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1. Introduction

Recently, several methods have been developed to propagate op-
tical beams or total fields through optical waveguiding structures. The
advantage of treating total fields, rather than individual modes is
manyfold. The analysis is not restricted to uniform or near uniform
wave-
guides and one can handle, in principle, arbitrary index and/or geome-
try variations along the direction of propagation. Further, one does not
have to deal with radiation modes explicitly as these are included in
the total field propagating along the waveguiding structure. The most
common of these methods is the Beam Propagation Method (BPM)
which was first used to propagate laser beams through atmosphere [1}.
It was later used for beam propagation through optical fibers [2-6] and
through rib waveguides [7]. This method is discussed in detail elsewhere
in this volume. Likewise, several other methods, which have lately been
developed, are discussed in this volume in other chapters.

In the present chapter, we discuss a method, that we have devel-
oped recently for solving the Helmholtz equation. The method is based
on the collocation principle and has some unique features in compari-
son to other methods. The aim in this chapter is to describe the basic
principles of this method, its applications to a number of waveguiding
problems-both linear and nonlinear, and to compare, through some
numerical examples, the computational efficiency and accuracy with
those of the BPM.

A waveguide structure is defined by its refractive index distribu-
tion n?(z,y,z) which contains all information regarding interfaces
also. The electromagnetic fields that propagate through such a di-
electric structure must satisfy the Maxwell equations. However, in a
majority of practical waveguiding structures (we will confine our dis-
cussion to such cases), the relative variation of the refractive index
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is sufficiently small to allow the scalar wave approximation. It, then,
suffices to consider instead a much simpler Helmholtz equation:
% 0% o
R
oz oy Oz

+kin*(2,y, 2)y(z,y,2) =0 (1)

where ¥(z,y,2) represents one of the cartesian components of the
electric field (generally referred to as the scalar field). The time depen-
dence of the field has been assumed to be exp(iwt) and ko =w/ec.

The problem that is addressed in this chapter is then to obtain
the solutions ¥(z,y,z) of Eq. 1 given the field ¥(z,y,20) at a plane
z = zg. Thus, we are dealing with an initial value problem with re-
spect to the variable z (which is generally taken as the overall direc-
tion of propagation). However, the presence of the partial derivatives
with respect to the transverse coordinates (z and y) makes this prob-
lem much more complex and one has to devise special methods even
to obtain numerical solutions. We will discuss, in this chapter, the
applications of the collocation method to this problem and its further
development that we have made recently [8-17]. For simplicity we shall
confine our discussions, initially to 2-dimensional structures and return
to 3-D structures later in Sec. 6. Thus, we consider for the present a
planar refractive index distribution, n?(z,z) for which the Helmholtz
equation takes the form

2
%ﬁf_ + %ﬁé’- + k2n?(z, 2)(z, 2) = 0 (2)

and z is assumed to be the general direction of propagation. In
Sec. 2, we have discussed the basic collocation principle and its ap-
plication to the solution of Eq. 2. Our method uses the orthogonal
collocation method and hence, we refer to it as the OCM. In Sec. 3,
an unconditionally stable form of the collocation method is developed
using the split-step procedure and we shall refer to this method as the
split-step collocation method (SSCM). Use of variable transformation
makes the collocation method more efficient, as we discuss in Sec. 4.
This method then is referred to as the variable transformed collocation
method (VTCM). All these methods use the Hermite-Gauss functions
as the basis functions. However, the collocation method is open to
the choice of basis functions, and in Sec. 5, we discuss the sinusoidal
functions based collocation method (SCM). Section 6 is devoted to
the discussion on the application of the basic method, the OCM, to
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three-dimensional (3-D) propagation. Other forms of the method, the
SSCM, the VTCM and the SCM can also be used for 3-D propagation;
these are, however, not included in this chapter. Section 7 discusses
some applications for which the collocation method has certain dis-
tinct advantages and methods like the BPM cannot, in general, be
used. Finally, in Sec. 8, we discuss the application of the collocation
method for nonlinear pulse propagation through optical fibers.

2. Basic Collocation Method

Collocation methods have been used since the turn of this cen-
tury for solving integral equations. These were first applied to solution
of differential equations by Frazer, Jones and Skan [18] in 1937 and
independently by Lanczos [19,20] in 1938. The collocation method be-
longs to the family of methods used for solving differential equations
which can be grouped together under the common name — the method
of weighted residuals [21]. In the collocation method, the solution of
a differential equation is sought in the form of a linear expansion as
a polynomial or over a set of polynomials or functions. The coeffi-
cients of expansion are obtained by imposing the condition that the
expansion satisfies the differential equation exactly at certain discrete
points on the independent variable axis (or plane). These points are
referred to as the collocation points. In earlier methods, these points
were chosen to be equidistant. However, Lanczos [20] showed that such
a choice may lead to divergence in results (a phenomenon termed as
‘Runge divergence’) and suggested the use of orthogonal polynomials
as the basis functions for the expansion. Later, Villadsen and Stewart
[22] developed this concept further and called it “orthogonal colloca-
tion”. Fletcher [23] has shown that the orthogonal collocation gives
results with accuracies comparable to the Galerkin method and its
implementation is much simpler. Further, the equidistant collocation
yields poorer results in comparison to the orthogonal collocation [23].
Orthogonal collocation has been applied using the Radau, Tcheby-
cheff and Legendre polynomials to solve a variety of chemical engi-
neering problems (see, e.g., [24]). In all these problems the range of
the independent variables is finite. We have, for the first time, devel-
oped [8] the collocation method for the Helmholtz equation which is
over an infinite range. We have used the Hermite-Gauss, the Laguerre-
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Gauss [25] and the sinusoidal functions as the basis functions. We have
used the orthogonal collocation method (OCM) which is outlined in
Sec. 2.1.

2.1 Orthogonal Collocation Method (OCM)

We begin with the Helmholtz equation for 2-D propagation, Eq.
2, and seek its solution for ¥(z, z) as a linear combination over a set
of suitable orthogonal functions, ¢n(z):

N
P(2,2) = Y _n(2)bn(z) (3)
n=1

where c,(z) are the expansion coefficients. The choice of ¢n(z) de-
pends on the boundary conditions and the symmetry of the guiding
structure. For a planar structure, for example, the Hermite-Gauss func-
tions are suitable while for a cylindrical structure the Laguerre-Gauss
functions would be more appropriate (see Sec. 5 for further discussion
on the choice of basis functions). For the present, we have

