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1. Introduction

Coupled-mode theory (CMT) has had a lengthy and diverse de-
velopment. It was initially introduced in the early 1950’s for microwave
devices, and latter applied to optical devices in the early 1970’s. The
theory’s appeal was its usefulness in analyzing devices and predict-
ing fundamental characteristics by simple analytic means, tractable
to computational devices of the time. Today, as computer power has
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increased almost exponentially, the usefulness of CMT has not dimin-
ished. Instead, it has become an integral part of the whole design pro-
cess. This success has resulted from the theory’s wide applicability,
intuitive feel, and often surprising accuracy, especially when one con-
siders the simplicity of the governing equations. It is perhaps one of
a handful of ’synthesis’ tools, since unlike numerical schemes which
are 'analysis’ by nature, the possibility always exists for inverting the
coupling equations and solving for waveguide parameters given some
desired response.

The essence of coupled-mode theory is clear; one treats the com-
posite or compound waveguiding structure as a collection of simpler
waveguides, with the modes associated with each individual (compo-
nent) waveguide being perturbed by the presense of the others or any
additional nonuniformity. These perturbations lead to coupling and
exchange of power among the guided modes. Since we are ultimately
interested in the manipulation of a particular guided mode, rather than
the whole compound field, this coupling of modes formalism represents
a rather appealing conceptual framework.

In its rigorous derivations, coupled-mode theory is a restatement
of Maxwell’s equations as long as all the boundary conditions can
be satisfied, and is hence exact. However, it is always the case that
only a finite number of expansion modes are used, and in this respect
coupled-mode theory is an approximate approach. This compromise
in rigorousness is well compensated for in a number of respects: (i)
It is very intuitive and insightful. The theory interprets the device
physics through coupling coefficients, which clearly show their depen-
dency on the selection of device geometry. This leads to predictable
and exploitable power transfer characteristics; (ii) It allows for quick
feasibilities studies and the demonstration of possible new principles.
It also gives a starting point to which other more rigorous methods
(detailed in later chapters) would then be employed to fine tune pa-
rameters; (iii) Although not exact, the solution often tend to be quite
accurate, and the accuracy sometimes improved by a better selection of
known ’trial solutions’. Altogether, the theory can be said to ’pick-up’
salient power transfer characteristics with a measure of reliability.

In the following sections the nonorthogonal coupled-mode theory
(NCMT) is developed in a rigorous fashion as a general framework
which is subsequently applied to various coupling scenarios. These in-
clude the parallel coupler (directional coupler), grating-assisted



219

coupling, and coupling induced by changes of the waveguide separation
(tapering). As a separate issue, the need to account for the birefrin-
gence induced by an adjacent waveguide is discussed. In all cases the
structures are assumed to be lossless and isotropic (with extensions to
be highlighted), but otherwise of arbitrary transverse shape.

The goal in the following sections will be to establish a set of
equations governing the evolution of an arbitrary number of modes,
each which is coupled through various possible mechanisms. In matrix
form, this will have the appearance

pla- —jHA — jKA — FA
dz

where A represents a vector containing the amplitudes of the modes
in the system, P is a power matrix, H is a matrix that governs self
and evanescent coupling, K will represent coupling due to periodic
grating perturbations, and F is due to taper induced coupling.

Before embarking on the analysis, the development of the coupled-
mode theory is traced from its origins in microwave applications in the
early 1950’s, through its evolutionary paths, extensions and problems,
and crediting the advancements made by the many contributors who
have pioneered the development of the various formulations.

1.1 Historical Review.

The concept of mode coupling in electromagnetics was first de-
veloped by Pierce [1] in 1954 for applications involving traveling-wave
tubes. In the same year Miller [2] introduced a coupled-mode theory
for the description of microwave waveguides and passive devices. The
theory was soon generalized by Louisell [3] to treat tapered waveg-
uide structures, where the coupling coefficients depend on the propa-
gation distance. The early formulations were developed on the basis of
power conservation arguments and were rather heuristic. More rigorous
formulations of the coupled-mode equations were later established by
Schelkonof [4] using a mode expansion, and Haus [5] using a variational
principle.

The coupled-mode theory for optical waveguides was developed by
Snyder [6], Marcuse [7], Yariv (8], and Kogelnik[9] in the early 1970’s.
It has since been applied to a vast number of guided wave, optoelec-
tronic, and optical fiber devices, such as, directional couplers made of
thin film and channel waveguides[10-12], fiber couplers [13], distributed
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feedback lasers [14], distributed Bragg reflectors [15], grating coupled
waveguides [16], nonparallel structures [17], polarization rotation [18],
and guide mode to radiation mode coupling [19]. It has also been ex-
tended to describe coupling induced by nonlinear material response
such as, harmonic generation in waveguides [20], modulation instabil-
ity [21] in fibers, and nonlinear couplers [22]. There are also several
excellent reference books available on the subject [23-29].

The analysis of coupled-waveguide systems by the conventional
orthogonal coupled-mode theory (OCMT) was based almost exclu-
sively on the modes of the individual or uncoupled waveguides. Once
these waveguide modes, i.e., their propagation constants and field pat-
terns are determined, the amplitudes of the modes in the coupled-
waveguide systems are governed by the coupled-mode equations. The
solutions of the coupled-mode equations describe wave propagation and
coupling in the coupled waveguide system. Together with the trans-
verse field distribution, the coupled-mode analysis provides a simple,
intuitive, yet rigorous description of the electromagnetic wave propa-
gation and interaction in a coupled-waveguide system.

A number of approximations are assumed in the formulations and
often the solutions of the coupled-mode equations. One of the assump-
tions in the conventional OCMT, is that the waveguide modes are
orthogonal to each other. This approximation was considered to be ac-
ceptable and taken for granted until Hardy and Streifer [30] in 1986 sug-
gested a modified coupled-mode formulation in which the nonorthog-
onality was considered. This new nonorthogonal coupled-mode theory
was shown to yield more accurate dispersion curves and field patterns
for the composite modes (or normal modes) of the parallel coupled
waveguides. In their original paper, Hardy and Streifer did not establish
the self-consistency of their formulations by demonstrating power con-
servation for a lossless system. A self-consistent nonorthogonal coupled-
mode formulation for the parallel coupled-waveguide system was later
developed by Haus and coworkers using a variational principle [31},
by Chuang using the reciprocity theorem [32], and also by Hardy and
Streifer through reformulation [33]. There were some minor discrep-
ancies among the various formulations advanced by different groups
[31-33]. These differences were examined by Vassello [34] and shown
to be subtle theoretically, but of little practical significance.

In the course of the development, criticism was raised by Snyder
and coworkers about the validity and accuracy of the new nonorthogo-
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nal CMT. In a series of papers [35,36], they showed that the nonorthog-
onal formulations could lead to erroneous results for the coupling length
of the TM modes of parallel slabs when the index discontinuity is large.
The origin of the error is apparent in this case since the waveguide
modes used as the trial solution in the coupled-mode theory are sub-
ject to significant error when the index steps are large. However, they
also demonstrated that the conventional orthogonal coupled-mode the-
ory based on the same waveguide modes more accurately predicted the
coupling length for the case of large index differences. This finding was
somewhat unexpected, and triggered a series of debates in the field
[35-43)]. It was later resolved by Haus, Huang and Snyder [44].

Despite the controversies, the nonorthogonal CMT attracted much
attention and was applied to a range of optical guided-wave devices
based on coupled-waveguide structures. Simplified scalar versions were
advanced [45-50]. Formulations for multiwaveguide and/or multimode
structures [51-55], anisotropic media [56-58], periodic grating struc-
tures [59-67], tapered structures [68-75] and nonlinear couplers [76]
were developed. Applications to various directional couplers in inte-
grated and fiber optics [77-82] were carried out. Some experimental
work by Marcatili and coworkers [83], and Syms and coworkers [84]
were also published and their findings appeared to support the merit
of the nonorthogonal CMT.

2. The Parallel Directional Coupler

The directional coupler composed of two (or more) arbitrarily
shaped, but otherwise uniformly parallel waveguides placed in close
proximity, represents a fundamental component or building block of a
large class of devices. Theoretically, the parallel coupler may be treated
by two approaches, the normal-mode approach, or the coupled-mode
theory. In the normal mode approach the exact modes of the compound
structure are obtained. Since the normal modes do not exchange power
over the length of the coupler, the situation is reduced to an interface
problem: The input field excites a unique combination of normal modes
at the input interface, these modes propagate uncoupled along the
structure, and combine vectorially at the output interface, exciting the
mode of the output waveguide in a unique fashion.
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Figure 1. A schematic diagram of a uniform directional coupler.

Alternatively, the coupled-mode theory interprets the situation as
a coupling between the component waveguide modes. This interpreta-
tion is intuitively advantageous, since the coupling mechanisms which
gives rise to the different power and spectral characteristics are em-
bodied explicitly in the coupling coefficients. A study of the coupling
coefficients may thus lead to a deeper understanding of the factors
leading to various device responses.

In this section the coupled-mode equations for the vector fields are
rigorously formulated through a variational principle. The formulations
are valid for linear and lossless waveguides of arbitrary cross sectional
shape. The parallel slab coupler as shown in Fig. 1 will however, serve
as our heuristic coupled mode device, since the exact modes are easily
computed. For more complex waveguide shapes, one may calculate the
mode profiles numerically, and employ the coupled-mode theory to
analyze the coupling process along the coupler length.

