimensions unless the cavity length is too small compared
with the wavelength.

In Part I [4] of this two-part paper, we have analyzed, as a gen-
eralization to the problem treated in [1-3], the E-polarized plane
wave diffraction by a two-dimensional parallel-plate waveguide cavity
with dielectric/ferrite loading using the Wiener-Hopf technique. Car-
rying out numerical computations on the RCS characteristics, it has
been shown that, for large cavities, significant RCS reduction can be
achieved by lossy material loading inside the cavity. In this second
part, the same diffraction problem will be considered for the case of
H polarization. Since the method of solution is again based on the
Wiener-Hopf technique and is similar to that employed for the E-
polarized case, only the main results will be summarized. Our final
solution for the field inside the cavity is expressed in terms of the
transmitted 7'M modes, whereas for the field outside the cavity, a far
field asymptotic expression is derived using the saddle point method.
We shall present representative numerical examples of the monostatic
RCS and the bistatic RCS for various physical parameters and discuss
the scattering characteristics of the cavity in detail. As in the E-
polarized case [4], it is confirmed that the RCS reduction is significant
for larger cavities with lossy material loading. We will also show by
comparing with the results in Part I that there are some differences on
the RCS characteristics depending on the incident polarization. Some
comparisons with a high-frequency technique are also included.

The time factor is assumed to be e~** and suppressed through-
out this paper.

2. Transformed Wave Equations

We consider the problem of diffraction of an H -polarized plane
wave by a parallel-plate waveguide cavity with dielectric/ferrite load-
ing as shown in Fig. 1, where the H polarization implies that the
incident magnetic field is parallel to the y-axis. The cavity plates are
assumed to be infinitely thin, perfectly conducting, and uniform in
the y-direction, and the material inside the cavity is characterized by
the relative permittivity €, and the relative permeability p,. In view
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Figure 1. Geometry of the parallel-plate waveguide cavity.

of the geometry and the characteristics of the incident field, this is a
two-dimensional problem.
Let the total magnetic field ¢*(z,z)[= H}(z, z)] be

¢'(z,2) = ¢'(z, 2) + ¢(z, 2), (1)
where ¢*(z,z) is the incident field of H polarization defined by
¢i(23, Z) — e—ik(:rsin 6, +zcosf,) (2)

for0 < 6o < 7/2, and k[= w(uoeo)'/?| is the free-space wavenumber.
The total field ¢*(z, 2) satisfies the Helmholtz equation:

[6%/02% + 6%/022 + u(z, z)e(z, 2)k?oHz, 2) = 0, (3)
where
1 outside the cavity,
we, 2) = K, inside the cavity, (4a)

_ [ 1 outside the cavity,
e(z,2) = e, inside the cavity. (40)

Once the solution of (3) has been determined, nonzero components of
the total electromagnetic fields are derived from

L i og
wege(z,2) 02 weye(z,z) Oz |

(Hy, B, E;) = [(bt, (5)
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For convenience of analysis, we assume that the medium is slightly
lossy, i.e., k = kj + ik with 0 < k2 < k;. The solution for real k is
obtained by letting ko — +0 at the end of analysis. It follows from
the radiation condition that ¢(z,z2) is O(e~kalzlcosfo) a5 |2| — oo.
Let us define the Fourier transform of the scattered field ¢(z,z) as

oo
¥(z,0) = 2m) 2 [ gla,2)e s, (©
—00
where a = Rea+ilm a(= o+i7). Then we see that ®(z, o) is regular

in the strip |7| < kycosfg of the complex a-plane and is bounded for
any « in the strip as |z] — oo. Introducing the Fourier integrals as

+o00

&, (z,0) = +(27)" /2 / o(z, z)e*F gz, (7a)
+L
L .

2(,0) =02 [ a0 ()
-L

it is found that ®4(z,a) and ®_(z,a) are regular in the upper half-
plane T > —kacosfp and the lower half-plane 7 < kacosflp, respec-
tively, whereas ®;(z,a) is an entire function. Using the notation as
given by (7a,b), we can express ®(z,a) as

®(z,a) = ¥(z,0) + ®,(z, ), (8)
where ' .