On(2) = Nu—1Hpn—1(ax) exp(—-;—oﬁa:z) (4)

where M,_; is the normalization constant and a is a parameter
which can be chosen arbitrarily, but its choice can influence the accu-
racy for a given value of N [9]. Obviously, the accuracy of expansion
in Eq. 3 improves as N increases. Since Eq. 2 cannot, in general, be
solved exactly, an approximate solution is sought by imposing certain
conditions which determine the coefficients, ¢,(z). In the collocation
method, this is done by requiring that the differential equation, Eq. 2,
is satisfied eractly by the expansion in Eq. 3 at N collocation points
z;,j = 1,2,...,N. This implies that we can uniquely determine only
N coefficients in the expansion and thus the orthogonal functions
used in the expansion are ¢;, ¢2,...,¢n . In the orthogonal colloca-
tion method, the collocation points z; are chosen such that these are
the zeroes of ¢n+1. Thus,

Hy(az;) =0, j=1,2,...,N (5)

The Hermite polynomial Hy has N distinct zeroes which are well
documented in the tables for the Hermite-Gauss quadrature formulae
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[25,26]. Writing the Helmholtz equation, Eq. 2 at each of these collo-
cation points, we obtain a set of N total differential equations

821,b d2¢j 2 2 .
_3_-9-3_2_3::3,+W+k0n (mJ’z)¢J(z)_0’ J_1’2""’N (6)

where ¥;(z) = Y(z = z;,2). This set of equations is best handled in
the form of a matrix differential equation. Thus, we write

v
Pl +D+R¥Y =0 (7
where
¥(z) =col.[Y(z1,2) P(z2,2) ... P(zN,2)] (8)
R(2) =K} x diag.[n%(21,2) n%(22,2) ... n’(&n,2)]  (9)
Y Y Py
D(z) =col. | — — il 4
(Z) © [6$2 =z 82:2 r=xg 6$2 T=TN (10)
Further, we can write the expansion in Eq. 3 at the collocation points
as N
W(zj,2) = _en(2)nlz;), j=1,2,...,N (11)
n=1
which can also be written in the matrix form as
¥(z) = AC(2) (12)
where
C(z) =col. [c1(2) c2(2) ... en(2)] (13)
and

$1(z1)  d2(z1) ... on(21)
¢1(z2) da(z2) ... on(x2)

(14)

¢1(£8N) ¢2(.$N) én(zN)

Similarly, by differentiating Eq. 3 twice with respect to = and writing
the resulting equation at each of the collocation points, we obtain

D(z) = BC(2) (15)
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where '
321:1 8%¢a F3on
z2 |, o P, o2 -
aﬂg; aﬁgﬁ l %N I
B= 7z z2 P (16)
8%¢; 3343 8¢y
Bzt oy 0% gy = lzn

Substituting from Eq. 12, C = A~!¥ into Eq. 15, we get

D(z) = BA™1¥(2) (17)
and Eq. 7 then takes the form
d>v
Fry +8S¥(z) = (18)
where
S = BA~! + R(2) = Sp + R(2) (19)

We shall refer to Eq. 18 as the collocation equation. In deriving this
equation from the Helmholtz equation, Eq. 2, no approximation has
been made except that N is finite and Eq. 18 is exactly equivalent
to Eq. 2 as N — oo. Equation 18 is a matrix total differential equa-
tion and can be solved as an initial value problem using any standard
method such as the Runge-Kutta method or the predictor-corrector
method [25,27].

The field represented by ¥(z) varies rapidly on account of its
phase factor. In a homogeneous medium, this phase factor can be ex-
actly taken out as ¥(z) = X exp(—ikz) where k is the wave number
in that medium and X’ is a constant matrix. In a waveguldmg struc-
ture, one can similarly write

W(z) = X(z)e > (20)

where X(2) is a slowly varying envelope of the wave and k = kofires
with n..; being the index of a reference medium (a convenient choice
is the cladding or the substrate index). Substituting from Eq. 20 in Eq.
18, we obtain an equation satisfied by the envelope X(z):

dx . dx 9
—&—? - 2’1.](3?2:— + (S —k I)X(Z) =0 (21)
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where I is a unit matrix. For a mode in a uniform waveguide, it
is sufficient to consider the parabolic equation which is obtained by
neglecting the second derivative term:

ax

dz
since the propagation constants and the modal fields obtained from Eq.
21 and Eq. 22 are simply related [4]. Even for a non-uniform waveguide,
Eq. 22 is an excellent approximation which is equivalent to the Fresnel
approximation [2]. This approximation has been extensively used in
the study of waveguides and is in fact an essential approximation for
the BPM. In our method, on the other hand, it is optional as one
could solve either Eq. 21 or Eq. 22. However, we have found that, in
practical waveguiding problems, this approximation is extremely good
except near the excitation planes where rapidly varying transient fields
exist or in cases where reflections are important (see Sec.7.1). In our
examples, we have solved Eq. 22, except in Sec.7.1.

It may be pointed out that S(z) has the z-dependence only
through the diagonal matrix R(z), and BA™! is constant. Thus,
BA~! has to be computed just once to solve a waveguide design
problem in which the refractive index distribution is changed to get a
desired effect on propagation. The matrix A always has an inverse as
long as the collocation points are distinct and the basis functions are
linearly independent. Further, in case of orthogonal collocation, A™!
can be obtained by simply multiplying its transpose A7 by a known
diagonal matrix (see Appendix A).

(S — k1) X (2)/2ik, (22)

2.2 Numerical Example

In this section, we consider an example to show the accuracy and
efficiency of the collocation method. We will compare our results with
those obtained using the BPM. In order to show the inherent accuracy
of the method, we consider the propagation of the fundamental mode
through a uniform waveguide. The modal field does not undergo any
change except for a phase factor; hence, any change in the amplitude
of the modal field would directly reflect the error in the method of pro-
pagation. We also choose an index profile for which the modal field and
the propagation constant are analytically known. Thus, the numerical
computations have been performed for a secant-hyperbolic profile [28]:

n?(z) = n3 + (n? — n3) sech®(z/a) (23)
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with a=3 um, n;=1.45 and np=1.4476. We assume the free space
wavelength of the propagating wave to be Ag =1.31 um so that the
V -value [V = koa/n% — n$] is 1.2. We consider the incidence of the
fundamental mode of the waveguide at z=0; thus [28],

¥(z, 2=0) = cosh™" (z/a) (24)

W=a\/,32—k§n%=—;- 1+4V?2 (25)

As a measure of accuracy we have computed the correlation factor
(CF) of the propagating field at z=100 um with the incident field:

where

/'l,b*(a;, z =0) ¥(z,z =100 pm) dz
F= (26)

\/{/hp(a:,z - 0)|2dz} {/hb(a:,z - 100,um)|2dz}

The absolute value of the correlation factor should be unity, since only
the phase changes as a mode propagates through the waveguide. Thus,
any deviations in |CF| from unity is a direct measure of the accuracy
of the method used for computing the propagated field. This quantity
is plotted in Fig. 1. For comparison, we have also included the results
obtained using the BPM with a grid of 128 points in the cross-section
between —50um to 50 um. The value of the extrapolation interval
is 2.5 um for all calculations. Further, to show the computational ef-
ficiency of the method, we have also shown the relative computation
time. The Runge-Kutta method has been used to solve Eq. 22.