2.1 A Variational Principle for the Propagation Constant.

Consider a lossless optical waveguide structure with an index that
is a function of the transverse coordinates only. Maxwell’s equations
(with implied time dependence e’“!) for the structure can be written
as

Vi X E + jwpoH = A\Z X E, (1a)

Vi x H— jweE = Xz x H, (1b)
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where e(z,y) is the dielectric constant of the medium and

~0 .0
Vt—a:a;+y5y—. (2)

Equations (1) may be generalized to anisotropic media by replacing the
dielectric constant € by a dielectric tensor. Multiply (1a) by H*, (1b)
by E*, subtract and integrate the result over the entire cross section.
Solving for A one obtains [31]

A= / (H' - (Vy X E + jwiioH) — E* - (V; x H — jweE)]da
-1
x{/[ExH*+E*xH]-Eda} 3)

Expression (3) can be shown to be stationary if both n x E or nx H
are continuous, where n is the unit normal vector to the boundaries
across index discontinuities, and nxE or nx H vanish on an external
boundary or at infinity.

2.2 Coupling of Modes Derived from the Variational Principle

The coupled mode equations will emerge from (3) when one sub-
stitutes for E and H a suitable set of trial solutions. The trial solu-
tion typically used is the superposition of the modes of the component
waveguides

N

E =) a2ei(z,y), (4a)
i=1
N

H= Za’i(z)hi(ma y)) (4b)
i=1

where a; are the modal amplitudes and e; and h; are the total electric
and magnetic fields of the ¢ th individual guide satisfying the following
equations,

Vi X e; + jwuoh; = jB3iZ x e, (5a)

Vt X h,' -jwe,-e,' = ]B{‘i X hi. (5b)
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Here, €; = n? is the dielectric constant distribution that defines the
profile of the ith waveguide. If the waveguides are weakly guiding, the
scalar modes may be used as the trial solutions [45-50].

At this point there may a be number of arbitrary ways in which
the compound structure is decomposed into the component waveg-
uides. For example, Fig. 2 shows two choices for the ¢; distributions
of a two guide coupler. For practical considerations, one would chose
the distribution that reproduces the input and output waveguides to
the coupler.

n
(2)
\
e
(b)
A
nD
\
n(®

(c)

Figure 2. Index profile for a uniform slab coupler n in (a), with two
choices for the individual waveguide profiles n(*) in (b) and (c).
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By substituting (5) into the variational expression (3), one obtains
for the system propagation constant

* .. -
Zj a; Hija;

A=jB=j , 6
o= 2259 Pijas (©)
where
Hij = By B; + Kij, (7)
Py =7 [(el xhy+e; xhi)-2da @
1

The optimum value of § under the assumed trial solution is ob-
tained by extremimizing (6) by differentiating with respect to a} or
aj,

JBY  Pja;j =3 Hiaj. (10)
i i

The coupled mode equations result when one associates —j B with the
derivative of an assumed spatial dependence e~7#%. With this replace-
ment (10) becomes

da; .
Zpijd—; =—J ZHijafj (11a),
J j
or in matrix form p
P—A = —jHA. 115
P j (11b)

P is seen to be the power matrix associated with the waveguide modes,
with the off-diagonal terms representing the cross-power arising from
mode nonorthogonality. The matrix H is the overall (Hermitian) cou-
pling matrix, with the terms ;; representing the evanescent or tunnel
coupling due to the proximity of adjacent waveguides. The preceding
derivation indicates that the coupled-mode equations result from an
optimization by applying the variational principle. In this sense, the
solutions to the equations represent the best possible solutions to the
coupled waveguide system based on the trial solutions used. In the
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above derivation, the system of waveguides are assumed to be loss-
less. A similar approach may be applied to lossy waveguides with some
modifications to the cross-power and coupling coefficients [32].

For a lossless system, power conservation implies (see (44))

d .
EE E a; Bjaj =0. (12)
It follows from (11) that
*
Hij - Hji’ (13(1)
or
*
Pii(B; — Bi) = Kij — K- (13b)
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Figure 3. The percentage difference between the normalized coupling
coefficients: 2(&12 —nzl) / ("112 -I-lcgl), as a function of the guide separation
for TE modes of an asymmetric slab coupler. n; = n3 = ns = 3.20 and
ng = 3.25. The index ny varies as én = ng—ny = 0.01,0.1,0.2. The widths
of the two slabs are dy = dy = 1.0um. The wavelength is A = 1.5um.

We note that, unless 8; = B;, ki; is not equal to «};. This is in
contrast with the conventional orthogonal coupled-mode formulation
which states that the coupling coefficients are symmetrical for a loss
free system, regardless of the difference between the g;’s. Figure 3



227

shows (K12 — k21)/R in percentage as a function of the separation
2S between the two slab waveguides of Fig. 1. The parameter K is
the average of the two coupling coefficients, i.e., & = (k12 + K21)/2.
The indices of the waveguides are n; = n3 = ns = 3.20 and ns =
3.25. The index of the other guiding layer is varied as én = ng —
nz = 0.01,0.1,0.2, respectively. The widths of the two slabs are dy =
dy = 1.0um. The wavelength is A = 1.5um. The results indicate
that kj2 is nearly equal to k21 when the two waveguides are very
similar. However, the percentage difference between k12 and kg can
be as large as 100% as the degree of the asymmetry increases. We also
note that the percentage difference does not vanish as the distance
separating the two waveguides become large. In this sense, there is an
inherent inconsistency in the conventional coupled-mode theory based
on the individual waveguide modes when it is applied to couplers made
of dissimilar waveguides. This fact was first pointed out by Hardy and
Streifer [30] and subsequently demonstrated by others [31,32].

2.8 Transformations for the Two-Guide Coupler

We will now restrict our attention to forward propagating modes.
In the two guide coupler, we assume power normalization of the fields to
be Pi; = P2 =1 and let the cross-powers Pj; = P»; = X . (For two-
mode contradirectional coupling, we would find P;; =1, Py = —1,
and X =0, i.e., orthogonality of the modes whether the modes belong
to the same waveguide of not.) The power matrix has the form

P X (14)
\x 1)’
while the coupling matrix H may be written as
K
= °), (15)
Kk G
where ,
1 = bBitkn
A +k
2 B2 + Koo (16)
K = XBi+kan

= X,B2+K,12.
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The S| are the perturbed propagation constants, while « is the effec-
tive evanescent coupling.
Although it is possible to solve (11b) by rewriting it as [30]

d

—A = —jP IHA, 17
P J (17)
through multiplication of the inverted power matrix, we will find it
more expedient to apply an orthogonalizing transformation, followed
by a diagonalizing transformation. These transformations will be shown
to yield the (approximate) normal modes of the compound structure.

2.4 Orthogonalization

The power matrix P is positive definate, thus it can be written
as a product of a matrix and its adjoint

P=Q"Q, (18)

where the superscript ‘4’ is the adjoint operator and Q is expressed

as
cosE sing
Q= ( > e ) , (19)

i O a
sing COs3

with X = sina. By using (18) in (11b) and multiplying through by
(Q*)~!, a new set of power-orthogonal modes labeled B are defined

B=QA. (20)

The B modes are seen to be power orthogonal, since the total power
is shown to be (section 2.6), BB* = A'PA*, that is, equal to the sum
of the squares of the individual modal amplitudes. The coupled-mode
equations are reduced to

d i
E;B = —]H B, (21)

where the new coupling matrix H’ remains Hermitian, and is defined
through
H =[Q*'HQ . (22)
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Notationally, we express H' as

H - 11 C12 (23)
e cn)’
where o xx
Ci11 = ETT 7===
C2 = s 7===; (24)
cl2 = —4’1‘:;((_ =¢(9 = '°12+’5221(I§)({f21)1+'€22)
and ) }
B = B ‘;‘.32, (250)
' __
a=bzh (25b)

Here, § is the average propagation constant, while A is the degree
of asynchronisity between the coupled guides. For maximum power
transfer, the condition A = 0 is required.

Of special note in the above transformations is the effect of ne-
glecting the nonorthogonality of the modes, that is, neglecting X .
Then, P =Q =1, (unit matrix), and the B modes reduce to the
waveguide modes ( A modes), with one important difference. By re-
writing ¢j2 and ¢2; as the final right hand expression in (24), it is seen
that the coupling terms are symmetrized by taking the average of ;2
and k21 . Now the orthogonal coupled-mode theory (i.e., X — 0) for
the waveguide modes becomes self-consistent, i.e., power is conserved
when Kj2 # K21. The power-orthogonal mode formulation presently
derived will also be found useful in analyzing tapered couplers in sec-
tion (4).

2.5 Diagonalization

By diagonalizing H' through a unitary transformation, a new
set of modes are defined, which are decoupled. These are the equiva-
lent normal modes of the compound structure. Introduce the unitary
transformation by

B=UW, (26)
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where
Utu =1 (27)

The resulting coupled equations describing the interactions of W are

d ,
-&;W =-J [ﬁs,a]w> (28)
with
UTH'U = [Bs,], (29)

and where [f;,] is a diagonal matrix with elements 3, and 3, . There
is no coupling between the two modes in (28). Hence, W may be in-
terpreted as the amplitude vector for the normal modes of the parallel
waveguides with propagation constants Bs and [, , representing the
even (symmetric), and odd (antisymmetric), compound modes respec-
tively. These propagation constants are evaluated as

B—-X 1 _ A?
ﬂs,a= l—X;’:t\/l—X2(X'B—K')2+ 1-Xx2° (30)

The unitary matrix is determined by requiring it to satisfy (29)

CcOos % —sin %”
U= , (31)
sin % cos %
ith
wi %12
() = (32

and the ¢;; are defined in (24). Equivalently

6 = tan -1y 2t ra1 = X(ku + K20) 5, (33)

B1 — B2 + K11 — Koo

One may proceed directly from the waveguide mode formulation to the
normal modes through the transformation

A =0W. (34)
From the orthogonalization and diagonalization procedures

0 =Qy, (35)
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with (27) and (29) recast into
O*PO =1, (36)
O*HO = [Bs,0)- 37)
The direct transformation matrix O then has the components

1 (cos("%L-'i—) —sinw)
sin 5—4’;") cos ——M;"

cos (38)

The modes defined by W are approximations to the exact normal
modes of the structure. The propagation constants of these normal
modes are approximated by (30), while the field patterns are simply
determined through (4) or inversion of (34). Equation (28) for the
normal modes can be readily integrated analytically, and the transfer
of power is discussed in the following section. The field patterns of the
symmetric normal mode e, , and the antisymmetric normal mode e, ,
generated by (34) are respectively

__cos (3112'—"-) sin (15%)

*= s (@) 1T Teos(a) ¥ (39a)

_ _sin(”%) cos (15=) (395)

cos (@) ' Tcos (a)

Note that due to the nonothogonality, a coupler composed of two iden-
tical waveguides does not have normal modes which have equal exci-
tation from e; or es.

