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1. Introduction

Beam propagation method (BPM) is one of the most commonly
used numerical methods for analysis and simulation of guided-wave
propagation in inhomogeneous media. It was first introduced into fiber
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optics by Feit and Fleck in 1978 to calculate the mode properties of
optical fibers [1-3]. Since then many other waveguiding structures such
as tapers and Y-junctions [4,5], bends [6], gratings (7], waveguide cross-
ings [8], electrooptic waveguide modulators [9], fiber couplers [10,11]
and nonlinear directional couplers [12] have been modeled and analyzed
by the BPM.

The basic idea of the conventional BPM is to represent the elec-
tromagnetic field by a superposition of plane waves propagating in
homogeneous media. The wave propagation in inhomogeneous media
is modeled as an integral of these plane waves in the spectral domain
and the effect of the inhomogeneity of the media is accounted for as a
phase correction in the spatial domain at each propagation step. The
FFT is used to provide the link between the spatial and the spectral
domains, hence the method is named split-operator FFT-BPM. It can
be expressed mathematically as:

¥(z,y,2 + Az) = PQPY(z,y,2) (1)

where ¥(z,y,2) and ¥(z,y,z + Az) are field distributions at two
subsequent propagation steps, P is a propagator which can be solved
by the FFT, and @ is a phase correction.

The distinct advantages of the BPM are that (1) it applies to a
structure with an arbitrary cross-section; (2) both the guided and the
radiative waves are included in the analysis. As long as the input field
is given, the BPM is capable of tracing the wave propagation in the
given structure. However, there are some limitations in the conven-
tional FFT-BPM.

1. The formulation of the FFT-BPM is derived under the assumption
that the refractive index difference in the transverse direction is
very small so that the phase error term can be expressed by the
first-order term in a Taylor series. Therefore, the FFT-BPM can
not be applied to structures with large index discontinuities.

2. The use of the FFT in the conventional BPM leads to a compu-
tation efficiency that is of the order Nlog N . Furthermore, the
number of mesh points N must be a integer power of 2. Addition-
ally, the mesh size has to be uniform. Consequently, for complex
structures, the FFT-BPM becomes less efficient.

3. A paraxial approximation has been made in the derivation, there-
fore the FFT-BPM is accurate only when the beam propagates in
the direction with a small angle to the z-axis.
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4. The FFT-BPM can only trace the scalar wave propagation, hence
the vectorial properties, such as the polarization dependence and
polarization coupling of the guided-wave devices can not be de-
scribed.

Some effort has been made to adapt the BPM to treat strongly
guided waveguides [13-16]. For instance, the split-step finite-difference
BPM developed by Yevick and Hermanson was used to simulate
strongly guiding semiconductor-based rib waveguides {17,18]. Instead
of using the FFT, the split-step FD-BPM solves the propagator in (1)
by the finite-difference method. The conventional phase correction is
still retained in the algorithm.

To improve the efficiency and the flexibility, a finite-difference
beam propagation method (FD-BPM) was developed by Hendow and
Shakir to solve the paraxial scalar wave equation directly by the finite-
difference method [19]. The original application of the FD-BPM was
limited to cylindrically symmetric structures. Chung and Dagli intro-
duced the FD-BPM to the Cartesian coordinate system [20]. A com-
parison with the FFT-BPM [20,21] has been made and the conclusion
is that the FD-BPM is more accurate and efficient than the FFT-BPM.
The computation is proportional to the number of mesh points N, for
a given cross-section, instead of Nlog N in FFT-BPM. Also, the num-
ber of mesh points N can be any number, not necessarily a integer
power of 2 as required by the FFT-BPM. In addition, the introduction
of a nonuniform and adaptive mesh into the FD-BPM could increase
the efficiency significantly [22-26].

Recently, there has been a lot of effort on developing a vectorial
BPM which can describe the propagation of vectorial electromagnetic
waves and considerable progress has been made in the past three years.
An implicit 2-D vectorial FD-BPM was first developed by Huang, Xu,
Chu, and Chaudhuri in 1991 [27,28]. It has been extended to 3-D
semi-vectorial FD-BPM by Liu and Li [29,30]. Shortly after that, a
full-vectorial FD-BPM has been developed by Huang, Xu, and Chaud-
huri [31,32]. In the full-vectorial FD-BPM, both the polarization de-
pendence and polarization coupling are taken into account. The full-
vectorial BPM may be reduced to the semi-vectorial BPM if only the
polarization dependence is considered and the polarization coupling
is ignored. In addition, two explicit numerical algorithms for the FD-
VBPM have been developed. One is based on multi-step discretization
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by Chung, Dagli, and Thylen [33]; The other is based on series ex-
pansion by Bothe, Splett, Unlenderf and Pertermann [34]. Since then,
some modifications have been made such as the wide-angle implicit
scheme by Huang and Xu [36], and the wide-angle explicit scheme by
Chung and Dagli [35].

In this chapter, a finite-difference vectorial beam propagation
method (FD-VBPM) is described. Section 2 gives the detailed mathe-
matical derivation of paraxial and wide-angle wave equations. In sec-
tion 3, the FD-VBPM is analyzed using the von Neumann method.
A thorough assessment is performed by comparing numerical results
with the exact analytical solutions. In section 4, other finite-difference
schemes are introduced and a comparison among different schemes is
made. In the last section, the FD-VBPM is extended to anisotropic
waveguides.

2. Mathematical Formulations

The electromagnetic wave propagation in an arbitrary medium
can be described rigorously by Maxwell’s equations and their associ-
ated constitutive relations as well as boundary conditions. However, a
direct solution of Maxwell’s equations is usually difficult and the exact
analytical expressions for such a solution can be found only for a lim-
ited number of simple structures, such as step-index slab waveguides
and step-index fibers. Numerical solutions may be possible for more
complicated problems, which can not be solved analytically. To make
the numerical solution feasible, certain assumptions have to be made to
simplify Maxwell’s equations for specific applications. In this section,
a vectorial Helmholtz equation is first derived directly from Maxwell’s
equations. For different interests and applications, the Helmholtz equa-
tion can be reduced to different forms.