The figure clearly shows that the collocation method is compu-
tationally more efficient than the BPM. For example, an accuracy of
~ 1077 is obtained using BPM with 128 points. The same accuracy
is obtained using the collocation method with N =42 and the compu-
tation time is reduced by about 40%. Further, for N -values between
42 and 55, the collocation method gives better accuracy with smaller
computation time in comparison to the BPM with 128 points.
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Figure 1. The error in the correlation factor, 1-|CF}, as a function of the
number of collocation points, N, using the OCM for a uniform waveguide
with refractive index distribution defined in Eq. 23. The dashed curve
shows the relative computation time. Also indicated are the correspond-
ing quantities for the BPM with 128 sample points.

2.8 Salient Features of the Collocation Method

1. Both the BPM and the collocation method are based on the scalar
wave approximation. However, in the formulation of the BPM it
is necessary to make a further approximation, namely, the Fresnel
approximation, which is justified in most cases of practical inte-
rest. However, there are cases where this approximation cannot
be used (see, e.g., Sec. 7.1). In the collocation method, the Fresnel
approximation is not essential; but, its use reduces the computa-
tional effort. No physical or mathematical approximation is made
in deriving Eq. 18. The only approximation made is the finiteness
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3.

of N. The accuracy improves indefinitely as N increases.

. It is quite straightforward to obtain propagation constants and

modal fields with the collocation method. (see Sec. 7.3) Finding
eigenvalues and eigenvectors is much more tedious in the case of
the BPM [5]. It is possible to develop a matrix eigenvalue equa-
tion using BPM for uniform waveguides using the split-step FFT
method [29], but the matrix so obtained is complex with com-
plex eigenvalues whereas in the collocation method, the matrix
obtained is real and its eigenvalues are real (see Sec. 7.3).

. In the collocation method, it is possible to take computational

advantage of the special symmetry of the waveguiding structure.
For example, in a circularly symmetric fiber or fiber devices, the
three dimensional problem can be treated as a two dimensional
problem (see Sec. 6.2).

The collocation equation, Eq. 18, is equivalent to the Helmholtz
equation except for the finiteness of N and this equivalence
can be made as accurate as desired by making N large enough.
However, computational effort increases at least as N2 because of
the matrices involved. Further, the approximations also come into
play due to the numerical method adopted for the solution of the
collocation equation. Thus, the results obtained in Fig. 1 using the
Runge-Kutta method do not show any saturation in obtainable
accuracy as the error is sufficiently small for the Az -values used
due to the single step error in the Runge-Kutta method being of
the order of (Az)3. However, other methods (see, e.g., Sec. 3) of
lower accuracy do bring in saturation in accuracy.

Unconditionally Stable Form of the Collocation
Method

3.1 Problem of Stability

The collocation equation obtained in the Sec. 2 can be solved using

a variety of numerical methods such as the Runge-Kutta methods or
the predictor-corrector methods. These methods can be implemented
in various orders, e.g., the most commonly used Runge-Kutta method
is of the fourth order and the single step error term is proportional
to (Az)%. This generally means that in comparison to a lower order
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method, this method gives comparable error with a larger step size,
Az . However, we are dealing with a matrix equation which is basically
a set of simultaneous differential equations. In solving such a set of
equations, one encounters the problem of stiffness which means that a
numerical solution of such a system of equations can become unstable
unless the step size, Az, is very small (see, e.g., [30]). For instance,
in the numerical examples of Sec. 2.2, we have used Az = 2.5 um.
However, a value of Az > 5 um results in blowing up of the solution
after propagation by a few steps. Stiffness is a widely studied problem
in applied mathematics (see, e.g., [30,31] for a detailed discussion on
this problem). A lower order method (e.g., second order Runge-Kutta
method [25]) is more stable than a higher order method. Further, the
stiffness gets evened out after a certain number of propagation steps
and one could use a larger step size for further propagation. Although
there are some special methods available for dealing with stiff systems
[30-32], these are somewhat involved to use. To overcome the problem
of stiffness, we have developed a different approach to solve the col-
location equation. This approach is of the second order and uses the
symmetrized splitting of an operator just as in the case of the BPM.
It is also necessary, as in the BPM, to use the Fresnel approximation.

3.2 Split-Step Collocation Method (SSCM)

We consider Eq. 22 which can be expressed in the form

%ﬁz‘. = [Hi(2) — H)X(2)/2ik (27)

where H;j(z) = R(2) + Dy — k?1 is a z-dependent diagonal matrix
and Hz = AD2A~! is a constant square matrix. The matrices D;
and D, are defined as (see Appendix A)

D; = o*xdiag.(x} 23...2%) and D, =o’xdiag.[l 3 5...(2N—-1)]
(28)

A formal solution of Eq. 27 can be written as
X(z+ Az) = exp {[Hi(2) — H2]Az/2ik} X(2) (29)

which, on using the symmetrized splitting, becomes

X(z + Az) = PQ(2)PX(2) + Q(Az2)} (30)
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with
P =exp[—HAz/4ik]

and
Q(z) =exp[H;(2)Az/2ik] (31)

The matrix P is a constant matrix and is to be evaluated only once
for a propagation problem. The evaluation of P can be directly done
because of its special form

P = exp[-AD3;A7}]

where the matrix D3 = D2Az/4ik is a diagonal matrix. Expanding
the exponential, we get

P=I+ i(ADgA‘l)’"/m!

m=1
and simple manipulations show that
(~AD3A™1)™ = (—AD3A™}).(~AD3A7Y)....(~AD3A™ )
= A(-D3)™A™!

Hence,
P = Aexp(—D3)A™!

The exp(—D3) can be easily evaluated since D2 is a diagonal matrix
and the exponential of a diagonal matrix is a diagonal matrix with the
diagonal elements being simply the exponential of the corresponding
diagonal elements of the argument matrix.

The matrix Q(z), on the other hand, can be easily evaluated
since the argument of the exponential is a diagonal matrix; thus, Q(z)
is a diagonal matrix whose diagonal elements are the exponentials of
the diagonal elements of the argument matrix of Q(z). Further, since
the diagonal matrices commute with each other, we can separate the
z-dependent part in Q(2) as

Q(2) = Q1 Qa(2) (32)
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with
Q: = exp[(D1 —p’I)Az/2ik] and Q2(2) = exp[R(2)Az/2ik] (33)

The evaluation of Q; and Q2(z) is simple since these are diagonal
matrices.