To assess the accuracy of the coupled-mode formulations estab-
lished above, we calculated both the propagation constants and the
field patterns of the composite modes of a parallel directional coupler.
The parameters are the same as those used in Fig. 3, except that the
refractive index ny4 is chosen to be 3.25 and 3.23 for a symmetric and
a nonsymmetric case, respectively. Figures 4a and 4b show the effective
indices of the TE composite modes as a function of waveguide sepa-
ration. It is demonstrated that the nonorthogonal CMT (dash) yieids
dispersion curves in closer agreement with the exact solutions (solid)
than the self-consistent orthogonal CMT (dash-dot), in particular when
the two waveguides are closely coupled. The electric field patterns for
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the composite modes are shown in Fig. 5 and Fig. 6 for the cases of
Fig. 4a and Fig. 4b respectively. The two selected separations between
the slabs in each case are 2S5 = 1.0 and 0.2um, representing a weak
and a strong coupled waveguide system, respectively. In comparison
with the exact solutions (solid), the nonorthogonal CMT (dash) is in-
deed superior to the orthogonal CMT (dot) for the field patterns. As a
matter of interest, we also plotted the field patterns of the waveguide
modes (dash-dot). The waveguide modes become acceptable approxi-
mations to the exact composite modes only when the two waveguides

are weakly coupled and far from synchronism.
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Figure 4. The effective indices of the symmetric- and the antisymmetric-
like composite modes of two uniform directional couplers as a function
of guide separation. (a) identical waveguides; (b) dissimilar waveguides.
Solid: exact; dash: nonorthogonal CMT; dash-dot: orthogonal CMT. The
parameters are the same as those in Figure 3 except that ny, = 3.25 in

(a) and 3.23 in (b).
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Figure 5. The electric field patterns of the symmetric- and the antisymmetric-
like composite modes of the uniform directional couplers made of iden-
tical waveguides in Figure 4a. Solid: exact; dash: nonorthogonal CMT;
dot: orthogonal CMT; dash-dot: waveguide modes. (a) 25 = 1.0um; (b)

28 = 0.2um.



234

15.00 7 — EXACT
~° NOCMT

.o oeMr

= w6 lopE

° o 5

o . b

g 8 3
> ©

TE mode pattern ( Ey )
]
o

-10.00 7

-15.00 T Y T ¥ T T

15.00 J e

-
o
o
<

g

g

=-5.000

TE mode pattern ( Ey )

~10.00 7

Little and Huang

-~15.00 ¥ o Y
-5 -4 -3 -2, -L. 0. L

Figure 6. The electric field patterns of the symmetric- and the antisymmetric-
like composite modes of the uniform directional couplers made of dis-
similar waveguides in Figure 4b. Solid: exact; dash: nonorthogonal CMT;
dot: orthogonal CMT; dash-dot: waveguide modes. (a) 25 = 1.0um; (b)

28 = 0.2um.



235

2.6 Power Flow between Waveguides

We now concentrate on the expressions for the flow of power from
one waveguide to another, and on interpreting the power associated
with one waveguide in a coupled system. Note that the normal modes
(W modes) in (28) are decoupled, and hence immediately integrable.
Applying the transformation (34), the resulting solution governing the
evolution of waveguide amplitudes is

A(z) = T(2)A(0), (40)

where the transfer matrix T(z) is

e—jﬂaz O 1
T = O 0 e—j,Ba.z 0 3 (41)

or explicitly

cos (@) cos (Sz) + j cos (n) sin (Sz)

t11 = t;2 = ps (a) s (420)
__sin(n+ a)sin(Sz)

lig=] cos (a) ’ (42b)

tay = jsm (n — a)sin(Sz) . (42¢)

cos (@)

The quantity S is one half the difference in the normal mode prop-
agation constants, i.e., S = (8s — £.)/2. It will become clear shortly
that S determines the coupling length L., through

T T
Le=35=7% —5 (43)
where the coupling length (beat length) is defined as the distance over
which the maximum amount of power is transferred from one waveg-
uide to another.

The modal waveguide amplitudes at any point along the coupler
are determined from (40). However, the power associated with a partic-
ular waveguide in a closely coupled array requires a revised definition.
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For instance, the total power guided in the entire compound structure
is defined in the usual sense by the Poynting theorem

P() =:11-/(ExH*+E*xH)-’z‘da

=Y "a}(2)Pja;(2). (44)
i

Due to the nonorthogonality, the total guided power is not only re-
lated to the magnitudes of the mode amplitudes |a;(2)|?, but also to
the cross-product of different mode amplitudes through the overlap
integrals (the cross-power terms).

To define the power associated with a particular guide, we envision
the scenario in which that power would be measured. To do this one
should terminate all the other guides so that the power may be guided
out through only one of the guides as in Fig. 7. (There is no reflection at
this termination since it is only ‘virtual’ in the sense of a definition for
the modal power.) At 27, the point just prior to the output position,
the total fields may be expressed as a linear combination of the guided
modes of the individual waveguides as in (4),

E= Z aie;(z,y), (45a)
J

H= Z a;h;(z,y). (45b)
J

The fields at z*, right after the termination, are expanded in terms
of a superposition of the modes of the unterminated i** waveguide

E = biei(z,y) + E-, (46a)
H= bih‘i(x) y) + E‘r) (46b)

where E, and H, are the expansions in terms of radiation modes
which, together with the guided mode, form an orthogonal and com-
plete set. By mode matching at the junction, and using the orthogo-
nality relations, the power in the output guide becomes

Py(2) = |bi(2)]> = ) _ a} Pya;. (47)
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Figure 7. The input and output structures assumed for the guided power
in an individual waveguide. (a) Guided power in waveguide 1; (b) Guided

power in waveguide 2.
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Note that due to the nonorthogonality between the modes, the fields
in the other guides also contribute to the power in guide 7. This is a
source of cross-talk in optical switches [85,86]. For a two guide coupler,
the definitions of power reduce to

Pi(z) = |ai(2) + Xa;(2)], (5 #4)- (48)
Suppose that only guide 1 in initially excited, ie., a1(0) = 1,

a2(0) = 0. The powers determined from the transfer matrix and (48)
are

cos (@) — sin (a) sin (a + @)
cos (a)

Pi(z) = cos?(S2) + [ r sin%(Sz), (49a)

Py(z) = sin?(a) cos %(Sz) + sin?(¢) sin %(Sz). (49b)

At one coupling length, z = L. = n/2S, and for a perfectly phase-
matched coupler (A =0 or ¢ = 7/2), the resulting power distribution
is

Py(Lc) = X2, (50a)

Py(Lc) = 1. (50b)

Therefore, after one coupling length complete power is transferred to
guide 2. However, if the power in guide 1 is measured, we find that
a portion of power, X2, is still associated with guide 1 (due to the
evanescent tail of mode 2). This does not violate power conservation. A
rigorous normal mode analysis leads essentially to the same result [85].

Figures 8a and 8b show the coupling lengths as functions of sepa-
ration for the two waveguide structures examined in Figs. 5 and 6. It is
observed in Fig. 8a that the coupling length of the identical waveguides
predicted by the nonorthogonal CMT (dash) is in excellent agreement
with that produced by the self-consistent orthogonal CMT. This is un-
derstood by noting that the coupling length is related to the difference
between Bs; and B, (or S). The coupling length is therefore not af-
fected by the cross-power X as much as the individual propagation
constants as was shown in Fig. 4a. Hence, when the two waveguides are
similar and not too closely coupled, the simple conventional CMT gives
an excellent approximation for the power transfer length. On the other
hand, it is noted in Fig. 8b that the accuracy of the coupling length
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predicted by the orthogonal CMT decreases as the two waveguides be-
come dissimilar. At the same time, a similar but smaller decrease in
accuracy of the nonorthogonal CMT is also observed.

230.07 — BACT
- NOCMT
210.07 " OCMT

180,07

170.07

150.07

130.07

110.07

80.0G7

TE coupling length ( um )
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4000 8000 8000 1.000 1.200

28 (pm )

(b)

TE coupling length ( um )

38.00%7

000 6000 8000 1.000 1.200
28 (um)
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K1

Figure 8. The coupling lengths as a function of guide separation for the
TE modes of a slab coupler. Solid: exact; dash: nonorthogonal CMT;
dash-dot: orthogonal CMT. (a) identical waveguides as in Figure 5; (b)
dissimilar waveguides as in Figure 8.
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Figure 9. The power extinction ratio, or cross talk, as functions of sepa-
ration for the TE modes of a symmetric slab coupler. Solid: exact; dash:
NCMT. The parameters are the same as those in Figure 5.

The extinction ratio or cross-talk for the symmetric coupler in Fig.
8a is plotted in Fig. 9, using the results of (50a). We have also plotted
the extinction ratio from the exact normal mode calculation [85,86],
and it is seen that the two results agree very closely. The orthogonal
CMT does not predict cross-talk for any separation.