2.1 Vectorial Helmholtz Equations

Maxwell’s equations in their general form are written as
V x B = —jwuoH (2)

V x H = jwn?¢,E (3)
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for continuous waves in linear and isotropic media. By taking the curl
of (2) and using (3), a vectorial wave equation can be derived:

VxVXE-n**E=0 (4)
By using the vector identity
V x Vx = V(V:) — V2 (5)
Equation (4) becomes
V2E 4 n%k’E = V(V - E). (6)

If the transverse components of an electromagnetic field are known,
then the longitudinal component may be readily obtained by applica-
tion of the zero divergence constraint V - (n?E) = 0. Therefore, the
transverse components are sufficient to describe the vectorial proper-
ties of the electromagnetic field. The transverse component of (6) is:

V2B, + n%%E, =V, [ V.- B + OF; (7)
- 0z

where the subscript “t” stands for the transverse components.
Using Gauss’ law,

V- (n?E) =0 (8)
we obtain: o2 oE
(2T 20%2 _ o
Vi (n°Ee) + 5 E,+n EP 0 (9)

If the refractive index n(z,y,z) varies slowly along the propagation
direction z, which is valid for most photonic guided-wave devices, then
aT’sz is much smaller than the other two terms in (9). Thus one can
derive

OE,

oz

The above equation is exact for z-invariant structures where %"; =0.
By substituting (10) into (7), one obtains a vectorial Helmholtz
equation based on the transverse electric fields

1 o
~ ==V (n°Ey). (10)

VZE. + n*k’E, = V, [Vt By — ‘livt : (nzﬁt)] . (11)
n
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The term on the RHS contains the vectorial properties of the electro-
magnetic field.

Following the same procedure, one can derive a vectorial Helmholtz
equation based on the transverse magnetic fields

VH, + 0K H, =~ Vin? x (V. x Hy) (12)

The vectorial Helmholtz equations may degenerate into different
variants under certain assumptions and approximation.

2.2 One-Way Wave Equations

By assuming the wave travels along +2z direction, the field can
be separated as a slowly-varying envelope and a fast-oscillating phase
term

Ei(z,,2) = E(z, y, 2)e~ 7k (13)

where n, is a reference index. n, should be chosen close to the effective
index such that the envelope varies slowly. By substituting (13) into
(11), one is able to derive the one-way wave equation based on the
transverse electric fields,

a (. 0]
where the operator P is defined by

' PE, = V2E, + (n? — n?)kE; - V, [vt B, — ﬁgvt C(MPEy)|. (15)

Or written in components [28,32]

8 [ 1 8(nE 62E,

pszx = 5’5 [;{2‘ (’I’;x z)} + ayzm + kQ(n2 - ng)Es: (16)
8#E, 9 [1dn2E

Py =t + g | N e e,

2 2
PyE, = ) {_1_a(n Ey)]_aEy

8z |n? oy dxdy (18)
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(19)

1 8(n2E,)]  O°E,
Pyobe = ay [n2 dor | 0Oydz’

It is noted that Egs. (16)—(19) are arranged in such a convenient
fashion that all the differentiated terms are continuous. Thus, they can
be ready discretized without any extra special treatment.

Similarly, one is able to derive the one-way wave equation based
on the transverse magnetic fields.

o0 /. g
% (J?ﬂok - 5;) H: = QH, (20)
where the operator
Q _ Qxx sz) (21)
ny Qy‘y
is defined as [31]
0°H. 8 (1 0H,
QzcHy = e 23: +'ﬂ2-527 (;;5 3;) + (n2 - ng)szm (22)
8%H, 8 (10
QuHy = 55" +n o (;;gf) +(n® - n))k*H,  (23)
0%H, 20 (1 8Hy)
Qusty = e =15 (1 s
_ 0*H, ,0 (1 0H,

Like the operator P, every term in Egs. [22-25] is continuous and
can be discretized directly.

2.8 Parazxial and Wide-Angle Wave Equations

The one-way wave equations can be reduced to paraxial and wide-
angle wave equations by applying the Pade approximation

8] P

5 T T (26)
Ozl j2nok — % li
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with ;9%|0 = 0. By letting 7 = 1, one can derive the paraxial wave
equation

BE
- = PE,. (27)
The first-order wide-angle wave equation
ok + 5 ) 2% = PE, (28)
k) 0z

can be derived by letting ¢ = 2. In principle, the wide angle for-
mulation can be carried out to any higher order as demonstrated in
Ref. [39].

It is straightforward to obtain the similar equations for the trans-
verse magnetic fields simply by replacing P and E by Q and H.

2.4 Semi- Vectorial and Scalar Wave Equations

Equations (27)—(28) are full-vectorial wave equations. The vecto-
rial properties of the electromagnetic fields are included. Pry # Pyy
causes the polarization dependence. Py # 0 and Py, # 0 leads to
the hybrid nature (i.e. the polarization mixing). The discontinuities
of the normal component of electric field at index interfaces, which is
responsible for the vectorial properties, have been considered in the
formulations.

If the coupling between the two polarizations is weak and negligi-
ble, which is true for most optical guided-wave devices, a semi-vectorial
treatment is sufficient. By neglecting the cross-coupling terms Py,
and P, , the full-vectorial paraxial Eq. (27) as well as the wide-angle
Eq. (28) reduce to two pair of decoupled semi-vectorial equations:

OF.

j2nok a; = PpoE, (29)
P\ 0
(QTLOIC + ok> Zw = P Ey; (30)
for E,, and
. OE,
J2n0k—6;’i = Py E, (31)

. P, OF
J <2nok + ﬁfk‘) 6_; = PyyEy. (32)
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for Ey.

As we have mentioned, the equations for the transverse magnetic
fields can be obtained simply by replacing Pz, Py, Ez, and Ey by
Qzz, Quy, He, and H,, respectively.

If the structures are weakly-guiding, even the polarization depen-
dence caused by geometry may be neglected and the following scalar
approximation can be made

o2 02
P=me=Pyy=Qm=ny='5;2‘+6—y"2'+k2(n2”‘n§) (33)

and the semi-vectorial equations for both electric and magnetic fields
can be replaced by one single scalar wave equation,

ov
. % _ oy
Ji2nok P P (34)
for the paraxial equation, and
. P \ ov
] (Qnok + M) Vo PV (35)

for the wide-angle equation. Here both ¥ and its derivatives are as-
sumed to be continuous everywhere.

2.5 Finite-Difference Discretizations

As described, all terms in Egs. (16)—(19) are continuous and can
be discretized directly. Let E.(i,j), Ey(i,j) and n;; represent the
electric fields and the refractive index at the mesh (4,j) with mesh
size Az and Ay. The finite difference expressions of Egs. (16)-(19)
are:

PoE = i Be(i 4+ 1,5) ~ TEER (1, 5) + TZ,,;B=(i—1,5)

Ex(i,j +1) = 2E,(1,j) + Ez(i,j — 1)
(Ay)?