U(z,a) =e LV _(z,0) + e"’l‘\I/(+)(m, a), (9)

e—ikxsin N
V_(r,a) =%_(z, A, 1

_(z,0) _(z,0) + o —kcos0, (10a)

e—ikzsin 0,
= -B—

\I'(+)(m,a) +(:1:,a) Ba_kcoso(): (IOb)
tkL cos 6 —ikL cos 8,

A=E ° ¢ (11)

— B ="
(2m)/24’ (2m)'/24

The parentheses in the subscript of ¥(;)(z,a) defined by (10b)
imply that ¥ ,)(z,a) is regular in 7 > —kacosflp except at a simple
pole a = kcosbp.
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Let us now derive transformed wave equations by following a pro-
cedure similar to that developed in Part 1. For the region |z| > b, we
can show by taking the Fourier transform of the Helmholtz equation
for the scattered field that

(d?/dz?® — v¥)®(z,a) =0 (12)

holds for any « in the strip |7| < kacosfp, where v = (a® — k2)1/2.
We choose a proper branch for the double-valued function  such that
v reduces to —itk when a = 0. Equation (12) is the transformed wave
equation for |z| > b.

For the region |z|] < b, we first multiply both sides of the
Helmholtz equation for the scattered field by (27)~/2ei** and in-
tegrate with respect to z over the ranges —oo < z < —L and
L < z < oo. Then by taking into account the boundary condition
at z = £L, we derive that

(d*/dz® — ¥*)¥_(z, Q) = iag; () (13)
for 7 < ko cosfpy, and that
(®/dz® - ’72)‘1’(4.)(93, a) = &7 f(z) — iags(z) (14)
for 7 > —kgcosfy, with o # kcosfy, where

1/2 0¢*(z, L — 0)

f(z) = (2m)~ — (150)
gi(z) = (2m)"2¢4z, L 0), (15b)
92(z) = (2m)"2¢%(z, L). (15¢)

We also multiply both sides of the Helmholtz equation for the total
field by (2r)~1/2¢*** and integrate with respect to z over the range
—L < z < L. This gives, after making use of the boundary condition
at 2 = =+L,

(d°/dz® ~T*)®,(z,0) = e~ *Liagf (z) — €**[f(z) — iagy(z)] (16)

for all o, where T' = (o — k2)'/2 with k, = (ur€,)'/2k. The proper
branch for I' is chosen such that I' reduces to —ik, when «a = 0.
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Equations (13), (14), and (16) are the transformed wave equations for
|z| < b, where the unknown inhomogeneous terms have appeared due
to the medium discontinuities across z = +L.

3. Simultaneous Wiener-Hopf Equations

In this section, we shall formulate the problem in terms of the si-
multaneous Wiener-Hopf equations by imposing boundary conditions
appropriately. To this end, it is convenient to solve the transformed
wave equations (12)—(14) and (16) to derive a scattered field represen-
tation in the Fourier transform domain. First let us consider the region
|| > b. Since ®(z,a) is bounded as |z| — oo, the solution of (12) is
expressed as

—W'(b,a)y e "==Y for z > b,
®(z,0) = U'(—b,a)y~1e7@tY)  for z < —b (17

by taking into account the boundary condition for tangential electric
fields across £ = +b, where the prime denotes differentiation with
respect to z. Equation (17) gives a scattered field representation for
|z| > b.

Next we consider the region |z| < b. In view of the edge condi-
tion, it is seen that the unknown inhomogeneous terms f(z), g (z),
and gz(z) defined by (15a,b,c) are absolutely integrable over the
range |z| < b. We now expand these inhomogeneous terms into the
convergent Fourier cosine series as in

[o o]
1) =5 3 bnfucos G+ (180)
+ 1 + nw
gi(z) = ggangl,, cos 2r(z +), (18b)
1 nmw
92(2) = 5 > 8ngan €08 (@ + b) (18¢)
n=0

for |z| < b, where

b =1/2; b,=1 for n > 1. (19)
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Taking into account (18a,b,c) and following a procedure similar to
that developed in Part I, we arrive at the solutions of (13), (14), and
(16) with the result that