3. Codirectional Grating Couplers

One of the most versatile of optical elements is the periodic grat-
ing. The grating acts as a mechanism in which to facilitate various
forms of interaction between incident waves. These interactions may
consist of two or more different optical beams, modes, frequencies or
directions. In the field of integrated optics, the grating finds applica-
tion in devices such as filters, couplers, mode converters, distributed
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feedback oscillators and lasers, lens, and demultiplexers, to name a few.
Nonlinear processes have also made extensive use of the grating, such
as in parametric processes [87] and pulse compression [88]. The versa-
tility of the grating is further enhanced if the grating period and/or
grating strength is allowed to become a function of longitudinal dis-
tance (i.e., aperiodic or chirped). The fundamental principles of the
grating have been studied rigorously and reviewed by Elachi [89], Gay-
lord and Moharam [90], and Yariv and Nakamura [91]. Typically, if the
coupling caused within each individual grating period is small, then the
uniform modes are not much affected, and coupled mode theory can
yield reliable results.

Coupling between two integrated optical waveguides by means
of a grating perturbation was first studied by Elachi and Yeh [92] in
1973 for forward coupling, and then in turn for backward coupling
[93]. R. A. Syms [94] considered both the co- and contra-directional
coupling interactions together to form a four port device. The study
of the grating coupler was reiterated by Marcuse [95] by considering
the coupling of array or compound modes, as opposed to the previous
studies utilizing the isolated waveguide modes. Due to congruent de-
velopments in the uniform coupled-mode formulations at the time, the
theory concerning grating-assisted codirectional coupling experienced
many ‘improved’ reformulations [96-99]. The differences amongst these
various reformulations attest to the fact that the overall behavior of the
coupler is sometimes unclear, especially in the case of closely coupled
waveguides.

3.1 General Principles

We consider here gratings that couple copropagating and collinear
guided modes. In this case the periodicity of the perturbation is in the
propagation direction, An%(z,y,z2) = An%(z,y,z + A), where A is
the period. Our task in the following sections will be to determine
the conditions on A required to achieve maximum power transfer, to
derive expressions for the coupling coefficients, and to determine the
coupling lengths associated with the power exchange.
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Figure 10. A schematic diagram of a grating-assisted coupler composed
of slab waveguides.

A typical two guide slab coupler with a surface corrugation on one
of the waveguide boundaries is shown in Fig. 10. In the previous section
it was found that for this parallel coupler in the absence of the grating,
maximum power transfer occurs when the modes are synchronous, or
phase-matched according to

(Br + Kk11) = (B2 + K22) =0, (51)

where (1,2 are the propagation constants of the isolated guides, and
K11,22 are the corrections due to the proximity of the neighboring chan-
nel. When the guides are not synchronous, one may expect to intu-
itively modify (51) by matching the grating frequency, Q = 27/A, to
the difference in propagation constants

(Br + K11) — (B2 + Ka2) = ?AE (52)

This phase-matching condition will in general not lead to complete
power exchange, since in addition to the grating, the two waveguide
modes are also simultaneously coupled through natural or evanescent
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coupling. If the waveguides are also closely coupled, then the mode
nonorthogonality may additionally modify the phase-matching require-
ment. For the parallel system, the two modes which are completely de-
coupled are the even and odd array modes. It is the matching of these,
as shown by Marcuse [95], which determine the correct grating period,

Bs — Ba =~ (83)

It will be shown that the NCMT yields essentially the same result, in
addition to specifying two unique coupling lengths associated with the
power transfer.

3.2 Grating Coupling Formulation

For the grating-assisted couplers, the refractive index may be ex-
pressed as
n’(z,y,z) = W’ (z, y) + An’(z,y) f(2), (54)

where 71 is the refractive index of the uniform (i.e., z-invariant) ref-
erence structure, An?(z,y) represents the transverse distribution of
the perturbation, and f(2) is the periodic longitudinal distribution.
The boundary of the reference structure in the neighborhood of the
grating is chosen to lie along the average value of the corrugation, (as
seen by the dashed boundary in Fig. 10). This is the optimum choice,
since the perturbation will then only generate purely ‘AC’ varying cou-
pling terms, with no additional uniform or 'DC’ coupling component.
Because the waveguiding structure is nonuniform, one can not take
advantage of the variational expression for the propagation constant,
as was done in section 2 for the parallel coupler. Instead, a complex
power theorem is employed [59],

d o .
4 / (EX x Hy + Ep x H:} - 3da = —jw / (ca — &)E? - Epda, (55)

which relates two lossless index distributions ¢, and ¢, and their
associated electromagnetic fields.

The total field is assumed to be a superposition of the waveguide
modes as in (4). We identify the distribution ¢, and electric field E,
with the dielectric constant and electric field of waveguide i in the
absence of both periodic perturbations and other waveguides. E; is
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chosen as the total field, here as a superposition of waveguide modes,
and €, = n? is the actual dielectric constant. Inserting these fields into
(55), the following coupled mode equations are established,

Pd%A = —jHA — jKA. (56)
The power matrix P, and the uniform coupling matrix H are identical
to those derive in (7) and (8) respectively. The additional coupling
terms in K are due to the periodic modulation, and in component
form are

~ 1
Kij = queal (2) /A Anle; - e;da, (57)
n

where the integral is evaluated over the perturbed region.

Since P and H are independent of z, they may be diagonalized
using the procedure outlined in section (3.5). By applying the transfor-
mation (34), the equivalent set of coupled equations for the compound
modes are obtained

d . )

ZW = —j[Bea]W — LW. (58)
The vector W contains the amplitudes of the compound modes. [Bs,q)
is the diagonal matrix containing the propagation constants, which for
a two guide coupler, have the analytic forms found in (30). The grating
now couples the compound modes through the terms in L, where

L = O*KO, (59)

and O is the transformation matrix (38). By using (34) and (39), an
alternate expression is shown to be

L = -}iweof(z) /An2e;‘ -e;da, (60)

where {i,j} = {s,a} are for the even and odd array modes, which may
be expressed as summations of the waveguide modes (39). If the exact
array modes can be computed, using these in (60) gives a more accurate
coupling value [95-102]. If the superposition of waveguide modes are
used to express e; and e, , then it is seen that the NCMT gives more
accurate values for L;; than the OCMT, for as discussed in section
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(3.5), the fields represented by the NCMT correspond more closely to
the true fields than those derived from the OCMT, (see Figs. 5 and 6).
This distinction can become important in the small region over which
the overlap integral is evaluated.

At this point it is instructive to examine the coupling expression
Lg, when expressed in terms of the waveguide coupling coefficients
Ki; in (57). Explicitly,

Lsa = Las .

1 K22 sm(¢ ) _ 5_2._._ sm(c/) + CY) + K12 COS(¢)

~ cos? ()

(61)

where K (11 and Koo are the self-coupling of the waveguide modes, and
K12 = Ko is the cross coupling. The mode detuning is represented
in terms of ¢ (from (33)), while a accounts for the nonorthogonal-
ity (from (19)). In many solutions of the grating problem, both Kj,
and Koo are typically neglected because they apparently seem phase-
mismatched when equation (56) for the waveguide mode coupling is ex-
amined. However, it is seen from their appearance in (61) that they are
indeed phase-matched, ( Ls, contains the total implicit z-dependence
of f(z)). This can also be understood in a different perspective by re-
alizing that it is the self-coupling terms which give rise to the so called
space harmonics, which phase match the two guides.

If for definitiveness we set (B; > B2, then ¢ is positive. It is
then apparent in L, that the self-coupling term K, subtracts from
the overall coupling strength of L,,, while Koo adds to the strength.
Hence for a given grating, the maximum effectiveness is achieved by
placing it where Ky, is large, i.e., on the guide with the smaller prop-
agation constant. This may be explained by noting that for asyn-
chronous guides, the zero crossing of the odd mode field amplitude
occurs closer to the guide with the larger propagation constant.

3.8 Solutions to the Grating Coupled Equations

In the foregoing analysis f(2) represented an arbitrary longitu-
dinally periodic profile. This profile may be represented as the Fourier
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series

+00
f()= 3 Fpe i, (62)

M= 00

Only one of the m components will cause appreciable (guided mode to
guide mode) coupling, and we will assume that this component is the
first order, m = £1, component. For a sinusoidal perturbation, F; =
F*, = j1/2 while for a square profile, F; = F*; = j1/m, (the overall
amplitude is contained in An?). We derive a transfer matrix that
links the amplitudes for the composite modes between two positions
along z. From (58)

W (z) = Tw(z)W(0), (63)
where explicitly
t17 = [cos (Q2) — j cos (n) sin (Q2))e 737, (64a)
t15 = sin (n) sin (Q2)e 7%, (64b)
t1 = —sin () sin (Q2)e’*%, (64c)
tas = [cos (Q2) + j cos (1) sin (Qz)]e’R>. (64d)

Q is the coupling strength
Q =+/6% + K%, (65)
and 7 includes the grating detuning

tan (n) = % (66)

The detuning factor which measures the degree of asynchronisity be-
tween the grating frequency and the difference in propagation constants
is
Bs—Ba
= — 67
ow 5 A (67)

The coupling strength for a square grating is found from (60) to be

1
Kw = Lga = —2—;weo / An2e§ - eqda. (68)
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The phase-matching condition éw = 0 yields the optimum grating

period
T

53 - }Ba )

Although Aw leads to complete transfer of power for the array
modes, it also leads to complete transfer for the waveguide modes. The
length over which complete exchange occurs however, may be different
between the array and waveguide modes, as will be shown. If the two
waveguides are highly dissimilar and also weakly coupled, the natural
coupling between the two waveguides may be neglected so that Eq.
(69) reduces to

Aw = (69)

T
Br—B
Comparisons between the two phase-matching conditions in (69)
and (70) are made for a grating-assisted coupler consisting of slab
waveguides. The parameters in Fig. 10 are ny = 1.0, np = 3.3, n3z =
3.2, ng =3.5, ns = 3.0, do = 1.0um, dg = 0.3um. The wavelength
is A = 1.5um . The grating is placed along the core-cladding interface
of the upper slab (Fig. 10). Figure 11 illustrates the grating periods
predicted by the two different phase-matching conditions ( Aw : dash;
A 4: dash-dot) as functions of the waveguide separation. The phase-
matching grating period predicted based on the composite modes in
(69) increases as the separation becomes larger, whereas the one based
on the waveguide modes in (70) is independent of the separation. These
two grating periods are quite different when the two waveguides are
close, and (70) is valid only if the separation is very large. For the sake
of comparison, we also plotted the grating period calculated based on
the exact composite modes (solid). It is seen that the nonorthogonal
CMT indeed produces very accurate results for the grating period.
Under the phase-matching condition (69), the transfer matrix be-

comes - x
cos (kwz)e 72*  sin(kwz)e 7 A*
Tw =

Ag (70)

. x (71)
—sin (kw2)etIx*  cos (kwz)et?*

At the input and output, the amplitudes of the composite modes should
be related to those of the waveguide modes so that the power exchange
between the waveguides may be examined.
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Figure 11. The phase-matching periods as functions of separation for
the TE modes of a slab coupler. The parameters are n; = 1.0, ny = 3.3,
n3 = 3.2, ng = 3.5, and ng = 3.0, d2 = 1.0pum, ds = 0.3um, 25 = 0.6um.
A = 1.5um. Solid: FD-BPM; dash: NCMT; dash-dot: convention OCMT.