+ (n2; — n2)K*Ex(i, §)

(36)

where
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2 2
Nigy; + 745

z ——
O
1,3
- niig+nd; iy +nd;
i 2n§_1,j 2nz2+1,3‘
and
p g TanBy(6i+1) - T (0 5) + T8 By(inf — 1)
yly = B
(Az)?
+(nf; — nd)k*Ey(i, ) (37)
where \ ,
v Mg +ng;
Ll = "‘”2?‘5‘;——‘

2 2 2 2
Nij—1 TN | N +15;

2 2
2n 51 215 541

I
Ty, =

Similarly, P, and P, are expressed by

2
1 ne .
nyEy prosend { { 'L+l,]+l —_— 1

Ey(i+1,j+1)

4AzAy n2.2+1’j
- .
1,51 ) .
- ,::é : -1 Ey(2+1,j—-1)
[ itLj i
- -
Mi-15+1 ) .
- ;23. -1 Ey(i—-1,7+1)
L i-1,3
- )
n‘.. .— - 0
+ ]| =2 — 1| By(i-1,5 - 1)
| Moy, |

(38)
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n?

1 NZp1541 . .
,J+1 .

ns .

S 1 B(i-1,5+1)
ne.

[ Yhi+

2
ne . . i
- |y - )
| M-t

"2

Ny 14
S 1 B -1,5-1) ). (39)
-1

= .

Egs. (22)-(25) for the transverse magnetic field can also be dis-
cretized directly and the finite difference expressions are:

Qe Hy
_Rijr1Hz(i,j +1) — [Rijyr + Rij—1)Ha (i, ) + Riy1 Ha (4,5 — 1)
- (Ay)?
Hp(i+1,5) —2Hz(4,5) + Ho(i = 1,5 j
p Bl 1) Bl 4 Bali = 1d) 4 o, i)
(40)
Q‘!J.UHII
_RiviiHy(i+1,5) = (Risaj + Riz15)Hy (i, 3) + Ri-1,Hy (i — 1, )
= (Az)?
H,(i,7+1) —2H,(3,7) + Hy(i,5 — 1 ;i
AU ED)) (i;)'j) (] )+(n§j—n§)k2ﬂy(z,3)
(41)
where
Rija1 = ng i1 + 02

3
2n7 41
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2 2
N1y T3

Riz1,; = on?
Nit1,;

Similarly, Qzy and Q. are expressed by

2
1 n; ) :
QuyHy = TAsAp { [1 - 4 ] H,(i+1,j+1)

M j+1
i y -
ne.
— 1= 2| Hy(i+1,j - 1)
-1
. -
ne.
—1— =2 | Hy(i -1, +1)
M j+1
r n.zl -
+ 1= Hy(i—-1,j—1) (42)
M—1]
1 ”123‘ ” )
= |1 — —=— | Hy(i+ 1,5+ 1)
4AyAw{[ "1‘24-1,3} “ ’
C
— (1= 2| Ha(i = 1,5 + 1)
L Ty
n2.
—|1—- 2| H(i+ 1,5 - 1)
| T
2]
+ |1 - 2| Ho(i - 1,5 — 1) (43)
| Tl

3.  Finite-Difference Beam Propagation Method

In this section, we will describe how to develop a finite-difference
beam propagation method (FD-BPM) by solving the wave equations
derived in the previous section, as well as how to implement the numer-
ical boundary conditions. The FD-BPM is then analyzed by the von
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Neumann method and key issues, such as stability, numerical dissipa-
tion, and numerical dispersion of the numerical scheme are addressed.
Finally, the FD-BPM is validated by comparing it with exact analyt-
ical solutions for both 2-D and 3-D waveguides and the effects of the
key parameters are assessed.

8.1 Numerical Scheme

As was mentioned in Section 2, the 3-D semi-vectorial and the
2-D formulations are the reduced forms of the full-vectorial equations
under certain approximations. Therefore, conclusions drawn from the
full-vectorial equations are expected to be valid for the semi-vectorial
and the 2-D cases. For this reason, the analysis is carried out for the
general full-vectorial case.

The solution to Eq. (27) can be written in an exponential form

Ei(z,y,2 + A2) = e PAEy(z,y,2) (44)
which can also be approximated by a weighted finite-difference form

2nok — jAzZ(1 — )P
2nok + jAzaP

Eu(z,y,z+ Az) = E(z,y,2) (45)

where Az is the longitudinal step size and o is a weighting factor
which controls the finite-difference scheme. For instance, o = 1 cor-
responds to the standard implicit scheme and a = 0 is explicit; the
Crank-Nicholson scheme corresponds to a = 0.5. The choice of «
will affect the stability, the numerical dissipation, and the numerical
dispersion of the scheme, which will be discussed later in Section 3.3.

By discretizing the operator P in Eq. (45) as described in the
previous section, we obtain a system of linear equations

A[E]"*! =BIE.) (46)

where [Ey)' and [E.]"™"! are field vectors at two sequential steps
and [+ 1, A and B are nonsymmetric complex band matrices. The
matrix A, which has nine non-zero elements in each row for the 3-D
full-vectorial equations and five non-zero elements for the 3-D semi-
vectorial and scalar equations, can be inverted efficiently by well-
established sparse matrix solvers, such as ORTHOMIN [41], BiCG [42],
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or BiCG-STAB [43]. For the 2-D structures, the matrix A reduces to
a tri-diagonal matrix which can inverted directly by a LU solver [40].

8.2 Transparent Boundary Condition

The Maxwell’s equations and their reduced forms can not be
solved numerically without specifying the boundary conditions since
the numerical computation window can not have an infinite dimen-
sion. The boundary condition used in the conventional BPM is the
so-called absorbing boundary condition [13]. The idea is to artificially
place a lossy medium at the edges of the computation window to absorb
(or to eliminate) the possible reflections at the boundary. The major
disadvantage of the absorbing boundary condition is that it is prob-
lem dependent. For a specific structure, users have to choose different
absorbing parameters, such as the thickness of the lossy region and
the magnitude of the artificial loss. All of these require experience and
perhaps trial-and-error experiment. In addition, to minimize the arti-
ficial loss, the window size has to be large enough so that the fields at
boundary are almost zero. A new boundary condition, called transpar-
ent boundary condition has been proposed lately [44]. The transparent
boundary condition has distinguished advantages over the absorbing
boundary condition. First, it is not problem dependent and much more
robust. Therefore, the users do not need to deal with the numerical
boundary conditions, which are automatically set in the numerical al-
gorithm. Secondly, it does not require a zero value at the boundary.
Hence, the wave can travel smoothly out of the computation window
without reflection, leading to a relatively small computation window
which can be used to increase the efficiency.