. cshy(z+b) ., ,  coshy(x—b)
V_(z,a) = V_(ba) ~ sinh 2vb V_(=b,a) v sinh 2vb
1=, i0g5,
P cos—(x +b), (20)
b = a + 7,
., cosh y(z + b) _ coshy(z — b)
V42, 0) = Vb a) v sinh 2vb »(=b0) 7 sinh 2vb
cq(a)
Z cos-———(x+b), (21)
n-—O a2 + 2
—mLzag + e“—"Lcn (a) nw
Ql(x’ a) Z 6 o2 + F% 0S8 2_b($ + b)a (22)
n—O

where

Y = —ik; Y = [(n7/2b)% — k?)1/2 for n>1, (23a)
Lo=—ik,; T,=[nr/20)2-k)Y? forn>1, (23b)

C:(a) = e:lfn — 10gan, c;(a) = fn — 109y (24)

According to the definition, ¥_(z,a) is regular in 7 < ks cos o
and ¥(4)(z,a) isregularin 7 > —kycosfp except for a simple pole at
a = kcosfp, whereas ®;(z,a) is an entire function. In particular, it
follows that (20), (21), and (22) tend to finite limits as & — —iYpm, iYm,
and +il';, with m = 0,1,2,---, respectively. Therefore, we deduce,
after some manipulations, that the Fourier coefficients f,,, glﬂ and go,
in (18a,b,c) are expressed as

—P.U,,(i7,) for odd n,
fo= (25)

PV +)(i'yn) for even n,
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_ -U_(-1iv,)/y, for odd n,
Sin = V_(-iv,)/y,  for even n,

ot = —-Qn(J'(+)(i'yn) for odd n,
In QnV4y(i7,)  for even n,

—RnI](+)(i7n) for odd n,
Jan = R,V (i7,)  for even n,

where
U_(a) = V. (b,0) + ¥_(-b,a),

Upla) =4, (b, @) + ¥,y (=b,a),

V_(a) = V. (b,a) — ¥ (b, ),
Vin(@) = ¥y (b,0) — ¥y, (=b, ),

p — _&Tn 1 -4k
" &+ L+ pretTnl’
0. — 2, e~2lnL
" EVn+1n 14 pne_4F"L,
1 -4U L
R, = &, +e

&M+ T 1+ paeTal”

Pn = (Er’y‘n - Fn)/(er’)’n + Fn)

Koshikawa et al.

(26a)

(260)

(27)

(28a)
(28b)

(29a)

(29b)

(30a)

(30b)

(30c)

(31)

Substituting (20) and (21) into (9) and using (8) and (22), a scattered

field representation for |z| < b will be derived.

Summarizing the above results, an explicit expression for ®(z, )

is given by
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d(z, a)
[~V (b,a)y~le~"(="0) for z>0b,
V/(—b, o)y~ le7(=+b) for x < —b,
hy(z + b coshy(z —b
(b, ) SRUT D) _ g1 _p, o 08 (z —b)
’ sinh 2 ! sinh 2
= ¢ 1 o ! e”i"giagl_ +ei"LcI(a; n7r7
_526n az"+ 2 cos Eg(x+b)
n=0 n
oo —iaL, _+ ol —
1 e iagi, + € e () nm
+5§6n 1T cos o (x+b) for |z|<b.

(32)

Setting = b+ 0 and —b+£ 0 in (32) and taking into account the
boundary condition for tangential magnetic fields across z = +b with

|2| > L, we derive that
e—iaLU_(a) + eiaLU(+)(a)
M(a)

Ji(a) = -

2 i e~ *Liagl, +eelct(a)
b a?+ 92

)

L2 i e~Liagf + el (a)
b a? +172

for |7| < k2 cosfy, where
JH(a) = Jy (b, @) = Jy (=b, ),
Jig(a) = Jl (b’ Q’) + Jl (_b) a))

(35a)
(35b)
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Jy(£ba) = ®,(£b+0,a) — P (£bF 0, ), (36)
M(a) = ve~"® cosh b, N(a) = ye~"sinhvb. (37)

Equations (33) and (34) are the simultaneous Wiener-Hopf equations
satisfied by the unknown spectral functions, where an infinite number
of unknowns are also involved.