Let the coupling length for complete power exchange of the com-
posite modes be L. = NA where L is an integer number of grating
periods. The transfer matrix for the amplitudes of the waveguide modes
is

cos(@) \ —sin(kwLc) cos(kwLe+ )
(72)
Suppose that at the input only guide 1 is excited. The guided powers
in guide 1 and 2 are given by

Ty = OTwO™! 1 (COS('*WLc—a) sin (kw Lc) >
A= w = .

Py(Lc) = COSz(K,WLC), (73a)

Py(Lc) = sin?(kw L. — ). (73b)
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Complete power transfer occurs at

Lm:w/2+a’ (74)
Kw

which differs from that predicted by the conventional OCMT by the
presence of a. According to the NCMT, the maximum power transfer
length is related to the coupling between the composite modes as well
as to the cross-power between the two guides. Zero cross-talk in guide
1 may also be achieved at a different coupling length

™

The power coupling in the grating-assisted coupler is calculated by
using the nonorthogonal coupled-mode formulations developed above
and the results are shown in Figs. 12a and 12b by dashed curves. The
same structure as used in Fig. 11 is assumed. The separation between
the two slabs is 2s = 0.6um and represents a closely coupled situation.
The height of the grating is 2h = 0.1 and 0.2um in Figs. 12a and 12b,
respectively. The two distinct coupling scales are clearly illustrated in
both cases. The slow scale, which dictates the overall power coupling,
is determined by the coupling of the grating. The fast scale is due to
the natural coupling between the two parallel uniform waveguides. The
period of the fast oscillation is equal to A and its magnitude is related
to the strength of the natural coupling between the two waveguides. If
the two waveguides are far from synchronism and far apart, then the
natural coupling may be ignored.

To assess the accuracy of the coupled-mode theory, we have also
simulated the same structure by using a beam propagation method [65]
(solid curves). Better agreement between the two methods is observed
for the case in Fig. 12a than for Fig. 12b. When the grating perturba-
tion is strong, the trial solutions in the CMT are no longer accurate,
resulting in larger errors. In addition, the radiation loss becomes more
pronounced as the grating height increases. This is illustrated in the
BPM simulations, but is absent in the coupled-mode analysis derived
here. Radiation can be incorporated into the coupled-mode framework
by considering guide mode to radiation mode coupling [16,104,105].
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Figure 12. Power exchange as a function of z. Solid: FD-BPM; dash:

NCMT. (a) 2k = 0.1um; (b) 2h = 0.2um. The parameters are the same
as in Figure 11.
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4. Tapered Directional Couplers

In this section a taper is defined as a coupled section of waveguide
where the separation between two waveguides varies with the propaga-
tion distance z.In this situation the uniform evanescent coupling will
vary with propagation distance. Further, this nonuniformity will give
rise to an additional coupling component due purely to the nature of
the z-variation. A typical tapered section which may be found at the
output of a parallel coupler is depicted in Fig. 13.

.._---___--..--T....>
-

Figure 13. A nonparallel or tapered section of waveguide at the output
of a directional coupler.

The coupling characteristics of the taper are of fundamental im-
portance, since tapers often serve as input and output sections, bring-
ing two isolated waveguides into close proximity or carrying power
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away from a coupled region. A taper also serves as a signal processing
element for applications such as: spectral bandpass shaping, spectral
sidelobe suppressing, for reducing fabrication tolerances, and to elim-
inate channel cross talk. Since the overall performance of a coupled
device can often be critically affected by the characteristics of the non-
parallel sections, it is important to undertake a rigorous analysis of the
power exchange in tapered waveguide structures using the most recent
coupled-mode formulations.

The early work of coupled-mode theory for tapered structures
was pioneered by Cook, Fox, and Louisell [10108] in a series of papers
dated in 1955, for the topic of transmission lines, and later by Mat-
suhara [109] et. al., with extension to optical waveguides. The value of
side lobe suppression in the frequency domain, and cross-talk reduc-
tion in neighboring channels, were expressed first by Alferness [17,110],
and then by others [111,112], both theoretically and with experimental
confirmation.

In the earlier formulations, the simple theory of coupling of power-
orthogonal waveguide modes had been used, with coupling due to the
taper taken into account by simply making the uniform coupling coeffi-
cients functions of z . There has been an effort to extend the nonorthog-
onal coupled-mode formulations for the parallel waveguides to the non-
parallel cases [68-70,72,113,114]. Inconsistencies arise, however, if one
simply attempts to add a z-varying nonorthogonality without consid-
ering the additional coupling component arising independently from
the varying nature of the coupling. In many reformulations, power
conservation had been violated [68,113,114]. A scalar nonorthogonal
coupled-mode theory that conserves power to within its level of ap-
proximation was proposed by Peall and Syms [69], and most recently
a self-consistent vector theory by Huang and Haus [70,72]. The addi-
tional effect of wavefront tilt and the taper-to-uniform coupler junction
discontinuity, has also recently been addressed [74].

4.1 Nonorthogonal Coupled-Mode Formulations

The total electromagnetic fields in the structure obey Maxwell’s
equations, which we write as

Z X %% + Vi X E = —jwu.H, (76a)

z X %E:- + Vi x H = jweE. (76b)
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As usual, the total fields are expressed as summations of the waveguide
modes

E=Y a(2)eilz,y:2), (77a)

H=Y a(a)hi(a,32). (770)

The fields e; and h; are local modes which are defined at some cross
section z. They obey (5) locally (i.e., they behave as z-invariant
modes).

The expansion (77) is a good approximation if local guided modes
exist in the entire coupling region and the two waveguides are not very
closely coupled and/or strongly guided. We also assume that the taper
varies slowly so that the coupling to the radiation modes and/or the
effect of wavefront tilt may be neglected.

The coupled-mode equations governing the evolution of the ex-
pansion coefficients a1(z) and a2(z) can be derived by substituting
(77) into Maxwell’s equations {72]. In matrix form, the equations are
written as d

P—-A =—jHA - FA, (78)
where H;; and P;; are the same as those defined in (7) and (8). Note
that for tapered couplers they become z-dependent. In addition, a
new coupling term appears in the coupled-mode equations

1 , Oh; Oe; " o~
Ejzzf(eix—a'j+a_;xhi)‘2da, (79)

representing the additional coupling caused by the taper. An alternate
expression may be derived in terms of the cross power, as is readily

verified 1dP; 1da

Fi' = ‘2-—dzi = Ed—z cos(a). (80)
Since Pjj,22 are normalized to unity this implies that Fiy 02 = 0. This
may also be verified by applying power conservation, since the F;; are
real valued. It has been shown that Fi; are essential for self-consistency
of nonorthogonal coupled-mode equations [72,73]. Even for a very slow
taper, Fj; should not be adiabatically neglected, otherwise power con-
servation will be violated. It will be shown later that a self-consistent
adiabatic approximation for slowly tapered couplers may be introduced
in conjunction with the orthogonal coupled-mode formulation based on
the local composite modes.
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4.2 Power-Orthogonal Mode Formulations

The power-orthogonalized coupled-mode formulation carried out
in section (3.4) has a useful role when treating z-varying structures. In
that section the waveguide modes are orthogonalized by the transfor-
mation B = QA , with the transformation matrix Q defined in (19).
By applying the transformation on (78), the evolution of the power-
orthogonal modes follow

d
—B = —-jH - F'B, 81
P j (81)
where H' is identical with (22) except now the elements vary with 2.
The coupling due to the taper is

F' = (QY)FQ- (2Q)Q™" (82)

By carrying out the algebraic manipulations in (82), and using the
expression for F in (80), it is found that F’ is identically zero. Hence
d

— _iH
4, B = —JH'B, (83)

and the power-orthogonal modes are found to be in adiabatic form.

4.8 Normal Mode Formulation

The coupled-mode equations for the local normal modes can be
derived from (78) by the linear transformations in (34)—(38). In matrix
form, these are reduced to
%W = —jBW — NW, (84)
where the local composite modes are given in terms of the linear su-
perposition of the local waveguide modes determined by (39). The
coupling coefficients are obtained as

N = O"‘Pad;O + O*FO. (85)

By imposing the condition for power conservation, one can easily prove
that the coupling coefficients are antisymmetric, i.e,

Nsa = _N;s) (86)
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and the diagonal elements N = Naq = 0. This result is to be expected
: since the coupling matrix in (85) is real, its diagonal elements must
be zero; otherwise power would be lost or generated and thus power
conservation would be violated. It is also evident that the additional
coupling terms Fj; are essential to ensure the self-consistency of the
coupled-mode formulation.