The wave equation at the computation edges is assumed to be a
one-way plane wave which satisfies

ov

— = —jk, V. 4
oz Iz (47)
In the finite-difference form, this becomes
U (m) = U (m — 1)~ k=02 (48)

where the transverse complex wave vector k, is computed from the
previous step by calculating the ratio ¥'(m — 1)/%¥!(m —2). To avoid
possible reflection due to numerical errors, the real part of the trans-
verse complex wave vector k; is forced to be non-negative.
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3.8 von Neumann Analysis

To analyze the FD-BPM, we apply the von Neumann method.
Strictly speaking, the von Neumann method is valid only when the
refractive index is independent of x, y, and z. If the refractive index
is slowly varying in the region of interest or piecewise uniform, then
the von Neumann analysis may be applied locally. It can be shown
that advancing E; in the spatial domain by one longitudinal step
corresponds to multiplication by the amplification factor g, given by

_ 2nok —jAz(1—a) || P |
T 2nok+jAza|| P

(49)

where || P || is the norm of the operator P which is related to the
wavelength, the transverse step sizes, as well as the index profile at the
middle of two propagating steps.

The amplification factor g contains information about the sta-
bility, the numerical dissipation and dispersion of the finite-difference
schemes and will be used in the analysis of the FD-BPM.

A. Stability criteria

The finite-difference scheme is stable if |g| < 1. From Eq. (49), it
is readily proved that the weighted finite-difference scheme in Eq. (45)
is unconditionally stable for

a > 0.5, (50)

which means that the stability criteria is independent of both longi-
tudinal step size and transverse mesh sizes. The numerical boundary
conditions used may also have effects on the stability of the schemes.
Under these circumstances, the Crank-Nicolson scheme with o = 0.5
is more likely to become unstable compared to the implicit scheme
with a >0.5.

B. Numerical dissipation

A stable numerical scheme may not conserve power. The numeri-
cal dissipation may introduce nonphysical power loss and will limit the
application of the FD-BPM for prediction of the guided power. The-
oretically, a nondissipative finite-difference scheme requires |g| = 1,
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which corresponds to the Crank-Nicolson scheme. Generally speaking,
the Crank-Nicolson scheme is the least dissipative while the standard
implicit scheme with a = 1 is the most. In practice, a should be
carefully chosen. Although the Crank-Nicolson scheme is theoretically
stable and nondissipative, a = 0.5 may not be the best choice since the
numerical boundary condition may have some effects on the stability.
Also, the inevitable high frequency numerical noise will keep propagat-
ing due to the nondissipative scheme. As a result, the simulated field
patterns are usually not smooth due to the high frequency numerical
noise. The suggested scheme should be a =0.5+6 (6 is a very small
number) such that the scheme is slightly dissipative in order to smooth
the results but not to violate power conservation. On the other hand,
even for a dissipative scheme, the numerical dissipation can always be
reduced by reducing the longitudinal step size Az, as evident from
Eq. (49).

C. Numerical dispersion.

Due to the discretization, some phase errors will be introduced
in a finite-difference scheme. As a result, the numerical dispersion will
generate and degrade the accuracy of the phase-related characteristics
calculated by using the FD-BPM, such as the propagation constants
and coupling lengths of the optical waveguides. By assuming that the
refractive index is slowly varying, we may still apply the von Neumann
method to analyze the numerical dispersion. The solution to Eq. (45)
may be rewritten as

Ett(m, ’I’L) — Igl'e—j(mkmAa:+nkvAy+lic,Az) (51)

where E.!(m,n) is the field value at the lattice points of 2 = mAz,
y =nAy, and z =[Az. The propagation constant for the envelope of
the transverse electric fields along 2 can be approximated by

ko Az 4

kyAy
2 ) P

sin 2(-—2—"')

ky =

4 .
2kno [("2 o)k - (Az)? sin’(

(52)

Equation (52) indicates that the scheme parameter o and the longi-
tudinal step size Az do not affect the numerical dispersion. To reduce
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the numerical dispersion, one needs to choose a proper reference index
n, and use a sufficiently fine mesh in the transverse cross section (i.e.,
to reduce Az and Ay).

3.4 Assessment

For the assessment, we simulated the guided modes of a step-
index symmetric slab waveguide and a step-index fiber, for which the
exact analytical solutions are available for comparison. These simple
structures lend themselves to easy understanding and interpretation of
the results obtained from the numerical simulations.

A. 2-D slab waveguide

The numerical dissipation and the numerical dispersion are two
key parameters to evaluate a numerical scheme. To assess the FD-BPM,
we calculate the power attenuation coefficients along the waveguide
axis and the percentage errors of the propagation constants of the TE
and the TM guided-modes. According to our analysis in section 3.3,
the power attenuation experienced by a guided mode in this lossless
and uniform (or z-invariant) waveguide structure is nonphysical and
mainly attributed to the numerical dissipation of the finite-difference
schemes. The errors in the propagation constants are mainly due to
the numerical dispersion as well as the truncation errors caused by the
discretization.

At the input, we start with the electric fields of the guided modes
calculated from the exact analytical solutions. The propagation con-
stants of the guided-modes are computed by first propagating the fields
a certain distance and then performing an overlap integral between the
input and the propagating fields [28]. The propagation constants for
the guided modes can be extracted from the overlap integrals. The
power attenuation coefficients are evaluated by calculating the the to-
tal power along the propagation distance. The insertion loss due to the
mismatch between the exact normal mode and the discretized waveg-
uide structures has been considered. The refractive indices chosen for
the guiding and the cladding layers are n; = 1.5, ny = 1.3, respec-
tively. The total width of the guiding layer is D = 0.5um . The wave-
length is A = 1.5um .
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We first evaluate the effect of the reference index n, and the
scheme parameter « . Shown in Figs. 1(a) and 1(b) are the percentage
errors of the propagation constants and the power attenuation coef-
ficients (dB/mm) for the TE (solid) and the TM (dash) modes for
o = 0.5 and a = 0.6, respectively. The mesh size is Az = 0.02um
and the step size is Az = 0.01um . The effective indices neg of the TE
and TM modes are calculated and marked in the figures. It is noted
that the propagation constant is independent of a, but critically de-
pendent on n,. The best results are achieved when n, = neg . All the
observations are consistent with the analysis in section 3.3. It should
be pointed out that the n, dependence can be reduced significantly
by using wide-angle BPM [36].

By inspecting the power attenuation show in Fig. 1(b), it is noted
that the nondissipative Crank-Nicolson scheme with a = 0.5 is power
conserved and the power attenuation is independent of n,. For the
other schemes (« > 0.5), the larger « is, the more dependent the
numerical dissipation is on the reference index n,. These results are
also consistent with the analysis in section 3.3. Therefore, in the situ-
ation where the effective index n.g is difficult to estimate, the Crank-
Nicolson or schemes with o slightly larger than 0.5 are preferred for
predicting the guided power in the waveguides.