4. Exact and Approximate Solutions

According to the standard literature [5-7], the kernel functions
M(a) and N(o) defined by (37) are factorized as follows:

M(a) = M (a)M_(a) = M ()M (-a), (38a)
N(a) = N (a)N_(a) = N (a)N,(-a), (38b)

where

M+(a) (COS kb)1/2 131r/4(k+a)l/2 exp(’l«')'b In a — 7)

k
exp[ Wb(l—C+1n2—kb+z )]

o0
H (1 + 'i ) g2iab/nm (39a)
n

n=1,odd

—(kqi 1/2 jin/2 Wb, a—vy @
N (o) =(ksinkb) /e exp(7r In X )(1+i70>

- ex p[ b(l—C+lnE+z-—)]

)
H (1 + _C_'f_) e2iab/nw (39b)
In

n=2,even

In (39a,b),C(= 0.57721566---) is Euler’s constant. It is seen from
(38a,b) and (39a,b) that the split functions Mi() and Ni(a) are
regular and nonzero in 7 % Fko, and show the asymptotic behavior

My(a) ~ —(Fia/2)?,  Ny(e) ~ —(Fia/2)'/* (40
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as a — oo with 7 2 Fka.

We multiply both sides of (33) and (34) by e***lMi(a) and
et L' N, (a), respectively, and apply the decomposition procedure.
Omitting the whole details, we arrive at the following result:

U-(@) =HM. () [b(a Ak J'El)/(f )
_ fi E(’%} , (41a)
Uia(@) ="M () [‘ e _i';os %) :1)/(2& )
-3t ] ()
V_(a) =b'*N_(a) [_ b(a —Il:l:z:os 05) + 15bll)/(:[)
et -
Vin(@) =b/2N, () [b(a ——iz:os 65) + ‘szl)/(za)
-§ ] (
where -4, L
5, = _%, (43)

= (bi'YO)_l; Ay, = (bi’hn-—s)_l for n > 2, (440')
by=(bin)™"  bu=(biTamo)™! forn>2,  (44b)

pr=b2M(1%); Do =b"2M, (i7an_3)  for n 22, (450)
0 =N, (i%); ¢ =bY2N (i13n_g) for n>2, (45b)



438 Koshikawa et al.

uy =U_(—i); Up = U_(—17p0_3) for n>2, (46a)
uf =Uy(%);  wf = Uy (iYon—3)  for n>2, (46b)
v; = V_(—i); Uy = V_(~173n_2) for n>2, (47aq)
of =Viy(in)  vf =Vy(ivmy)  for n>2,  (47h)
A = 2 A’ cos(kbsin 6,) __ 2B’ cos(kbsin 6,) (48)
Y b/2M_(kcosf,)’ Y b1/2M  (kcos b))’
A = 21 A’ sin(kbsin 6,)) _ 2iB’sin(kbsin §,) (49)
Y bY2N_(kcosb,)’ " bY2N, (kcosf,) ’
k+ico M_(B)U, (B
JO(a) = — / erow MO0 () (50a)
mi Jk (B2 = k2)1/2(B - a)
1 [k M, (B)U_(-B)
(2) - — 21.ﬁL
1) == [ oy T CED
1 ki NL(B)V (B)
(1) - 2iL (+)
IP() = = /k s (610
1 [k, (ﬁ)V ( )
A _ Fbsin foekLcoso g _ _ kbsin fye kL cos, (52)
- (2m)1/2 ’ - (2m)1/2