The orthogonal coupled-mode equations (84) can also be derived
from Maxwell’s equations when the fields in the tapered coupler are
represented by the linear superposition of the exact local normal modes
[72,115,116]. The coupling coefficients result solely from the tapering
effect and are given by

Nsa=i/(e;x%}%+%xh§)-2da, (87)
where e, and h,, are the fields of the local composite modes. By
using the linear transformation (34) and (39), one may readily derive
(87) from (85). The evaluation of the coupling coefficients between the
local composite modes using (85) or (87) is cumbersome. An alternative
expression for the coupling coefficient may be derived [24]

1 we on? ,
i5.-7 Ees~eada, (88)
8 a

Note that the coupling between the local composite modes is propor-
tional to the rate of change in the refractive index along z. If the taper
is very slow, then the coupling between the local composite modes may
be neglected and a self-consistent coupled-mode formulation under the
adiabatic approximation is obtained. In general, however, the coupling
due to taper should be considered and its effect on the power exchange
between the guides should be carefully examined.

Ny =

4.4 Power Ezchange in the Tapered Couplers

For synchronous couplers in which the local modes of the waveg-
uides have the same propagation constant, there is no coupling between
the local composite modes, i.e., Ng = 0. Thus, (84) can be integrated
to yield exact solutions [69]. By assuming a;(0) = 1 and a2(0) =0,
the mode amplitudes at z may be expressed as
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oo =4[50 + g e

+ %[\/ = );8 B \/ i .“’;);831 sin(39),  (8%)
w3 158 5

—J % [\/1 - §§3 - \/ 1 iigﬂ Sin(%eb), (89)

o= [ B o, (90)

X (z) is the cross power at some position 2z, and B, are the propaga-
tion constants of the symmetric and the antisymmetric local composite
modes given by (30).

When the waveguides are not synchronous, exact analytical so-
lutions are known only for certain cases where some special relations
among fs, B, and Ny, hold [27]. In general, the coupled-mode equa-
tions may be solved by using a numerical technique. If the two guides
are very far apart at z = L, the cross-power X (L) may be neglected
so that

where

P(L) = |ay(L)P3, | (91a)
Py(L) ~ laz(L)|>. (918)

Therefore the cross-talk between the two guides may be greatly reduced
by introducing a tapered section in the output port of the directional
couplers [86].

To examine the power coupling in a tapered coupler, we studied
a coupler made of two straight step-index slab waveguides separat-
ing at an angle 20 (as in Fig. 13). The input conditions are assumed
to be a1(0) = 1 and ap(0) = 0. The parameters of the waveguides
are n; = ng = 3.1, no = 3.0, w; = 08um and ws = 0.6um.
The initial separation between the slab centers is z,; = 0.55um and
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Figure 14. The guided power in guide 1 as a function of the taper length
L in Figure 13. The parameters are n; = ny = 3.1, ng = 3.0, w; = 0.8y
and wy = 0.6um. z,1 = 0.55pum and z,» = 0.45um. The wavelength
is A = 1L.5um. (a)8 = 0.1°; (b)d = 0.5°. Solid: Nonorthogonal CMT
with tapering effect; dash: Nonorthogonal CMT that neglects N,,; dot:
Nonorthogonal CMT that neglects Fs.
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Toz = —0.45pum, and the wavelength is A = 1.5um. Figures 14a
and 14b show the guided power in guide 1 as a function of the taper
length L for two tilt-angles 8 = 0.1° and 0.5°, respectively. The solid
curves represent the solutions including the tapering effect, the dash
curves are for the solutions under adiabatic approximation (neglecting
Nsa ), and the dotted curves are for the solutions that simply neglect
F;; . When the tilt-angle is small, the adiabatic solutions appear to be
accurate. As the angle increases (as in Fig. 14b), the tapering effect
becomes important and the adiabatic solutions are no longer adequate.
The solutions that ignore F;; are not correct even when the tilt angle
is small. A closer examination reveals that the solutions in fact do not
obey the power conservation and thereby are not self-consistent.

5. Vector Properties of Couplers

The coupled-mode formulations developed in the previous sec-
tions used the vector modes of the individual waveguides as the trial
solutions for the complete field. If the index discontinuities are large
however, this trial solution may become inaccurate in describing the
vector property of the entire coupler. This issue was first raised by Sny-
der and coworkers [35,36,43], where they showed that erroneous results
are obtained for the TM coupling length of couplers with large discon-
tinuities. It is clear in this case that the error arises because the proper
field discontinuity across the index boundaries will not be preserved.

Consider for instance, TM mode coupling in the parallel arrange-
ment. If the total electric field is described as a superposition of waveg-
uide modes as in (4), then the evanescent tail of mode 1 is continuous
across the boundaries of guide 2. Hence the proper discontinuity of the
total field across the boundary is in error. This will cause errors in
the evaluation of the overlap integrals. If the index discontinuities are
large, then one should use a new set of modified trial solutions [44]

e’l =e; + bey, (92a)

e) = ey + bes, (92b)

where e;2 are the individual modal fields satisfying Maxwell’s equa-
tions for their respective waveguides, and the corrections ée; and ébes
are nonzero only inside the cores of guides 2 and 1 respectively. To
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find their magnitudes, we will attempt to force the correct discontinu-
ity across the core boundaries. Consider TM modes in the symmetric
directional coupler of Fig. 1, where we set n; = n3 = ns = ny for the
claddings, and nz = ng = ny, for the cores. At the inner boundary of
guide 2, the total field on either side of £ = S satisfies

2
n
E(S7) = ZZ_OE(Sﬂ' (93)
cl
Substituting for the component modes

%

ai1e1(S7) + azex(S7) = 3 [a1€1(ST) + bare; + azea(ST)]. (94)
cl

Since e2(S™) =n2,/n%ex(St) is already satisfied, then
ser= ("4 _1)e (S) (95)
1= ngo 1 .
The correction ée; is likewise found to be

dey = (:—221 - 1) 62(—5). (95b)

co

By substituting the corrected fields into the variational expres-
sion for the propagation constant (3), the following modified coupling
coefficients result

Hy; =Fj;6; + kij + (B: — B;)6P;, (96a)

1
Kij =hij + 70 /[ﬁz —nil{6e] -e; +e] -;}da

1
—jw / n’be} be;da, (96b)
P =P;+ i / [6e} x h; + be; x hy] - Zda (96¢)

6P;; +i/5ej x h -zda (964d)
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Note that in the derivation of these expressions e;, and not e}, sat-
isfy Maxwell’s equations for the waveguide modes (5), and hence the
results are not obtained simply from substituting e} into the original
coefficients (7)—(9).

The foregoing method of improving the trial solutions was straight
forward and simple. This will not be the case in general for more com-
plicated structures. To date there have been two avenues of approach
to deal systematically with the polarization issue. One possibility is
to use the scalar formulation and apply a vector correction [25,50].
Alternatively, Yasumoto [117] has shown the possibility of setting up
a perturbation approach to the solution which satisfies the boundary
conditions at each perturbation order.

In Figures 15a and 15b, we examine the dispersion characteristics
of a weakly coupled TM mode slab coupler, taken from [44]. The waveg-
uide parameter V is chosen as V = 1, while the distance between the
core centers is 4d, with d being the guide thickness. The physics of
power transfer is related to the beat length, the difference between the
even and odd propagation constants (8 — ;) as in (43). In Fig. 15a
we plot the percentage of error between ( 8s — 3, ) as calculated by the
NCMT compared to that calculated from the exact compound modes.
The three curves plotted represent the NCMT based on the TM slab
modes (dash), the NCMT with field corrections (dash-dot), and the
conventional CMT neglecting both cross-power and self coupling. The
uncorrected NCMT departs significantly from the exact values for in-
dex steps larger than 1.5, while the corrected NCMT is valid up to a
index steps of 2.5. What is surprising is that the conventional CMT
is superior to the NCMT at larger step discontinuities. On the other
hand, we examine the individual propagation constants 8; and 3, in
Fig. 15b as a function of index difference. There it is seen that the cor-
rected NCMT does in fact reproduce the individual dispersion curves
quite accurately, and more accurately than the conventional CMT. It
should be noted that in this extreme example, the beat length is less
than 10pum, and hence the validity of slowly varying amplitudes in-
herent in the coupled mode theories must be examined more closely.
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Figure 15. (a) The percentage error in the coupling lengths predicted by
various formulations for the TM modes of a parallel slab coupler. (b) The
effective indices of the TM modes of parallel slabs. Taken from Ref. [44].



262 Little and Huang
References
1. Pierce, J. R., “Coupling of modes of propagation,” J. Appl. Phys.,

2.

10.

11.

12.

13.

14.

15.

16.

Vol. 25, 179-183, 1954.

Miller, S. E., “Coupled wave theory and waveguide applications,”
Bell Syst. Tech. J., Vol. 33, 661-719, 1954.

Louisell, W. H., “Analysis of the single tapered mode coupler,”
Bell Syst. Tech. J., Vol. 33, 853-871, 1954.

S. A. Schelkunoff, “Conversion of Maxwell’s equations into gen-
eralized telegraphist’s equations,” Bell Syst. Tech. J., Vol. 34,
995-1043, 1955.

. Haus, H. A., “Electron beam waves in microwave tubes,” in Proc.

Symp. Electronic Waveguides, Polytechnic Institute of Brooklyn,
1958..

Snyder, A. W., “Coupled mode theory for optical fibers,” J. Opt.
Soc. Am., Vol. 62, 1267-1277, 1972.

Marcuse, D., “Coupled mode theory of round optical fibers,” Bell
Sys. Tech. J., Vol. 52, 817-842, 1973.

Yariv, A., “Coupled-mode theory for guided-wave optics,” IEEE
J. Quantum Electron., Vol. 9, 919-933, 1973.