With the proper choice of the reference index n, and the scheme
parameter o, we now proceed to investigate the convergence of the
FD-BPM as functions of the mesh size. Figs. 2(a) and 2(b) show the
percentage errors of the propagation constants and the attenuation
coefficients for the TE (solid curves) and TM (dash curves) modes
as function of the mesh size Az. The longitudinal step size is fixed
at Az = 0.01pym. The scheme parameter is o = 0.6. It is apparent
from Fig. 2(a) that the propagation constants calculated by the FD-
BPM converge to the exact solutions as Az — 0. This observation
can be explained by the von Neumann analysis. By reducing the mesh
size Az, the numerical dispersion is reduced as indicated in Eq. (52),
thereby leading to more accurate propagation constants. The influence
of the mesh size on the power attenuation coefficients is small unless
Az is large, as illustrated in Fig. 2(b).
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The effect of the longitudinal step size Az is also investigated
and it is found that the variation of the longitudinal step size does not
have much influence on the accuracy of the propagation constants and
power attenuation coefficient [28]. In all the simulation, no instability
was observed.

To investigate the effectiveness of the transparent boundary con-
ditions, we repeated the above calculations for different window sizes.
The scheme parameter a = 0.6 is assumed and all the other parame-
ters are the same as in Fig. 1. Figure 3(a) and 3(b) illustrate the results
(solid: TE; dash: TM). It is noted that the errors in the propagation
constants are virtually independent of the window sizes, indicating
that the possible reflections at the edges of the computation window
are negligible even for very small window size. The power attenuation
coefficients increase rapidly as the window size becomes very small.
This effect is to be expected: when the transparent boundary is too
close to the core of the waveguide, the power that is guided in the
cladding near the core region may pass through the boundary and get
lost, leading to the higher attenuation. Nevertheless, the transparent
boundary condition seems to be highly effective in absorbing waves
traveling towards the edge of the computation window. As the window
size increases, the attenuation decreases and converge to the minimum
values determined by the scheme parameter o and other parameters.

The definite advantages of the present transparent boundary con-
dition over the damping absorbing boundary condition are its accu-
racy, efficiency, robustness and relative independence of the waveguide
structures.

B. 3-D fiber

It is expected that the conclusions for 2-D FD-BPM are still valid
for 3-D FD-BPM. Since there is no polarization coupling in 2-D cases, it
is necessary to verify and assess the 3-D full-vectorial FD-BPM, which
takes both the polarization dependence and the polarization coupling
into account. We take a step-index circular fiber as an example [37}. It
is well known that the so called single mode fiber can support two fun-
damental vectorial modes, namely, HE;, modes, although both can
be approximated by LPp; modes polarized along = and y directions
by ignoring the minor field component. The indices of the core and
cladding of the fiber are n; = 1.469, ny = 1.460, respectively. The
radius is a = 3.0um . The wavelength is A = 1.55um .
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The computation window size is W, = W, = 12um. The effect of
longitudinal step size Az on the stability and numerical dissipation is
first investigated. The mesh sizes are Az = Ay = 0.24um . We com-
pare the Crank-Nicolson scheme ( & = 0.5) with a non-Crank-Nicolson
scheme (a = 0.75). For each scheme we take two cases: n, = neg and
No # Nes, Where neg = 1.46366 is the effective index of the HE;,
mode of the fiber. Shown in Fig. 4 is the power attenuation coefficient
as a function of longitudinal step size Az. It is noted that the nu-
merical dissipation of the Crank-Nicolson scheme is very small and al-
most independent of Az and n, . However, for the non-Crank-Nicolson
scheme, the choice of reference index n, is critical. If n, # neg, the
numerical dissipation is large and becomes larger as Az increases. If
N, = Tes , Which is very difficult to obtain in practice, the numer-
ical dissipation is very small, even smaller than the Crank-Nicolson
scheme. This behavior is similar to what we observed in 2-D FD-BPM
and similar explanation is valid.



24 Xu and Huang

0.1F

dB/cm 0.01F

0.001 F

no =ngyy

0.0001
0.1 0.2 0.3 0.4 0.5
Mesh size Az(um)

Figure 5. The numerical dissipation as a function of mesh size Az = Ay

at Az =1.0um

Also, we investigate the effect of mesh sizes Az and Ay. The
longitudinal step size is fixed at Az = 1.0um . Shown in Fig. 5 is the
power attenuation as a function of mesh sizes Az = Ay for the four
cases shown in Fig. 4. It is noted that the choice of n, is very critical
for the non-Crank-Nicolson scheme and has no effect on the Crank-
Nicolson scheme. Also the numerical dissipation becomes larger as Az
decreases for Crank-Nicolson scheme and remains unchanged for non-
Crank-Nicolson schemes. As we predicted, the FD-BPM is stable for
all the simulations.

3.5 Applications

In this section, we apply the FD-BPM to two different structures.
One is a 2-D grating assistant coupler and another one is a 3-D polar-
ization rotator, for which the full-vectorial BPM has to be used since
the polarization rotation is due to the coupling of the two orthogonal
polarizations.

A. Grating-assisted directional coupler.

Directional couplers are building blocks for many guided-wave de-
vices in integrated optics [45]. Typical examples of directional coupler
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devices are the polarization splitters [46], wavelength filters [47], and
switches or modulators [48]. In order to achieve complete power cou-
pling between two parallel waveguides, the phase-matching condition
must be satisfied, i.e., the propagation constants of the two waveguides
have to be equal

B1 = P2 (53)

Therefore, the two waveguides are either identical or carefully designed
such that the propagation constants happen to be the same at the
operating wavelength.

ns=1.0

n3=3.2 g. 8. S
n2=3.5 di
ni=3.0

Figure 6. The schematic diagram of the grating-assisted coupler.

If the phase-matching condition (53) can not be satisfied, com-
plete power coupling can still be achieved by introducing a proper
periodic grating. Figure 6 shows the schematic diagram of a grating-
assisted coupler. Two dielectric waveguides are placed in close proxim-
ity to permit coupling through the interaction of the evanescent fields
of their guided modes. A grating is placed on one of the waveguides
in the direction of wave propagation in order to match the phases of
modes with different propagation constants, so that efficient power ex-
change between the two waveguides may occur. The phase-matching
condition for the grating-assisted coupler is [49]
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Figure 7. Power coupled to the lower waveguide of the coupler.
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where B, and (3, are the propagation constants of the symmetric and
antisymmetric modes of the coupler, and A is the grating period.