In (50a,b) and (5la,b), a branch cut for (8% — k2)!/2 has been
chosen as a straight line parallel to the imaginary axis, extending from
B = k to infinity in the upper half-plane. The contour for these infi-
nite integrals is a straight path on the right-hand side of the branch
cut. Equations (41a,b) and (42a,b) are the formal solution to the
Wiener-Hopf equations (33) and (34), where the infinite series with
the unknowns uf for n =2,3,4,--- and v¥ for n =1,2,3,---, as
well as the branch-cut integrals J,(Ll)(a),J,(f)(a), 1Sl)(a), and J,S2)(a)
with unknown integrands, are involved.
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Employing rigorous asymptotics similar to those for the E-
polarized case treated in Part I, approximate expressions of (41la,b)
and (42a,b) are obtained as follows:

Au
b(a — kcos 6,)

2B’ cos(kbsin ;)
+ 0) | ¢(—
+ a’lpl{ [u’l + kb(l — COS 00) :|£( a)

U_(a) = b"*M_(a) (

/
+ 211 L cos(kbsin 6y)x(—a, —k cos 00)}
Nl — ”
— —mim’n K(‘)S a 53a
; o iy ) W (@) ], (53a)

B,
b(a — kcos 6,)

ranf [ + et

Upgy () ~ 0/2M () (’

!

2A
+

A L cos(kbsin 6)x(a, k cos ;) }

Kop— 3anpn 2) (2
_K®s , 53b
Z ‘ba+in, ) "N(a)> (530)

A
b(a — k cos 6,)

2iB’sin(kbsin ;)
+_ o) [¢¢_
+ blql { [vl kb(l — COS 00) ]5( a)

V_(a) =~ b/2N_(a) (—

_ 2iB'L
b

sin(kbsin 6y) x(—a, —k cos 6,) }

bon—20n0nVn (1)g(1)
-K,’S,n(a 54
Zb(a Mors) ~(@) |, (54a)

\



440 Koshikawa et al.

B

v

~ pl/2 __ B
Viwy(@) = 07N (a) (b(a — kcosf,)

— 2iA'sin(kbsin 6
+b1"1{ [”1 " kb1 o 00)0)]5(")

_ 21A'L
b

sin(kbsin 6y)x(a, k cos 00)}

62n—2K’2n—2bnqn (2) o2
— - K“S )
Z b(a + 7’727;—2) v vN(a)

where )
(ICL) I/Zez(2kL—31r/4)

£(a) = I'y[1/2, -2i(a + k) L],
£(a) — €(B)
x(a, B) = “@-BL "
(1) N (e
Sv(@) = 2 Ha i’

2) N Kon—3(0Yan—_3) /2
Sun(@) = ,‘Z,:v bl +179,_3)

)

(1) )_Z (bYon - 2) /6
b

(a - 1'7211 2)

(2)( ) i K’2n—2(b'72n—2)—1/2_y.
= bo+ivy, o)

(54b)

(55)

(56)

(57a)

(57b)

(58a)

(58b)

In (55), T'1(+,) is the generalized gamma function (2, 8] defined by

o0 tu—-le—t
T ,U) = —dt
m(®,) /0 t+o)m

(59)

for Reu > 0, Jv| > 0, |argv| < m, and positive integer m. In the
derivation of (53a,b) and (54a,b), it has been taken into account
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that, in view of Meixner’s edge condition [6, 9], the unknowns uZ and
vy defined by (46a,b) and (47a,b) show the asymptotic behavior

uy ~ =2 5K (b1p0g) "3, wt ~ —2Y%KP (byyn_a)~,  (60a)
v ~ =2Y2K D by, _p) "3, v~ _21/2iKz(;2)(b72n—2)_" (600b)

as n — 0o, where

v=nv,+1,v), Rer>0 (61)
with
1l 1 s =1 _1 1 1-¢
Yy = ~cos W+ D) Ve = —cos _2(1+€r), (62)
a for Rea < Rebd,
M%0) =14 for Rea > Reb. (63)

In (62), the inverse cosine functions should be interpreted as the
principal value. Equations (53a,b) and (54a,b) give the approxi-
mate solution to the Wiener-Hopf equations (33) and (34), and they
hold uniformly in 6o for large positive integer N and large |k|L.