Kogelnik, H., “Theory of dielectric waveguides,” in Integrated Op-
tics, T. Tamir, ed., Springer-Verlag, New York, 1975, Chap. 2.
Taylor, H. F., “Optical switching and modulation in parallel di-
electric waveguides,” J. Appl. Phys., Vol. 44, 3257-3262, 1973.
Kogelnik, H., “Switched directional couplers with alternating A3 ,”
IEEE J. Quantum Electron., Vol. 12, 39401, 1976.

Noda, J., M. Fukuma, and O. Mihami, “Design calculations for di-
rectional couplers fabricated by Ti-diffused LiNbO 3 waveguides,”
Appl. Opt., Vol. 20, 2284-2298, 1981.

Mclntyre, P., and A. W. Snyder, “Power transfer between optical
fibers,” J. Opt. Soc. Amer., Vol. 63, 1518-1527, 1983.

Kogelnik, H., and C. V. Shank, “Coupled-wave theory of dis-
tributed feedback lasers,” J. Appl. Phys., Vol. 43, 2327-2335,
197).

Cremer, C., G. Heise, R. Marz, M. Schienle, G. Shulte-Roth, and
H. Unzeitig, “Bragg gratings on InGaAsP/InP waveguides as po-
larization independent optical filters,” IEEE J. Lightwave Tech.,
Vol. 7, 1641-1645, 1989.

Syms, R. R. A., “Optical directional coupler with grating overlay,”
Appl. Opt., Vol. 24, 717-726, 1985.



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

263

Alferness, R. C., and P. S. Cross, “Filter characteristics of codi-
rectionally coupled waveguides with weighted coupling,” IEEE J.
Quantum Electron., Vol. 14, 843-847, 1978.

Sakai, J., and T. Kimura, “Birefringence and polarization charac-
teristics of single-mode optical fibers under elastic deformation,”
IEEE J. Quantum FElectron., Vol. QE-17, 1041-1051, 1981.
Marcuse, D., “Radiation loss of grating-assisted directional cou-
pler,” IEEE J. Lightwave Technol., Vol. 8, 675-684, 1990.
Stegeman, G. 1., and C. T. Seaton, “Nonlinear integrated optics,”
J. Appl. Phys., Vol. 58, R67-R78, 1985.

Anderson, D. R., S. Datta, and R. L. Gunshor, “A coupled-mode
approach to modulation instability and envelope solitons,” J. Appl.
Phys., Vol. 54, 5608-5612, 1983.

Jensen, S. M., “The nonlinear coherent coupler,” IEEE J. Quan-
tum Electron., Vol. QE-18, 1580-1583, 1982.

Lee, D. L., Electromagnetic Principle of Integrated Optics, John
Wiley, New York, 1986.

Marcuse, D., Theory of Dielectric Optical Waveguides, 2nd ed.,
Academic Press, New York, 1991.

Snyder, A. W., and J. D. Love, Optical waveguide theory, Chap-
man and Hall, London and New York, 1983.

Haus, H. A., Waves and Fields in Optoelectronics, ,Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

Tamir, T., Ed., Guided-Wave Optoelectronics, Springer-Verlag,
New York, 1988.

Shen, Y. R., Principles of Nonlinear Optics, John Wiley, New
York, 1984.

Agrawal, G. P., Nonlinear fiber optics, Academic Press, Boston,
1989.

Hardy, A., and W. Streifer, “Coupled-mode theory of parallel
waveguides,” IEEE J. Lightwave Technol. Vol. LT-3, 1135-11486,
1985.

Haus, H. A., W. P. Huang, S. Kawakami, and N. A. Whitaker,
“Coupled mode theory of optical waveguides,” IEEE J. Lightwave
Technol., Vol. LT-5, 123, 1987.

Chuang, S. L., “A coupled mode formulation by reciprocity and a
variational principle,” IEEE J. Lightwave Technol., Vol. 5, 5-15,
1987.



264

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Little and Huang

Streifer, W., M. Osinski, and A. Hardy, “Reformulation of coupled-
mode theory of multiwaveguide systems,” IEEE J. Lightwave Tech
nol., Vol. 5, 1-4, 1987.

Vassello, C., “About coupled-mode theories for dielectric waveg-
uides,” IEEE J. Lightwave Technol., Vol. 6, 294-303, 1988.
Snyder, A. W., A. Ankiewicz, and A. Altintas, “Fundamental er-
ror of recent coupled mode formulations,” Electron. Lett., Vol. 23,
1097-1098, 1987.

Snyder, A. W., A. Ankiewicz, and A. Altintas, “Coupled mode
theory neglects polarization phenomena,” Electron. Lett., Vol. 22,
720-721, 1988.

Streifer, W., “Coupled mode theory,” Flectron. Lett., Vol. 23,
21217, 1987.

Streifer, W., “Comment on ‘Fundamental error of recent coupled
mode formulations’,” Electron. Lett., Vol. 22, 718-719, 1988.
Snyder, A. W., A. Ankiewicz, “Fibre Couplers composed of un-
equal cores,” Electon. Lett., Vol. 22, 1237-1238, 1988.

Streifer, W., M. Osinski, and A. Hardy, “A critical review of cou-
pled mode theory,” in Proc. SPIE, Integrated Optical Circuit En-
gineering, Boston, p. 178, 1987.

Hardy, A., W. Streifer, and M. Osinski, “Weak coupling of parallel
waveguides,” Opt. Lett., Vol. 13, 162-163, 1988, Erratum: Opt.
Lett., Vol. 13, p. 428, 1988.

Wang, Z. H., and S. R. Seshadri, “Asymptotic theory of guided
modes in two parallel, identical dielectric waveguides,” J. Opt.
Soc. Am., Vol. A5, 782-792, 1988.

Ankiewicz, A., A. Altintas, and A. W. Snyder, “Polarization prop-
erties of evanescent couplers,” Opt. Lett., Vol. 13, 524-525, 1988.
Haus, H. A., W. P. Huang, and A. W. Snyder, “Coupled-mode
formulations,” Opt. Lett., Vol. 14, 1222-1224, 1989.

Vassallo, C., “Condensed formula for coupling coeflicients between
parallel dielectric waveguides,” Electron. Lett., Vol. 23, 304-306,
1986.

Marcatili, E., “Improved coupled-mode equations for dielectric
guides,” IEEE J. Quantum Electron., Vol. 22, 988-993, 1986.

Snyder, A. W., “Optical fiber couplers-optimum solution for un-
equal cores,” IEEE J. Lightwave Technol., Vol. 6, 463-474, 1988.



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

265

Syms, R. R. A., and R. G. Peall, “Explanation of asymmetric
switch response of three-arm directional couplers in Ti:LiNb O3
using strong coupling theory,” Opt. Comm., Vol. 66, 260264,
1988.

Huang, W. P., and S. K. Chaudhuri, “Variational coupled-mode
theory of optical couplers,” IEEE J. Lightwave Technol., Vol. 8,
1565-1570, 1990.

Huang, W. P., S. T. Chu, and S. K. Chaudhuri, “A scalar coupled-
mode theory with vector correction,” IEEE J. Quantum Electron.,
Vol. 28, 184-193, 1992.

Hardy, A., and W. Streifer, “Coupled modes of multiwaveguide
systems and phased arrays,” IEEE J. Lightwave Technol., Vol. 4,
9099, 1986.

Chuang, S. L., “A coupled-mode theory for multiwaveguide sys-
tems satisfying the reciprocity theorem and power conservation,”
IEEE J. Lightwave Technol., Vol. 5, 174-183, 1987.

Hardy, A., and W. Streifer, “Analysis of phased-array diode lasers,”
Opt. Lett., Vol. 10, 335-337, 1985.

Hardy, A., and W. Streifer, “Coupled-mode solutions of multi-
waveguide systems,” IEEE J. Quantum Electron., Vol. 22, 528—
534, 1986.

Shama, Y., A. Hardy, E. Marom, “Multimode coupling of uniden-
tical waveguides,” IEEE J. Lightwave Technol., Vol. 7, 420-425,
1989.

Hardy, A., W. Streifer, and M. Osinski, “Coupled-mode equations
for multimode waveguide systems in isotropic or anisotropic me-
dia,” Opt. Lett., Vol. 11, 742-744, 1986.

Tian, F., Y. Z. Wy, and P. A. Ye, “Improved coupled-mode theory
for anisotropic waveguide modulators,” IEEFE J. Quantum Elec-
tron., Vol. 24, 531-536, 1988.

Tsang, L., and S. L. Chuang, “Improved coupled-mode theory for
rec1procal anisotropic waveguides,” IEEE J. Lightwave Technol.,
Vol. 6, 304-311, 1988.

Huang, W. P., and H. A. Haus, “Power exchange in grating-
assisted couplers » IEEE J. Lightwave Technol., Vol. 7, 920-924,
1989.

Huang, W. P., B. E. Little, and S. K. Chaudhuri, “A new approach
to grating-assisted couplers,” IEEE J. Lightwave Technol., Vol. 9,
721-727, 1991.



266 Little and Huang

61. Huang, W. P., and W. Y. Lit, “Nonorthogonal coupled-mode the-
ory of grating-assisted codirectional couplers,” IEEE J. Lightwave
Technol., Vol. 9, 845-852, 1991.

62. Little, B. E., W. P. Huang, and S. K. Chaudhuri, “A multiple-
scale analysis of grating-assisted couplers,” IEEE J. Lightwave
Technol., Vol. 10, 1254-1263, 1992.

63. Griffle, G., M. Itzkovich, and A. A. Hardy, “Coupled-mode formu-
lations for directional couplers with longitudinal perturbation,”
IEEE J. Quantum Electron., Vol. 28, 985-994, 1992.

64. Griffle, G., and A. Yariv, “Frequency response and tunability of
grating-assisted directional couplers,” IEEE J. Quantum Elec-
tron., Vol. 27, 1115-1118, 1991.