Thus, a basic propagation step of the split-step collocation method
(SSCM) is

X(z+ Az) = PQ;Q2(2)PX(2) + Ol(Az)’] (34)

which requires two multiplications of a square matrix with a vector
and one multiplication of a diagonal matrix with a vector, since PQ,
can be evaluated once and treated as a single constant matrix for the
propagation. Since all the matrices P,Q; and Qs(z) are unitary
for real indices, these do not blow up for any value of the arguments.
Thus, this algorithm is unconditionally stable for any value of Az.
However, for obtaining desirable accuracy, the value of Az is
typically only few microns whereas the propagation lengths could be
several thousands of microns, indeed even millimeters. Thus, normally
propagation over several thousands of steps is to be carried out. In such
cases, one does not require to monitor the actual field profile at each
step of propagation and in reality several hundred steps are evaluated
without visualizing the field. In such cases, the computational effort
could be further reduced by making the following transformation

Y(z) =PX(2) (35)

and
I'= P2Q1 (36)

which is a constant matrix. Equation 34 then takes the form
V(2 + Az) =T'Qy(2)Y(2) (37)

Now, each propagation step requires the multiplication of a diagonal
matrix with a column vector and the multiplication of the resulting
vector with a square matrix. Conversion from X to Y and from
Y to X is required only at the initial point and the final point,
respectively.
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Figure 2. The error in the correlation factor, 1-|CF|, and the relative
computation time (for Az = 2.5um) as a function of the number of
collocation points, N, using the SSCM for a uniform waveguide with
refractive index distribution defined in Eq. 23. The dashed curves corre-
spond to the OCM. Also indicated are the corresponding quantities for
the BPM with 128 sample points.

3.3 Exzamples and Discussion

We again consider the example discussed in Sec. 2.2 and results
are given in Fig. 2 where we have plotted the error in the correlation
factor as a function of N . The results of Fig. 1 are also included for
comparison. The figure shows that the SSCM gives the same accu-
racy as that obtained by solving the collocation equation in the OCM
using the Runge-Kutta method for smaller Az-values, but the com-
putation time is reduced by a factor of about two. The reduction in
the computation time results because, in the SSCM, the number of
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multiplications required to propagate the field over one step reduces
to 2N(N +1) from 4N? in the the Runge-Kutta method. For rela-
tively larger N and Az, the accuracy curve saturates. This is due
to the (Az)? error in the splitting of the operators (Eq. 30). In the
Runge-Kutta method, this error is of the order of (Az)5 [27] and
hence, saturation in the correlation error does not appear unless very
large N is used; however, one cannot use larger values of Az, since
the Runge-Kutta solution becomes unstable. The SSCM, however, in-
volves only unitary operators (for real refractive indices) and hence,
is stable for arbitrary values of Az. This fact is explicitly shown in
Fig. 3 where the error in the correlation factor is plotted as a function
of z for different values of Az. The method remains stable even for
Az = 50 um though the error increases. On the other hand, the error
in the OCM with the Runge-Kutta solution blows up for Az > 5um
after propagation through few steps only.
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Figure 3. The error in the correlation factor, 1-|CF|, as a function of the
propagation distance using the SSCM with N=50 for different values of
Az for a uniform waveguide with refractive index distribution defined in
Eq. 28. The dashed curves correspond to the OCM (using the Runge-

Kutta method).
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We consider next, the propagation through a linear taper with
index profile given by Eq. 23 with the half-width a now becoming
z-dependent as

a{z) = ao — (2 (38)

with ag = 3um and { = 0.1. We have carried out calculations for a ta-
per of length 10 um. Thus, the half width of the guide reduces linearly
from 3.0 um to 2.0pum. The incident field is taken to be the normal-
ized local fundamental mode at z = 0. After propagation through
the length of the taper, the power lost from the fundamental mode
is calculated by taking the difference from unity of the square of the
absolute value of the overlap integral between the output field at the
end of the taper and the local normalized mode field of the waveguide
with half-width a = a(10um). The convergence of results is depicted
in Fig. 4 where we have plotted the fractional power lost from the fun-

damental mode as a function of computation time (normalized with
respect to the time taken for the BPM with 128 points). The curves
are obtained by varying the number of points in both the collocation
method and the BPM. The figure shows that the time taken to reach

the convergence is about 1/2 in the Runge-Kutta solution (OCM) and

about 1/3 with the SSCM in comparison to the BPM. Similar results

have been obtained for tapers with cladded parabolic index profile [9].
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Figure 4. Power lost from the fundamental mode propagating in a taper
defined by Eqs.23 & 38 as function of the relative computation time

showing the convergence obtained using the OCM, the SSCM and the
BPM.
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4. Variable Transformed Collocation Method (VT CM)

4.1 Distribution of Sample Points and Accuracy

In the collocation method as well as in the BPM, the propagating
field is sampled at certain discrete points along the transverse cross
section. The propagation of the field is computed as the variation of
the field on these sample points. Obviously, the field is more accu-
rately represented if there is a larger number of sample points; how-
ever, then the computational effort also increases. One of the problems
that exists with both these methods is that a large fraction of sam-
ple points lies outside the guiding region since the sample points are
either equally spaced (in the BPM) or nearly equally spaced (in the
collocation method). Hence, a very large number of sample points are
required to model the field variation accurately in and around the guid-
ing region, and at the same time, to take into account the spread of the
field away from this region. It would obviously be more efficient (more
accuracy with less computation) if one could redistribute the sample
points in such a way that the density of points increases in and around
the guiding region, and the transverse extent, covered by the sampled
field, also increases. Such a redistribution improves the accuracy of the
field propagation method.

A variable transformation, however, converts the Helmholtz equa-
tion to such a form that the BPM (based on the Fast Fourier Trans-
form) can no longer be implemented for its solution. On the other
hand, such a transformation can be easily incorporated in the colloca-
tion method.

4.2 Variable Transformation

We begin with the Helmholtz equation (Eq. 2) for a planar guiding
structure and consider the variable transformations

z =h(0o) (39)
Y(z,2) =VH(o) U(o,2) (40)

where ¢ is the new variable, h(o) defines the functional relationship
between x and o (prime denotes differentiation with respect to
o), and U(o, z) is the transformed field. With these transformations,
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Eq. 2 becomes
9 2
O+ 105 +19(0) + K0, () =0 (41)
where
1(0) =[W (o)) (42)
g(o) ='2‘;%i (h""H — %h”% (43)

Equation 41 is similar to Eq. 2 in form except that the coefficient of
the second term is now variable. It is for this very term that the BPM
based on FFT cannot be implemented to solve the equation because
the solutions for the corresponding equation with n? constant are no
longer sinusoidal functions or plane waves. However, the collocation
method is general enough to be applicable to this equation also. Thus,
using the method described in Sec. 2.1, we can convert Eq. 41 into a
matrix equation

fg—y- +8U(z) =0 (44)
The vector U(z) denotes the values of the transformed field at the
collocation points as a function of z. The matrix S is defined as

S=FBA™!+R(2)+G (45)

where R,F and G are diagonal matrices with their successive diag-
onal elements being the values of kgn%(s, 2), f(¢) and g(o), respec-
tively, at the collocation points, which are now defined as the zeroes
of Hy(ao). The matrices A and B are defined in the same way
as in Eqgs. 14 & 16 except that now the independent variable is o
and the collocation points are defined above. Once again, we can take
out the rapid variations on account of the phase factor; thus, writing
U(2) = X(2) exp(—ikz) , where the envelope of the field X(z) satisfies
the following differential equation under the Fresnel approximation

ii-’f- =(S - K1) x(2)/2ik

=(H,; — Hy)X(2)/2ik (46)
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where

H; =FD; + R(z) + G — k’I (47)
H, =FAD,A"! (48)

and f)1 and 132 are defined as D; and Dy of Eq. 28 for o;’s. A
formal solution of Eq. 46 can then be written as

X(z +Az) = PQ(2)PX(2) + Ol(A2)% (49)
where symmetric splitting of the operator has been used and

P = exp(—HAz/4ik),
Q(2) = exp[-H;(2)Az/2ik].