The unknowns ut and vE for n = 1,2,3,---,N — 1 as well as

K,(‘l),K,(,z), ,(,1), and K2 are involved in (53a,b) and (54a,b), which
can be determined with high accuracy by solving appropriate matrix
equations numerically [4]. It should be noted that the above approxi-
mate solution is valid over wide frequency range as long as the cavity
depth 2L is not too small compared with the wavelength.

5. Scattered Field

The scattered field can be derived by taking the inverse Fourier
transform of (32) according to the formula:

00+41C

&z, 2) = (2m)~1/2 / B(z, a)e—* da, (64)

—00+ic

where |c| < kacosf. First let us consider the field inside the cavity.
Substituting the field representation for |z| < b in (32) to (64) and
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evaluating the resultant integral with the aid of (25),(26a,b), and
(27), we derive, after some manipulations, that

((I), z) - _ e—ik(zsin 0,+zcosb,)

+ Z:Tn cos % 5 (:1: +b)coshT, (2 + L), (65)

n=

where
(27r)‘/2 J2 U, (i) for odd n,

(2m)/26, %ﬂ V(i)  for even n.

n

(66)

In (65), the first term exactly cancels the incident field defined by (2),
and the second term represents the transmitted TM modes coupling
into the cavity. In view of (46b) and (47b), we see that Ty, To,—_3,
and Th,_» with n =2,3,4,--- are expressed using vy, u;}, and v},
respectively.

Next we shall consider the field outside the cavity and derive the
scattered far field. The region outside the cavity includes |z| > L
with |z| < b, but this region is of less interest in the far field from a
practical point of view. Therefore, the derivation of the scattered far
field only for |z| > b will be discussed in the following. Using the field
representation for |z| > b in (32) and evaluating its inverse Fourier
transform asymptotically with the aid of the saddle point method, the
scattered far field is found to be

! Fikbsin 0 ei(kp—31r/4)
o(p,0) ~ =¥ (b, —k cos f)e W

for x > +b as kp — 0o, where (p,6) is the polar coordinate defined
by z = psinf,z = pcosf for 0 < |0 < w. In (67), ¥'(%b,a) can be
expressed as

(67)

niar U= (@ F V(@) | ior U (@) £ V(1) (@)

! =
V'(tho)=e 3 3

(68)

by making use of (9), (28a,b), and (29a,b). Although the analysis has
been carried out by assuming 0 < 6y < 7/2, the results remain valid
for arbitrary 6o.
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6. Numerical Results and Discussion

In this section, we shall present numerical examples of the monos-
tatic RCS and the bistatic RCS to discuss the far field scattering char-
acteristics of the cavity in detail. Numerical results presented below are
all based on the scattered far field expression given by (67) together
with (68). We have used the approximate expressions as derived in
(53a,b) and (54a,b) for computation of U-(a), Uyy(@), V_(a), and
Vi+)(a) involved in (68). Since the problem under consideration is of
the two-dimensional scattering, the RCS per unit length is defined by

o = lim (27rp —I¢—|2-> (69)

p—00 |¢*[2
For real k, (69) is simplified using (67) as
o = AW (&b, —k cos 9)|? (70)

for & 2 0 with X being the free-space wavelength. Figures 2-4 and
5-7 show numerical results of the monostatic RCS versus the inci-
dence angle 6y and the bistatic RCS versus the observation angle 0,
respectively, where the values of o/\ are plotted in decibels [dB] by
computing 10log,q0o/A. As in the E -polarized case treated in Part I
[4], the incidence angle 6y has been fixed as 60° in the bistatic RCS
computations, and the ratio L/b is taken to be 1.0, 2.0, and 3.0. For
each L/b, numerical computations have been carried out by choosing
three different values of the cavity opening as 2b = ), 5A, and 10).
The ferrite with &, = 2.5 +i1.25 and p, = 1.6 + 0.8 [10] has been
taken as an example of lossy materials, and the previous results for
empty cavities [3] have been added by dashed lines to investigate the
effect of material loading inside the cavity.