65. Huang, W. P., B. E. Little, and C. L. Xu, “On phase-matching
and power coupling in grating-assisted couplers,” IEEE Photon.
Technol. Lett., Vol. 4, 151-153, 1992.

66. Syms, R. R. A., “Improved coupled-mode theory for codirection-
ally and contradirectionally coupled waveguide arrays,” J. Opt.
Soc. Am., Vol. A8, 1062-1069, 1991.

67. Hong, J., and W. P. Huang, “Contra-directional coupling in grating-
assisted guided-wave devices,” IEEE J. Lightwave Technol., Vol.
10, 873881, 1992.

68. Hardy, A., M. Osiniski, and W. Streifer, “Application of coupled-
mode theory to nearly parallel waveguide systems,” Electron. Lett.,
Vol. 22, 1249-1250, 1986.

69. Peall, R. G., and R. R. A. Syms, “Scalar strong coupled mode
theory for slowly-varying waveguide arrays,” Opt. Comm., Vol.
67, 421-424, 1988.

70. Haus, H. A., and W. P. Huang, “Mode coupling in tapered struc-
tures,” IEEE J. Lightwave Technol., Vol. 7, 729-730, 1989.

71. Cai, Y., T. Mizumoto, and Y. Naito, “Analysis of the coupling
characteristics of a tapered coupled waveguide system,” IEEE J.
Lightwave Technol., Vol. 8, 90-98, 1990.

72. Huang, W. P., and H. A. Haus, “Self-consistent vector coupled-
mode theory for tapered optical waveguides,” IEEE J. Lightwave
Technol., Vol. 8, 922-926, 1990.

73. Huang, W. P, and B. E. Little, “Power exchange in tapered op-
tical couplers,” IEEE J. Quantum Electron., Vol. 27, 1932-1938,
1992.



74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

2687

Huang, W. P., and S. Lessard, “Wavefront-tilt in nonparallel op-
tical waveguides,” IEEE J. Lightwave Technol., Vol. 10, 31322,
1992.

Lessard, S., and W. P. Huang, “Assessment of coupled-mode the-
ory for tapered optical coupler,” IEEE J. Lightwave Technol., Vol.
11, 405-407, 1993.

Chen, Y., “Solutions to full coupled wave equations of nonlinear
coupled systems,” IEEE J. Quantum Electron., Vol. 25, 2149-
2153, 1989.

Chuang, S. L., “Application of the strongly coupled-mode theory
to integrated optical devices,” IEEE J. Quantum Electron., Vol.
23, 499-509, 1987.

Donnelly, J. P., H. A. Haus, and N. Whitaker, “Symmetric three-
guide optical coupler with nonidentical center and outside guides,”
IEEE J. Quantum Electron., Vol. 23, 401-406, 1987.

Donnelly, J. P., L. A. Molter, and H. A. Haus, “The extinction ra-
tio in optical two-guide coupler AS switches,” IEEE J. Quantum
Electron., Vol. 25, 924-932, 1989.

Tomabechi, Y., and K. Matsumura, “Improved analysis for the
coupling characteristics of two rectangular dielectric waveguides
laid in different layers,” IEFEE J. Quantum Electron., Vol. 24,
23592361, 1988.

Huang, H. S., and H. C. Chang, “Analytical expressions for the
coupling between two optical fiber core with a-power refractive-
index distribution,” IEEE J. Lightwave Technol., Vol. 7, 694-702,
1989.

Huang, H. S., and H. C. Chang, “Analysis of optical fiber direc-
tional coupling based on the HE;; modes — Part I: the identical-
core,” IEEE J. Lightwave Technol., Vol. 8, 823-831, 1990.
Marcatili, E. A. J., L. L. Buhl, and R. C. Alferness, “Experimental
verification of the improved coupled-mode equations,” Appl. Phys.
Lett., Vol. 49, 1692-1693, 1986.

Peall, R. G., and R. R. A. Syms, “Comparison between strong
coupling theory and experiment for three-arm directional couplers
in Ti:LiNbOg,” IEEE J. Lightwave Technol., Vol. 7, 540-554,
1989.

Chen, K., and S. Wang, “Cross-talk problems in optical direc-
tional couplers,” Appl. Phys. Lett., Vol. 44, 16168, 1984.



268

86.

87.

88.

89.

90.

91.

92.

93.

94,

95.

96.

97.

98.

99.

100.

Little and Huang

Haus, H. A.. and N. A. Whitaker, “Elimination of cross talk in
optical directional couplers,” Appl. Phys. Leit., Vol. 46, 1-3, 1985.
Somekh, S., and A. Yariv, “Phase matchable nonlinear optical
interactions in periodic thin films,” Appl. Phys. Lett., Vol. 21,
140-141, 1972.

shank, C. V. C. V. R. L. Fork, R. Yen, R. H. Stolen, and W. J.
Tomlinson, Appl. Phys. Lett., Vol. 40, 761-763, 1982.

Elachi, “Waves in active and passive periodic structures: a re-
view,” Proc. IEEE. Vol. 64, 1661698, 1976.

Gaylord, T. K., and M. G. Moharam, “Analysis and applications
of optical diffraction by gratings,” Proc. IEEE., Vol. 73, 894-983,
1985.

Yariv, A., M. Nakamura, “Periodic structures for integrated op-
tics,” IEEE J. Quantum Electron., Vol. QE-13, 423-348, 1977.
Elachi, C., and C. Yeh, “Frequency selective coupler for integrated
optics systems,” Opt. Commun. Vol. 7, 201-203, 1973.

Yeh, P., and H. F. Taylor, “Contradirectional frequency-selective
couplers for guided-wave optics,” Appl. Opt., Vol. 19, 28482855,
1980.

Syms, R. R. A., “Optical directional coupler with a grating over-
lay,” Appl. Opt., Vol. 24, 717-726, 1985.

Marcuse, D., “Directional couplers made of nonidentical asym-
metric slabs. Part I: synchronous couplers,” IEEE J. Lightwave
Tech., Vol. LT-5, 113-118, 1987.

Y. Yamamoto, T. Kamiya, and H. Yanai, “Improved coupled
mode analysis of corrugated waveguides and lasers,” IEEE J.
Quantum Electron. Vol. QE-14, 245-258, 1978.

Hardy, A., “Exact derivation of coupling coefficients in corrugated
waveguides with rectangular tooth shape,” IEEE J. Quantum
Electron., Vol. QE-20, 1132-1139, 1984.

Huang, W. P., and H. A. Haus, “Power exchange in grating-
assisted couplers,” IEEE J. Lightwave Tech., Vol. 7, 920-924,
1989.

Grieffel, G. M., Itzkovitch, and Amos Hardy, “Coupled mode for-
mulation for directional couplers with longitudinal perturbation,”
IEEE J. Lightwave Tech., Vol. 27, 985-994, 1991.

Huang, W. P., J. Hong and Z. M. Mao, “An improved coupled-
mode formulation for grating-assisted co-directional couplers,”
IEEE J. Quantum Electron., to be published.



101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

269

Hall, D. G., “Coupled-mode theory for corrugated optical waveg-
uides,” Opt. Lett., Vol. 15, 619-621, 1990.

Weller-Brophy, and D. G. Hall, “Local normal mode analysis
of guided mode interactions with waveguide gratings,” IEEE J.
Lightwave Technol., Vol. 6, 1069-1082, 1988.

Chen, C., and A. W. Snyder, “Grating-assisted couplers,” Opt.
Lett., Vol. 16, 217-219, 1991.

Ogawa, K., W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum,
“A theoretical analysis of etched grating couplers for interated
optics,” IEEE J. Quantum Electron., Vol. QE-9, 29-42, 1973.
Yamamoto, Y., T. Kamiya, and M. Yanai, “Improved coupled
mode analysis of corrugated waveguides and lasers,” J. Quantum
Electron., Vol. QE-14, 245-258, 1978.

Cook, J. S., “Tapered velocity couplers,” Bell Sys. Tech. J., 807-
822, 1955.

Fox, A. G., “Wave coupling by warped normal modes,” Bell Sys.
Tech. J., 823-852, 1955.

Louisell, W. H., “Analysis of the single tapered mode coupler,”
Bell Sys. Tech. J., 853-870, 1955.

Matsuhara, M., and A. Watanabe, “Coupling of curved transmis-
sion lines, and application to optical direction couplers,” J. Opt.
Soc. Am., Vol. 65, 163-168, 1975.

Alferness, R. C., “Optical directional couplers with weighted cou-
pling,” Appl. Phys. Lett., Vol. 35, 260-262, 1979.

Abouzahra, M. D., and Lewin, “Coupling of degenerate modes
on curved dielectric slab sections and application to directional
couplers,” IEEE Trans. MTT., Vol. MTT-28, 1091101, 1980.
Ramer, O. G., C. Mohr, and J. Pikulski, “Polarization-independent
optical switch with multiple sections of Af reversal and a Gaus-
sian taper function,” IEEE J. Quantum Electron., Vol. QE-18,
1772, 1982.

McHenry, M. A., and D. C. Chang, “Coupled-mode theory of
two nonparallel dielectric waveguides,” IEEE Trans. MTT., Vol.
MTT-32, 1469-1475, 1984.

Weissman, Z., A. Hardy, and E. Marom, “On the applicability
of the coupled mode theory to non-parallel waveguide systems,”
Opt. Comm., Vol. 71, 341-344, 1989.



270 Little and Huang

115. Snyder, A. W., “Surface mode coupling along a tapered dielectric
rod,” IEEE Trans. Antennas Propagation, Vol. 13, 821-822, 1965.

116. Snyder, A. W., “Coupling of modes on a tapered dielectric cylin-
der,” IEEE Microwave Theor. Tech., Vol. 18, 383-392, 1970.

117. Yasumoto, K., “Coupled mode analysis of two-parallel circular
dielectric waveguides using a singular perturbation technique,”
IEEE J. Lightwave Technol., Vol. 12, 74-81, 1994.