We first make a comparison with the well-established coupled-
mode theory (CMT) [50]. The fundamental mode of the upper waveg-
uide is assumed as the input field at the beginning and power will
gradually couple into the lower waveguide due to the grating. Shown in
Fig. 7 are the results calculated by both the FD-BPM and the CMT.
The parameters used are: d; = 0.3um, do = 1.0um, s = 0.6um,
ny = 3.0 ng = 3.5, n3 =3.2, ng = 3.3, ns = 1.0. It is noted that
the BPM and the CMT are in excellent agreement.

An interesting result is that it makes a difference if we start the
grating from a “+” section or a “~"section. Fig. 8 shows the TE mode
power coupled to the lower waveguide as a function of propagation
distance for these two cases. All the parameters are the same as in
Fig. 7.

It is noted that the coupled power increases directly if the grating
starts with a “+” section while it decreases to zero first and then
increases if the grating starts with a “-” section. As a result, there
is a shift which is much longer than half period. This phenomenon is
consistent with the CMT results {49].

The TM case is also studied and the results are shown in Fig. 9.
Similar behavior is observed.

A (54)
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As we can see from above curves, the coupling process involves
two different coupling mechanisms. The fast oscillation is due to the
natural coupling between the two waveguides and the slowly-varying
envelope is the accumulated coupling effect due to the periodic grating.
Because of the nonorthogonality of the waveguide modes, a cross-talk
is introduced, which causes an initial phase shift between the positions
of the maximum power in one waveguide and of the minimum in the
other waveguide. The power in two waveguides can be approximately

written as
Py = cos(Ne¢y) (55)

Py = sin(N¢g + ¢o) (56)

where ¢, is the phase shift introduced at each junction and N is the
number of grating period. For a given structure, the initial phase angle
¢o (i.e., the cross-talk ) and the magnitude of ¢, are fixed. But the
sign of the ¢, can be positive or negative depending on whether the
grating starts with a “+”or a “-” section. This makes these two cases
quite different. The difference will be smaller as the separation between
two waveguides becomes larger.

The scattering loss of the grating-assisted coupler may be cal-
culated by using the FD-BPM. In this respect, the BPM is superior
to the CMT, which usually treats the guided modes only. In order to
precisely predict the loss, the nondissipative Crank-Nicolson scheme
has to be used. Shown in Fig. 10(a) is the loss of the TE mode as a
function of the propagation distance for different grating heights. It is
observed that the scattering loss almost linearly depends on the grat-
ing height. It is also observed that the loss is not uniform along the
propagation distance. This is reasonable considering that the radiation
loss is purely due to the scattering at the junction. The loss will be
minimized if all the power is guided in the waveguide without grating
and no evanescent field extends to the junction.

The loss for the TM mode are also calculated and the results are
shown in Fig. 10(b). Similar behaviors are observed. It is noted that
the TM case is less lossy than the TE case. In addition, the TM case is
more noisy than the TE case. This may be due to the discontinuities
of the electric field and the nondissipative scheme (o = 0.5).
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B. Polarization rotator.

The polarization coupling of photonic guided-wave devices is weak
due to the small index difference of the devices, hence, semi-vectorial
approximation is usually sufficient. However, as the optical wavelength
is very short (0.6 — 1.6um ), the weak coupling may accumulate in a
relatively long device. A periodic loaded semiconductor rib waveguide
is one example. Fig. 11 shows the schematic diagram of such a device.
A similar structure has been fabricated and tested at AT&T Bell Labs.
by Shani and coworkers [51] and a coupled-mode analysis of this de-
vice has been proposed by Huang and Mao [52]. The analysis indicates
that the polarization rotation is purely due to the vectorial properties
of the guided modes in the asymmetrically loaded rib waveguide. A
simulation by the FD-BPM is carried out in this section. In compar-
ison with the intuitive coupled-mode analysis, the BPM simulation is
expected to be more accurate. In particular, the scattering loss at each
junction can be predicted by the BPM. In the simulation, the parame-
ters used are: the indices n = 3.27 for InP and n = 3.4 for InGaAsP,
the rib width W = 3um and the height H = 0.5um , the thickness of
the load is D = 0.1um, and the operating wavelength A, = 1.3um.
Two fundamental modes can be supported by this structure; one is the
quasi-TE mode and the other is the quasi-TM mode. If both modes
can be excited, they will propagates separately and beat with each
other. As a result of the beating between these two normal modes,
the two orthogonal polarizations are coupled and complete coupling
can only be achieved when these two normal modes have the same
amplitude. Therefore, for a straight asymmetrically loaded waveguide,
complete polarization rotation cannot be achieved, since a linearly po-
larized input can not equally excite both modes. Figure 12 shows the
power coupling between the two orthogonal polarizations when the rib
waveguide is loaded asymmetrically on one-side only. It is noted that
the coupling is very weak and complete polarization rotation can not
be achieved. However, if we load the rib waveguide periodically and the
period chosen to be the beat length as indicated in Fig. 12, complete
polarization rotation can be achieved. Shown in Fig. 13 is the BPM
simulation result. Figure 13(a) shows the powers carried by the two
polarizations as a function of propagation distance. It is noted that
an efficient polarization coupling (a complete rotation within 800um )
is demonstrated. In Fig. 13(a) the results excludes the radiation loss.
The results including the effect of the radiation loss is illustrated in



Finite-difference beam propagation method for guide-wave optics 31

Fig. 13(b). It is noted that the device simulated suffers a scattering
loss of about 3 dB for one coupling length. This is mainly due to the
scattering at the discontinuities along the waveguide axis.

7
/
7

D
InGaAsP | H
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Figure 11. The schematic diagram of the periodically loaded polarization

rotator.
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4. Other Numerical Schemes

In addition to the FD-BPM described in Section 3, there are sev-
eral other numerical schemes based on finite-difference or other tech-
niques which can be used to solve Egs. (27) and (28) as well as their
reduced semi-vectorial and scalar variants. Depending on the type of
scheme employed, the propagators that relate the fields at two or more
propagation steps along z may be explicit, implicit, or mixed. In this
section, we focus on the following two explicit finite-difference schemes
for the paraxial equations only.

4.1 Multi-Step FD-BPM

By applying a central difference to approximate the left-hand side
of Eq. (27), Chung and Dagli proposed an explicit multi-step scheme
[20]

Az

Ei(z + Az) = Ei(z — Az) — jn kPE(z) (57)

This scheme was originally applied to the scalar Eq. (29) and recently
was extended to the vectorial equation. It is conditionally stable and
a stability criterion has been derived [33] as

2kn,

Az < (58)
s + a7 + k%n? — nd

It is also demonstrated that the muti-step scheme is nondissipative,
i.e., power is conserved.