From Figs. 2-4, we observe that, as in the E -polarized case, there
are noticeable peaks at fo = 90° and 180° in all examples which are
due to the specular reflection from the sideplate surface at z = b+ 0
and from the endplate surface at z = —L — 0, respectively. The other
common feature between the E and the H polarization is that, the
RCS characteristics for both empty and loaded cavities show nearly
identical features over the range 90° < 6 < 180°, whereas there is
obviously a difference in the scattering characteristics over the range
0° < 6o < 90° depending on the material inside the cavity. Hence, it
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is confirmed that when the cavity aperture is visible (invisible) from
the source point, main contributions to the backscattered far field
arise from the interior (exterior) features of the cavity structure. In
particular, for cavities of 2b = 5\ and 10\ with no material load-
ing, the monostatic RCS exhibits fairly large values within the range
0° < 6y < 70° due to the interior irradiation, whereas the irradiation is
reduced for the case of material loading. It is also noted that this RCS
reduction is significant for larger cavities as in the E polarization. Let
us now make comparisons of the monostatic RCS between the E and
the H polarization in some more detail, and investigate the difference
on the backscattering characteristics due to the incident polarization.
First we consider the region 90° < @y < 180° where the cavity aperture
is invisible from the source point. In this region, main contributions to
the far field backscattering will be edge-diffracted fields except in the
neighborhood of 6y = 90° and 180°. Comparing the RCS curves over
90° < 6p < 180° in Figs. 2-4 for the H polarization with those in
Figs. 1.4-1.6 (prefix denotes Part I) for the E polarization, we see that
the backscattering characteristics for the E and the H polarization
are different from each other in all numerical examples. In particular,
the monostatic RCS for the H polarization oscillates rapidly in com-
parison to the E -polarized case. This difference is due to the fact that
the effect of edge diffraction depends explicitly on the incident polar-
ization. Next we shall consider the region 0° < 6y < 90° where the
cavity aperture is visible from the incident direction. In this region, the
interior irradiation is dominant compared to the edge-diffracted fields.
Comparing the RCS characteristics over 0° < 6p < 90° between the
E and the H polarization, we see that if the cavity dimensions are
small as in Figs. 2a, 3a, 4a, 1.4a, 1.5a, and 1.6a, there is a difference
depending on the incident polarization. It is interesting to note from
the figures that the RCS reduction near 6y = 0° for loaded cavities
with 2b = A is more significant in the H -polarized case. On the other
hand, the results for both polarizations over 0° < fy < 90° show sim-
ilar features with an increase of the cavity opening, as may be seen
from Figs. 2c, 3c, 4c, I.4c, 1.5¢c, and 1.6c.

From Figs. 5-7, it is seen that in all numerical examples, the
bistatic RCS shows the largest and the second largest values along the
incident and reflected shadow boundaries at # = —120° and 6 = 120°,
respectively, as expected. Comparing the RCS curves for empty cavities
with those for loaded cavities, the effect of material loading inside the
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cavity is clearly seen over 0| < 90°, as in the E polarization, and the
RCS is reduced for loaded cavities. This is because, the cavity aperture
is then visible from the observation point and the interior features of
the cavity affect explicitly the far field bistatic scattering. On compar-
ing the results for loaded cavities of 2b = 5\ and 10\ in Figs. 5-7
with those in Figs. 1.7-1.9 generated for the E -polarized case, we see
that the RCS reduction due to material loading for negative 6 is more
significant in the H polarization. As regards the characteristics over
the range 110° < |#| < 180°, it has been pointed out in Part I that the
bistatic RCS for both empty and loaded cavities shows close features in
the E polarization. For the H -polarized case, however, there appear
some differences over that range depending on the material inside the
cavity. Therefore, it is inferred that for the H polarization, a differ-
ence on the interior features of the cavity affects the far field bistatic
scattering even in the region where the cavity aperture is invisible from
the observer.