The evaluation of Q(z) is simple as H; isa diagonal matrix. The
evaluation of P now requires the diagonalization of matrix Hs; thus,
we obtain its eigenvalues, A, and the eigenvectors, V, so that H, =
VAV~! and hence, P = Vexp(—AAz/sz)V ! (see Sec.3.2 for
details). The evaluation of P is required only once before the actual
propagation begins, and the computation involved in each propagation
step remains exactly the same as in the SSCM of Sec.3. The matrix Ho
is not a symmetric matrix, but is similar to a real symmetric matrix
(see Appendix B) and hence, the eigenvalues and the eigenvectors can
be easily obtained.

4.8 Choice of Transformation and Ezamples

The choice of the transformation, h(c), depends on the manner
in which the sample points are desired to be distributed. In most cases
of guided wave propagation (particularly, in single moded structures),
a large fraction of power is confined in the guiding region. Beyond this
region, the field decays generally monotonically and slowly extending to
a large transverse cross section. For such cases, if the sample points can
be crowded in the guiding region and made to cover a larger extent of
the transverse cross-section away from the guiding region, the accuracy
will definitely improve irrespective of the index profile and the field
distribution. The extent of improvement may differ in different cases.
There may be other cases too; for example, one may wish to crowd
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points in the area where the refractive index is varying relatively more
rapidly.

There are, however, certain general conditions that the transfor-
mation, h(g), must satisfy. It must be single valued and antisymmetric
[R(—0) = —h(0o)], so that there is a unique one-to-one correspondence
between z and o for both positive and negative values. Further,
h'(o),h"(c), and h"(o) should be continuous functions of ¢ and
K (o) # 0. Thus, the simplest form of transformation is (1 + y0?).
The value of the width constant o would be different for different
transformations. The values of a [used in the argument of Hy(ao)]
and 7 are obtained by minimizing the propagation error in a trial
propagation through a uniform waveguide over a small length.

Numerical examples using the transformations h(c) = (1 +70?)
and h(o) = o(1+v0*) for asech? waveguide of Sec. 2.2 are discussed
in [12]. We include here results for the transformation h(o) = sinho
for the same waveguide. Figure 5 shows the distribution of sample
points for N = 20 with and without this transformation. The figure
shows that without the transformation, the points are nearly evenly
distributed in the region upto about 7a, whereas with the transforma-
tion, these points are more crowded upto about 2a, and the last points
in stretched beyond 22a. Thus, in the transformed method(VTCM),
the field values down to about 10™° are “seen” by the method, while
in the untransformed case (OCM), fields only down to about 10~*
are taken into account. This redistribution has a dramatic effect on
the accuracy of propagation as can be seen from Fig. 6 where we have
plotted the error in the correlation factor as a function of the number
of collocation points N for different values of Az . There are two dis-
tinct features to be noted. Firstly, for smaller values of N (N < 30,
in the given example), there is an improvement in the accuracy by
about three orders of magnitude for all values of Az. Secondly, the
saturation value of accuracy has changed markedly for all values of
Az . Thus, whereas for moderate values of Az the accuracy worsens,
for smaller values of Az the accuracy improves by several orders of
magnitude. For example, an accuracy of 10~12 is not achievable even
with N > 60 and small Az values in the OCM, this is possible,
even with N < 30 and Az ~ 0.2um in the VTCM. Thus, with
the help of an appropriate transformation, a better accuracy can be
achieved with smaller matrix sizes. This would result in reduction of
computational effort.
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Figure 5. The field, ¢(z), as function of z/a showing the location of the
collocation points with (VTCM) and without (SSCM) the transforma-

tion h(c) = sinh(o).

S~ Az=2.5 um
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Figure 6. The error in the correlation factor, 1-|[CF|, as a function of the
number of collocation points, N, using the VTCM with h(c) = sinh(o)
and a = 1.1um™! for different values of Az for a uniform waveguide
with refractive index distribution defined in Eq. 23. The dashed curves

correspond to the SSCM.
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5. Choice of Basis Functions

As discussed in Sec. 2.1, the collocation method is open to the
choice of the basis functions, although, for planar waveguiding struc-
tures, we have chosen these functions to be the Hermite-Gauss func-
tions. There are, however, certain general conditions that the basis
functions should satisfy. First of all, these must satisfy the boundary
conditions in the transverse direction. Each function and its deriva-
tive must be continuous, since their combination represents the elec-
tric field. Further, the function and its derivative should vanish as
2 — +o00. The Hermite-Gauss functions satisfy these conditions. The
choice of basis functions also depends on the symmetry of the waveg-
uide geometry. For example, for a circularly symmetric index distri-
bution (like in optical fibers), the Laguerre-Gauss functions are better
suited (see Sec. 6.2).

The condition of vanishing field and its derivative at £ — oo
is often simulated at z = L, where L is chosen, by trial, to be large
enough so that the actual field is negligibly small at this boundary and
the accuracy of propagation is least affected by its presence. This does
lead to problem of spurious reflection from this boundary and there
have been some ways of suppressing this problem. This type of bound-
ary condition is used in the BPM and, in fact, in most methods based
on finite element and finite difference algorithms (see, e.g.,[33,34]). In
the BPM, the electric field is expressed in terms of plane waves, which
can be expressed in terms of sinusoidal functions. In this section, we
use this type of basis functions in the collocation method. Thus, the
new method can be considered as the collocation formulation of the
BPM. We shall refer to this method as the sinusoidal function based
collocation method (SCM). We have used the split-step form of the col-
location method for implementation of the SCM. Thus, like the BPM,
it is also based on the Fresnel approximation. The main difference,
then, between the SCM and the BPM is the algorithm to propagate
the field over the step length of Az ;in the BPM, this is done using the
plane wave decomposition and propagating each plane wave, while, in
the SCM, the resulting operators are evaluated using matrix algebra.
The results obtained using these two methods would, therefore, pro-
vide a direct comparison between these two propagation schemes. On
the other hand, the only difference between the SCM and the SSCM is
the choice of the set of basis functions and, hence, the results obtained
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using these two methods would provide a direct comparison between
these two sets of basis functions.