One of the advantages of the multi-step FD-BPM is its simplicity
in implementation; an extremely simple algorithm can be developed
for the paraxial waves in both two- and three-dimensions. Since no
matrix inversion is required in the propagator, this scheme is strictly
explicit and particularly attractive for the three-dimension simulations,
in which the solutions of the matrix equations in the implicit schemes
may become difficult. At the edge of the computation window, an ab-
sorbing boundary condition (ABC) has been used and the scheme ap-
peared to be stable. The transparent boundary condition (TBC) has
not been reported for the multi-step FD-BPM. The authors have tried
to use the TBC in this scheme and observed instabilities.

The stability criterion in Eq. (58) requires that the ratio between
the longitudinal and the transverse step sizes be smaller than certain
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value. For a fine mesh over the transverse cross-section, a very small
longitudinal step size has to be used, which makes the simulation less
efficient. Another difficulty reported for this scheme was that it requires
the fields at fwo previous steps to predict the values of the fields at
the present step. Since the field values are known only at one step, the
values at the second step were calculated by using a FFT-BPM or an
unstable forward-difference FD-BPM [53]. Furthermore, the use of the
absorbing boundary condition (ABC) makes this scheme less robust.
For instance, the scheme may become unstable due to an improper
absorber.

4.2 Series-Expansion FD-BPM

By using a Taylor expansion of the exponential operators in
Eq. (45), the propagator can be written as [16]

N n
E(z+A2) =) % <—j ?::,:) E.(2) (59)

n=0

This scheme is explicit for the paraxial wave equation. It requires the
field values at only the previous step instead of two steps in the multi-
step FD-BPM. Another advantage of this scheme is that the transpar-
ent boundary condition may be applied at the edge of the computation
window as demonstrated by Splett and coworkers [16]. Like the multi-
step FD-BPM, the series-expansion FD-BPM was first applied to the
scalar wave equation and then was extended to the vectorial wave
equation [34]. One of the difficulties associated with this scheme is the
stability. So far, no stability criteria have been established. In the nu-
merical simulations, it is noted that the stability of the scheme depends
on not only the step sizes, but also on the order of expansion N.

4.8 Comparisons among Different Schemes

In this section, we compare the two explicit FD-BPM schemes
with the implicit scheme described in Section 3. It should be noted
that it is difficult to make a direct comparison since each scheme has it
own adjustable parameters, such as ABC in the multi-step scheme and
the serial order in the series-expansion scheme, as well as the scheme
parameter « in the implicit scheme. However, the efficiency of each
scheme has nothing to do with those parameters. Therefore, we only
compare the efficiency of each scheme.
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For the two-dimensional structure, we choose a directional coupler
which consists of two identical slab waveguides. The refractive indice
are n = 1.5 for the core and n = 1.3 for the cladding. The slab waveg-
uides are d = 0.6\ thick with s = 0.6\ separation. The computation
window size is chosen as w = 5A. The propagation distance is one
coupling length of the coupler, i.e. L = 49.5\. First, the mesh size
(transverse step size) is fixed at Az = 0.05\ and the efficiency as a
function of longitudinal step size Az is tested. Shown in Fig. 14 are the
computation times of each scheme on a HP9000/730 workstation. It is
observed that the computation time is almost inversely proportional
to the longitudinal step size. It is seen that the multi-step FD-BPM is
the most efficient one, about one order of magnitude faster than the
implicit FD-BPM for the same Az. The implicit FD-BPM can be
more efficient than the multi-step FD-BPM by using large step size
without much sacrifice of accuracy. In contrast, the series-expansion
FD-BPM appears to be the least efficient one. Also the computation
time is linearly proportional to the expansion order n.

We also examined the dependence of the efficiency on the trans-
verse step size Az and the results are shown in Fig. 15. The longitu-
dinal step size is fixed as Az = 0.005) . As expected, the computation
time for each scheme is proportional to the number of mesh points, i.e.
inversely proportional to the transverse step size Az.

To further assess and compare the FD-BPM schemes examined,
we have also simulated a three-dimensional waveguide structure. Since
our focus is on the efficiency, we simply propagate the fundamental
scalar mode (LPo;) of a step-index circular fiber for 50 wavelength.
The parameters of the fiber are the index of the core: n = 1.5, the
index of the cladding: n = 1.48, and the radius: a = 2\. The compu-
tation window is w; = wy = 10A. Figures 16 and 17 show the results.
Similar behaviors to 2-D cases are observed. The computation time for
the implicit FD-BPM is not quite linear due to the iterative sparse ma-
trix solver. For large step size or fine mesh size, it takes more iterations
to converge to a fixed tolerance.
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In conclusion, for the same Az and Az, the multi-step explicit
FD-BPM is the most efficient, and the series-expansion explicit FD-
BPM is the least. However, in order to obtain more accurate results,
finer meshes have to be used and the propagation step size has to be
small in order to satisfy the stable condition Eq. (58), which can be

approximated as
Az kno

< 2L
min[(Az)?, (Ay)?] — 4
when mesh size is very small. In this case, the multi-step scheme be-

comes less efficient and the implicit FD-BPM becomes more efficient
due to its unconditional stability.

(60)

5. Extension the FD-BPM to Anisotropic Media

The implicit FD-BPM described in the previous sections applies
to isotropic waveguides only. However, anisotropic materials are of-
ten used as guiding media for many optical devices such as polariza-
tion converters [54] and polarization maintaining fibers [55,56]. For an
anisotropic medium, the propagating waves are polarization depen-
dent and coupled due to both the material properties and the struc-
ture geometries. The BPMs have been employed for the analysis and
simulation of wave propagation in anisotropic media {57-60]. The con-
ventional BPMs, however, pertain to the scalar wave equation, where
the polarization dependence and coupling due to the geometric effects
are ignored. Recently, there has been some efforts in trying to bring
the vectorial properties into the BPM [59,60]. However, the geometry
induced polarization dependence and coupling, which is due to the dis-
continuities of the normal component of the electric field at discontinu-
ous index boundaries, as well as the coupling between the longitudinal
component and the transverse components of the field, are not well
stated in the papers. It is not clear how the discontinuity was han-
dled in Ref. [59] since the normal component of the electric field is not
continuous and it can not be differentiated directly. In Ref. [60], the
coupling between the longitudinal field and the transverse field was
ignored, hence, the geometric effect was not complete.