We shall now make some comparisons with the results due to a
high-frequency technique. In Figs. 8 and 9, the present Wiener-Hopf
solution is compared with the results generated by Burkholder [11]
using the hybrid asymptotic-modal approach together with the geo-
metrical theory of diffraction (GTD), where solid lines and dots de-
note the Wiener-Hopf results and Burkholder’s results, respectively.
As mentioned in Part I, Burkholder applied the hybrid asymptotic-
modal approach for the interior scattering and the first order GTD
for the exterior scattering due to the leading edges at z = L and
the right-angled back corners at z = —L. In addition, he uses the
half-plane diffraction coefficient approximately to find the scattering
effect from the leading edges of loaded cavities. It is noted from Fig.
8 for empty cavities that Burkholder’s results agree very well with the
present Wiener-Hopf solution over the whole range shown in the fig-
ures. Comparing the results in Fig. 8 with those in Fig. 1.10, we see
that the agreement is better in the H -polarized case. It is also found
from Fig. 9 that, although Burkholder accounts for the diffraction by
the leading edges approximately for loaded cavities, his results are still
in reasonably good agreement with our rigorous Wiener-Hopf solution.
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Figure 2a. Monostatic RCS o/ [dB] for L/b = 1.0, 2b = . Solid lines
and dashed lines denote the results for a material-loaded cavity with
€, = 2.5+ 11.25, ur = 1.6 4+ 0.8 and an empty cavity, respectively.
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Figure 2b. Monostatic RCS o/\ [dB] for L/b = 1.0, 2b = 5). Other
particulars are the same as in Fig. 2a.
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Figure 2c. Monostatic RCS o/X [dB] for L/b = 1.0, 2b = 10\. Other
particulars are the same as in Fig. 2a.
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Figure 3a. Monostatic RCS o/ [dB] for L/b = 2.0, 2b = ). Other par-
ticulars are the same as in Fig. 2a.
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Figure 3b. Monostatic RCS o/A [dB] for L/b = 2.0,2b = 5\. Other
particulars are the same as in Fig. 2a.
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Figure 3c. Monostatic RCS o/ [dB] for L/b = 2.0, 2b = 10)\. Other
particulars are the same as in Fig. 2a.
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Figure 4a. Monostatic RCS o/\ [dB] for L/b = 3.0, 2b = \. Other par-

ticulars are the same as in Fig. 2a.
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Figure 4c. Monostatic RCS o/) [dB] for L/b = 3.0, 2b = 10)\. Other
particulars are the same as in Fig. 2a.
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lines and dashed lines denote the results for a material-loaded cavity
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Figure 5b. Bistatic RCS o/ [dB] for L/b = 1.0, 2b = 5], 6y = 60°. Other
particulars are the same as in Fig. 5a.
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Figure 6a. Bistatic RCS o/\ [dB] for L/b = 2.0, 2b = ), 6y = 60°. Other
particulars are the same as in Fig. 5a.
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Figure 8b. Monostatic RCS o/\ [dB] of an empty cavity with L/b =
1.0, 2b = 10X and its comparison with Burkholder [11]. Other particulars
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Figure 9b. Monostatic RCS o/) [dB] of a material-loaded cavity with
L/b=1.0,2b = 10), ¢, = 2.5+ i1.25, 4 = 1.6 + 0.8 and its comparison
with Burkholder [11]. Other particulars are the same as in Fig. 8a.
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7.  Conclusions

In this second part of a two-part paper, we have analyzed rigor-
ously the plane wave diffraction by a parallel-plate waveguide cavity
with dielectric/ferrite loading for the H polarization using the Wiener-
Hopf technique. Unlike most of the other existing methods, the Wiener-
Hopf technique takes into account the edge condition rigorously and
incorporates all the possible effects of the scattering from the interior
and the exterior of the cavity. Hence, our final approximate solution
presented in this paper is uniformly valid in incidence and observation
angles as well as in cavity dimensions unless the cavity depth is too
small in comparison to the wavelength. Based on these results, we have
carried out numerical computations and given representative numerical
examples on the monostatic RCS and the bistatic RCS to discuss the
scattering characteristics of the cavity in detail. Some remarks on the
polarization difference have also been given by comparing the results
with those obtained in Part I for the E -polarized case. The results
have also been compared with a high-frequency technique.
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