5.1 The SCM: Collocation Formulation of the BPM

The sinusoidal functions are the solutions of the Helmholtz equa-
tion for a homogeneous medium. However, these functions continue
oscillating even as z — +o00. In order to satisfy the condition of vani-
shing field at large distances, we assume, like in the BPM artificial
boundary at z = +L where the field is assumed to vanish. With
these boundary conditions on a homogeneous medium, the Helmholtz
equation gives the following solutions:

Xn(z) =cos(v,z) forn=1,3,5...,N—-1
=sin(v,z) forn=2,4,6,...,N (50)

These functions form an orthogonal set of functions. The boundary
condition xn(x) = 0 gives v, = nw/2L. Choosing N to be an
even number, we define the collocation points z; as the zeroes of
cos(Vy,, ) . Thus, the collocation points are

(2 =
25 = (57~ DL j=1,2...,N (51)

Following the procedure similar to the one described in Sec.2.1, we
obtain the following matrix differential equation ’

2

— U(z) =

ozt S¥(2)=0 (52)
where § = BA™' + R(z). Further, A and B are square matrices
with their elements defined as

- - d? .
Ajn = Xn(xj) and Bjn —_ dx2‘"- : i=14L2,...,N (53)
z T=T;
and it can be shown that L
B=AH (54)

where N
H = diag.[-1?, T —Vz%r] (55)
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Thus, with § = AAA™ + R(z2) and the Fresnel approximation,
Eq. (52) can be written as ‘

‘_g_ = [AHA™' 4 R(2) - K|X(2) /2ik (56)

where X(2) = ¥(z2)exp(ikz). Using the symmetrized splitting of
operators and a procedure similar to the one used in Sec. 3.2, we can
write the formal solution of Eq. (56) to obtain the basic step of the
SCM as - oL

X(z+ Az) = PQ(2)PX(2) + Ol(Az)?) (57)

where

P =A exp[HAz/4ik] A~}
Q =exp[R(2)Az/2ik] exp[—k*I1Az/2ik] (58)

The evaluation of the exponentials in the above expressions can be done
analytically since the arguments are diagonal matrices. Equation (57)
is exactly same in form as the basic propagation step in the BPM and
the basis functions are fairly close to those used in BPM. Therefore,
we have justifiably termed this method as the collocation formulation
of BPM.

It may be pointed out here that in the SCM, it is possible to take
advantage of the variable transformation as discussed in Sec. 4, while
in the conventional BPM it is not possible. A detailed discussion on
this including numerical examples is given in [14].

5.2 Numerical Examples and Comparisons

In this section, we compare the three methods — the BPM, the
SSCM and the SCM, and we again consider the example of Sec. 2.2.
The error in the correlation factor is plotted in Fig. 7 for the SSCM,
the SCM and the BPM. The value of Az is 2.5 um. The figure shows
that the SCM is, in general, about an order of magnitude more accu-
rate than the BPM. Thus, the method of solution of the propagation
equation in the collocation method is better than in the BPM. The
difference in the accuracies obtained using the SSCM and the SCM is
much larger showing that the Hermite-Gauss functions are far better
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suited than the sinusoidal functions for modeling guided wave propa-
gation. One possible reason could be that the Hermite-Gauss functions
are more confined and resemble the waveguide modes more closely than
the sinusoidal functions. However, the sinusoidal circular functions are
better suited for propagation through the homogeneous media in which
the field is not confined to a small region of space.

Another important feature of these methods, apparent from Fig. 7
is that, for sufficiently large value of N, the error saturates. It may be
mentioned here that this saturation is mainly due to the method used
for solving the matrix differential equation. For example, this satura-
tion value of error is too low to appear on the curves obtained using the
Runge-Kutta method [in which the truncation error is ~ (Az)®] for
Az =2.5um (see Fig. 1), while in the SSCM, it appears (see Fig. 2) at
different error levels for different values of Az (the truncation error
is ~ (Az)%). However, in the methods being discussed in this section,
there are additional approximations — Fresnel approximation and ar-
tificial boundary at a large but finite distance (for the BPM and the
SCM). Thus, for relatively larger Az (typically Az > 1pum in our ex-
ample), the error due to (Az)3 -term dominates. This is apparent from
Fig. 8 in which all the three methods expectedly show similar quali-
tative behavior for Az > 1um. For smaller Az values, this error
becomes small and errors due to other approximations (Fresnel, finite
window, etc.) become important. These errors are difficult to quantify
and a more detailed study involving a larger number of examples would
be required. However, our test example on sech? waveguide shows (in
Fig. 8) that the saturation error in the SSCM continues to decrease,
though comparatively slowly, whereas for the SCM it saturates for
Az > 1um. The BPM shows a peculiar behavior as the saturation
error again increases for Az < 0.5 um. Since all other features of the
BPM and the SCM are essentially same, this behavior could only be
attributed to the FFT-based propagation scheme, or to the fact that
the basis functions in BPM do not actually go to zero at the edge of
the computational window (we have not used any absorber at the edge
of the window).
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Figure 7. The error in the correlation factor, 1-|CF|, as a function of
the number of collocation points, N, using the SSCM, the SCM and the
BPM for a uniform waveguide with refractive index distribution defined

in Eq. 2
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Figure 8. Saturation error as a function of the extrapolation interval,
Az, for the SSCM, the SCM and the BPM.
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From the above discussion, it is clear that for guided wave pro-
pagation the Hermite-Gauss functions are better suited for the expan-
sion of the guided wave fields. In principle, any such expansions should
have infinite terms, and, then the expansion coefficients of the terms
of higher order would successively becomes smaller and smaller. By
making N finite, we essentially truncate this infinite succession of
coefficients, and the coefficients beyond N are effectively made zero.
Thus, between n=N and n= N + 1, there is effectively a sharp step
change in the values of the coefficients. The smaller the value of this
step the better is the accuracy of the finite expansion. In Fig. 9a, we
give the distribution of the expansion coefficients for the SSCM and
the SCM for N =30. Only alternate coefficients are non-zero since
the field is symmetric. The figure clearly shows that the last coefficient
for the SSCM is ~ 10™*, while for the SCM it is ~ 10~3. This is
one of the main reasons for the difference of 3-orders of magnitude in
the propagation accuracy (as shown in Fig. 7). Further confirmation of
this aspect is provided from Fig. 9b, where we have shown the values
of coefficients for N =50. Now, values of the last coefficients in the
SSCM and the SCM are 1.23 x 1075 and 4.22 x 10~%, respectively.
In both cases, the values of the coefficients have reduced as compared
to the values in N =30 and hence, the accuracy of propagation in-
creased (see Fig. 7). Further, the difference in the values of the last
coefficients in the SSCM and the SCM values has also become much
smaller resulting in smaller difference in the accuracies obtained from
the methods for N =50 (see Fig. 7).