In this section, we extend the implicit FD-BPM to waveguide
structures made of anisotropic materials so that the polarization de-
pendence and coupling due to both the material and geometric effects
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can be simulated.

The equations derived in Section 2 are valid for isotropic materials
only. For anisotropic media, the refractive index n? is replaced by a
dielectric tensor €. These equations have to be modified accordingly.

5.1 Modification of Formulations

For most anisotropic materials, such as LiNbO 3, if the crystal
axes of orientation and the applied modulation field are arranged prop-
erly, the dielectric tensor can take the form

E=| €z €y 0 |. (61)

The variant of Eq. (14) for linear, anisotropic materials is

0%E, OE,

557 — 12nok——+ ViEe + (6 — n5)k*Ex
1o .
= Ve[V B Ve (@B, (©2
where
_ €xz Exy
€it = €yr Eyy . (63)

is the transverse components of the dielectric tensor.
Following the same procedure in Section 2, one is able to derive
paraxial and wide-angle equations

OE,

j2nok—— = RE, (64)
: R \ OE, _
¥) (Znok + 2nok:) W = REt (65)

Where the operator

» Rrz Ry
R= (Rw Ryy) (66)
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is defined as [61]

2 2
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=52 T8z |nL o
0 1 a(anEz)
+5 !ﬁi——_(‘!;y_ + (2, — nd)k*E, (67)
zZ

PE, 8 | 1 9(nZEy)
&ﬂrﬁﬁ+@b§fﬁ—

0 |1 dnzyBy) 2 24,2
'6—y [n—%T + nyy—no)k Ey (68)

8 | 1 8(n, E,)
2 1.2 Y
o(n2,E 2
+_6_ 1 8(nzyEy) |  3°Ey (69)
0r [n2, Oz Ozoy
0 [ 1 0(n2.E;)
2 1.2 T
Ry, E; =ng,k"E; + % [.’IET{—]
d(n2,E. 2
gy |n2, Oy dyox

It is noted that in Eqs. (67)—(69) both the material and the geometri-
cal properties of the waveguides contribute to the polarization depen-
dence (i.e., Rzz # Ryy) and coupling (i.e., Rzy # 0 and Ry, # 0).
If the material anisotropy and the geometric polarization effect are

weak, then the “higher order” terms such as 3% [Hé:% (nngx)],

% %% (LB, & [# & 04E)] ad § [F-F (n.E.)] in
Egs. (6) may be neglected. These terms, which are the “product” of
the geometric and material effects, are expected to be very small for
practical cases. The operators can' then be approximated by

o 2
PE, 8 [_I_MJ +(n2, 2K, (71)

Ry Ey = ngz o1

ay? + oz
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2 9(n2, E.
9°E,y 0 [_LM +(n§y —n(?;)szy (72)

E, =2 2F, + —
s =5 Bt 5y |78 oy

8 | 1 0(n2,E)) 5%E.

2 1.2 O | 1 G\ yyly) | y
ReyBy =k "By + 5 [n2 oy | ooy (™

0 [ 1 0(niE;)] ©O°E

— 2 1.2 T _ T
RysBz = njuk°Es + 5 [_ng,, 2= ] By (74)

Similar to operators P for isotropic media, the discontinuities of
the fields and their derivatives are considered in the formulations and
the operators defined in Eqs. (71)—(74) can be discretized directly. The
same numerical scheme can be used.

5.2 Example of Anisotropic Waveguides

To demonstrate the application of the FD-BPM for anisotropic
waveguides, we choose a single mode step-index fiber made of bire-
fringent materials. Due to the birefringence, the X-polarized field and
the Y-polarized field see different refractive indices n; and n, (as-
suming nz; = n, > ny ), respectively. Hence, two fundamental modes
(X-dominant HE ;; and Y-dominant HE ;; ) of the single mode fiber
have different propagation constants. When the birefringence is suf-
ficiently large such that the effective index of the Y-dominant HE
mode is smaller than the cladding index n¢e¢ | the Y-dominant HE j;
will coupled to the X-polarized radiation mode, which has a contin-
uous spectrum. Therefore, a single polarized, single mode fiber can
be realized. The coupling loss has been studied by using both per-
turbation theory [62] and coupled-mode theory [63]. A closed form
analytical solution has been derived [62]. To verify the phenomenon
and make a comparison, we use the BPM to calculate the loss of a
single mode birefringent fiber. The radius of the fiber is R = 5um
and the wavelength is A = 1.55um . The refractive indices of the core
and cladding are ng® = 1.4646 and nge¢ = 1.46 in X-direction, and
ng® = ng + by and nde? = nged 4 6, in Y-direction, where 65y is
the material birefringence. The HE 1; mode of an isotropic fiber with
0zy = 0 is chosen as the input field and propagates in the birefringent
fiber. After the steady state is reached, the loss per unit length can be
calculated. Shown in Fig. 18. is the loss as a function of 8y/A , where
A = n — nd js the index difference between core and cladding.
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The analytical result by Ref. [62] is also shown in the same chart. It
is noted that analytical result and numerical result are in very good
agreement. The loss calculated by BPM is slightly larger than the an-
alytical solution. That is due to the inevitable numerical dissipation of
the BPM.

1000 f T T

100 ¢

Loss

(dB/km) | Analytical —

1 1

0.5 1 1.5
Material Birefringence (8.y/A)

Figure 18. Loss of the Y-dominant HE;; mode of the birefringent fiber
as a function of material birefringence.

In order to demonstrate the lossy phenomenon clearly, we plot,
in Fig. 19, the field patterns of two components at the steady state.
It is noted the main component is similar to the main component of
an isotropic fiber. The minor component, however, is quite different
from the minor component of an isotropic fiber. It is not well confined
and the leakage is clearly illustrated. This phenomenon is consistent
with what is predicted by perturbation theory [62]. The main compo-
nent consists of guided and radiative fields. The radiation is very small
compared with the guided field, hence, the leakage is hardly visible in
Fig. 19. Whereas, the minor component consists of the radiative field
only, hence the leakage can be clearly observed. In comparison, we also
plot, in Fig. 20, the field patterns of X-dominant HE ;; mode at the
steady state. They are similar to those of an isotropic fiber and no
obvious leakage is observed.
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(a)

(b)

Figure 19. Field patterns of the Y-dominant HE;; mode of the bire-
fringent fiber (6;; = A). (a) Dominated E, component; (b) Minor E;
component.
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(a)

(b)

Figure 20. Field patterns of the X-dominant HE;; mode of the bire-
fringent fiber (6, = A). (a) Dominated E, component; (b) Minor E,
component.
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