6. Application to 3-Dimensional Propagation

In the sections above, we have confined our discussion to two-
dimensional guiding structures. In this section, we discuss the extension
of the collocation method for 3-D guiding structures. A direct 3-D
analysis is much more involved and time consuming and, therefore, in
a number of cases modeling is done by reducing the 3-D structure to an
equivalent 2-D structure using methods like the effective index method
[35,36] or the variational method [37,38], and studying the propagation
through the 2-D structure [39]. In such cases, the methods discussed
above are useful. However, a 2-D model may at times give erroneous
results (See [40]). Thus it becomes necessary to have a general method
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to study three dimensional structures.

The collocation method can be easily extended to three dimen-
sions, but, as in the case of the BPM, there is a substantial increase in
the computational effort, which may be greater by one or two orders
of magnitude in comparison to that in 2-D cases. In general, one has
to use cartesian coordinates for 3-D problems, except when the device
is made from optical fibers and retains its circular symmetry (as, for
example, in fiber tapers). In the latter case, one could use the circular
cylindrical coordinates with substantial computational advantage (see
Sec. 6.2).

6.1 38-D Structures in Cartesian Coordinates

We now consider the 3-D Helmholtz equation, Eq. 1, and use a
double linear expansion of the field in terms of two sets of the Hermite-
Gauss functions:

P(z,y,2) = Zznnm ) $n() T (y) (59)

n=1m=1

where ¢n(z) are defined in Eq. 4 and nn(y) are defined in an identi-
cal way with y and k instead of z and «. Following the procedure
described in Sec. 2.1, one can define the collocation pointson z and y
axes and convert Eq. 1 into the following matrix differential equation
(see [9] details)

s

7 +So¥ + vTT 4 R(¥) =0 (60)

where ¥ is now a N x M matrix defining the field ¢(z,y) at a
matrix of collocation points, S¢ is defined in Eq. 19 and T is defined
in an identical way with 7,(y) replacing ¢n(z). TT represents the
transpose of T . Further, R(¥) isan N xM matrix with its elements
defined as

[R(‘I’)]‘nm = k(2)n2(xn)y7n7z)W(x'mym’Z) (61)

Under the Fresnel approximation, we can reduce Eq. 60 to a first order
differential equation

dx

- =[8X+ XTT + R(X) — k2x)/2ik (62)
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where X and k are defined in Eq. 20. To give an estimate of the
increase in computational effort while going over from 2 to 3 dimen-
sions, we have shown, in Table I, the number of multiplications to be
performed in each propagation step for both the BPM and the collo-
cation method(OCM). As can be seen from Table I, the increase in the
number of multiplications while going over from 2 to 3 dimensions is
two times the number of sample points in the transverse cross-section
for both the cases. Thus, the increase in the computational effort can
be expected to be less in the collocation method, since, as we have
seen in Sec. 2.2, the number of collocation points needed to achieve
a certain degree of accuracy is substantially less than the number of
points needed in the BPM. A numerical example is included in Sec.
6.3.

6.2 3-D Structures in Circular-Cylindrical Coordinates

Optical fibers and fiber based devices fall in this category of guid-
ing structures. If the device is made in such a way that the structure re-
tains its circular symmetry, as in the case of fiber tapers and expanders,
then it is more advantageous to work in the circular-cylindrical co-
ordinate system. Further, if one considers field patterns of one kind
of azimuthal symmetry at a time, it is possible to write the scalar
Helmholtz equation as:

2 32

gf‘-’g + %;‘ﬁ s %‘—f»— SRR (rn2Y(nz) =0 (63
where | is the azimuthal symmetry parameter of the field. The above
equation is a partial differential equation and using the collocation
method it can be converted into a matrix differential equation. As an
illustration, we consider the case of circularly symmetric modes, [ =0,
and we can expand 1 in terms of the Laguerre-Gauss functions [25]
which form a complete set of circularly symmetric functions in the
domain 0 < r < 00, and go to zero as r — oo . Thus, we write

N
¥(r,2) = 3 Kn(2) Onlr) (64)
n=1

where )
On(r) = Ln-1(b*r?) exp(—-2-b2r2) (65)
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The corresponding matrix differential equation is

T BATW+R()¥() =0 (66)

where the elements of A,B and R are defined as

Ajn =9ﬂ(rj)7
5. 0 149
™ odr?r o dr |,
Rjn =kgn?(r;, 2)bjn (67)

r;’s denote the collocation points defined as the zeroes of On41(r) .
Under the Fresnel approximation, we then have (cf. Eq. 22)

% = [BA™! + R(2) — K1|X(2)/2ik (68)
Thus, the computational effort involved in solving Eq. 68 would be of
the same order as that in case of planar waveguides.

6.8 Numerical Example

We now consider an example to show the effectiveness of the col-
location method for 3-D propagation. We have performed calculations
for a circularly symmetric waveguide with a Gaussian profile. We have
chosen a circularly symmetric refractive index profile so that we can
compare the results obtained using the methods developed in Sec. 6.1
and Sec. 6.2. The refractive index profile is given by

n%(z,y) = nd + (nd — nd) expl— (22 + y2)/a? (69)

with n; =145, ny =1.435, A = 1.3 um and a = 2.5 yum. We again con-
sider the propagation of the fundamental mode and after a propagation
through a distance of z = 10 um, we obtain the error in the correlation
factor (defined in an analogous way as in Eq. 26) between the field at
z=0 and the field at z = 10um. This error is plotted, in Fig. 10,
as a function of N, (we have taken M = N ). The continuous curve
is obtained using the method of Sec. 6.1, while the dash-dot curve is
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obtained using the method of Sec. 6.2. The order of accuracy obtained
is nearly the same for a given N in the two cases; however, in the
case of circularly symmetric basis functions, the computational effort
is much less (about 1/40 for N =30). The figure also shows that the
accuracy of about 10—, obtained using the 3D-BPM with 60 points,
can be achieved by using 30 collocation points (the method of Sec. 6.1)
and the time taken is about one third (the dashed curve shows rela-
tive computation time for method of Sec. 6.1). Thus, we see that even
in the case of three dimensional waveguides our method works better
than the BPM, as can be expected from Table 1.

1 - |CF|
Relative Computation Time

Figure 10. The error in the correlation factor, 1-|CF|, as a function of the
number of collocation points, N, for a uniform 3-D waveguide defined by
the refractive index distribution given in Eq. 69, using the OCM with
the cartesian coordinates (Sec. 6.1) and the circular coordinates (Sec.
6.2) shown by the continuous and the dash-dot curves respectively. The
dashed curve shows the relative computation time for the OCM with
the cartesian coordinates (Sec. 6.1). The corresponding quantities for
the 3-D BPM with 60 sample points are also shown.
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The BPM The OCM
2-D m(4log, m + 1) 4N?
3-D m?(8log,m + 1) | 4N?(2N +1)
Increment Factor 2m 2N
(m,N > 1)

*m and N are the number of sample points in the BPM
and the collocation method (OCM), respectively.

Table 1. Number of multiplications in one propagation step. m and N
are the number of sample points in the BPM and the collocation method
(OCM), respectively.

7. Applications of the Collocation Equation

It has been shown in Sec. 2.1 that the Helmholtz equation (Eq. 2)
can be converted into a second order matrix differential equation and
that the “equivalence” between these two equations becomes increa-
singly accurate as the size of the matrices, N, increases. In this re-
spect, the collocation method differs radically from the BPM, in which
no such equation can be obtained. The advantages of obtaining such
an equation are many fold. Firstly, one can use different approaches
to solve the resulting equation. Indeed, we have used the Runge-Kutta
method in Sec. 2.3, whereas a matrix operator method is used in Sec.
3. Secondly, one can use special methods to solve certain specific prob-
lems. As an example, we discuss in the next section a special method
for periodic waveguides where one has to solve the second order equa- -
tion directly due to the presence of reflected waves. Another method
that can be used for solving a differential equation is the perturba-
tion technique when the longitudinal variation of the refractive index
is weak. As an example, we consider, in Sec. 7.2, wave propagation
through weakly random waveguides. Finally, the collocation equation
can be easily converted into a matrix eigenvalue equation for modes of
a uniform waveguide (see Sec. 7.3).
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7.1 Periodic Waveguides

Periodic optical waveguides have attracted a considerable amount
of interest both for theoretical and numerical studies because of their
numerous applications in Distributed Bragg Reflector (DBR)[41] and
Distributed Feedback (DFB) [42] lasers, beam steering devices, and as
input and output couplers.

Periodic waveguides have been analyzed by various numerical
techniques [43-45]. The coupled mode formulation [44] is the most
commonly used method. The coupled mode formulation in its com-
plete form can yield exact results. However, the analysis becomes com-
plicated because of the presence of radiation modes. The main assump-
tions of the coupled mode formulation include (i) retaining only one
scattered wave in addition to the fundamental mode, and (ii) neglec-
ting second derivatives of the field amplitudes. With these assumptions,
one is able to obtain simple, analytical expressions. _

In the collocation method, full beam, including guided as well as
radiation modes, are taken into account [46]. However, as mentioned
above, in periodic structures one cannot make the Fresnel approxi-
mation, due to the presence of the strong coupling to the backward
propagating wave. It is for this reason that the Beam Propagation
Method cannot be used for the study of periodic waveguides. Here we
have considered the full second order Helmholtz equation, and hence,
we have to solve the second order collocation equation, Eq. 18.

In the case of periodic waveguides, R(z) varies periodically with
z. We look for analytical solutions of Eq. 18 by writing it in the fol-
lowing form

d®/dz = H(z)®(z) (70)
where @ is a vector of dimension 2N x 1 and is defined as
)
$ = (71)
d¥/dz
and H is a 2N x 2N square matrix defined as
M =| (72
z2) = .
-S 0

H(z) is a periodic function of z, since R(z) and, hence, S(z) are
periodic in 2. Thus, we have

H(z + A) = H(z) (73)
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where A is the period along z. We have to solve Eq. 70 with a given
initial condition, say ®(0) = ®¢. One begins by solving an auxiliary
equation [47]

dF /dz = H(2)F(2) (74)

where F(z) is a square matrix such that F(0) = I. The solution of
Eq. 70 can then be written as

8(2) = F(2) %o (75)

Assuming that H(z) is continuous and periodic function of 2z, the
solution of Eq. 74 can be written as [47)

F(z) = L(z) exp(M2z) (76)

where the matrix £(z) is a periodic function of z with the same period
as that of H, and M is a constant square matrix. In order to compute
L£(z) and M, one has to solve the matrix differential equation (Eq.
74) over one period, A . Thus, if the field after one period, F(A), is
known, Eq. 76 gives

F(A) = exp(MA) (77)

so that M is given as
M = In[F(A)]/A (78)
and L(z), which is a periodic function, is given by
L(z) = F(2)exp(-Mz), 0<z<A (79)
The solution of the auxiliary equation is then given by
F(z) = L(z — A.int[z/A]) exp(Mz) (80)

where int[ ] represents the integer part of the argument. Finally using
Eq. 75, one can obtain ®(z). The natural logarithm of a matrix is
computed by diagonalization.

The above procedure is valid when the waveguide is strictly peri-
odic. In case of gratings with axially varying parameters [48] and other
structures in which there is coupling into the backward wave, but there
is no periodicity, one would have to solve Eq. 18 directly using, say,
the Runge-Kutta method.
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In structures with reflections, the boundary condition at z =
0 is not known due the presence of the reflected wave. However, if
the length of the periodic structure is L, which implies that there
are no reflections possible after z = L, then one can construct, with
reasonable accuracy, a boundary condition at z = L. One can then
propagate the wave in the backward direction, from z =L to 2 =0
and obtain the wave at 2z = 0 which is composed of both the reflected
and the forward propagating waves. From this wave one can obtain, the
power in the forward and backward propagation modes and calculate
the modal reflection coefficient. The procedure would become apparent
from the example given below.

We consider a periodic waveguide of length L with a sech?-
profile and a periodicity due to the variation of the half-width of the
waveguide. Thus,

n*(z,z) =1 + (nf — nj)sech®(z/a(2)] (81)
with
a(z) = ap + bp cos(2nz/A) (82)
We have chosen the following parameters: n; = 1.567,ny = 1.513,a9 =
1.5 um, A = 0.1683 um, by = 0.8 um and Ag = 0.5658 pm.
In our calculations, we begin with the condition that at z = L,
only the forward propagating fundamental mode exists. Thus,

P(z, L) = to(z) = cosh™ (z/ao) (83)
and 5
Hoed| = -isutan) 59

B being the propagation constant of the mode and W = aop+/3% — IcgnzE .
We then calculate the field and its first derivative at z =0 using the
procedure described above. The propagation over one period is ob-
tained using the Runge-Kutta method for Eq. 74. At 2=0, the field
comprises of a forward propagating mode with amplitude, A4, and a
backward propagating mode with amplitude, A_ . Hence, we can write

Y(z,z = 0) = Ao + Ao + contribution of radiation modes (85)

and

Y(z, 2)

- = —ifA 40 +i8A_1o+contribution of radiation modes

z=0
(86)
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Using the orthogonality of the guided and radiation modes, we obtain

[tz =0ds+ 18 [ 32| wods
Ay = z=l (87)
2 / ol® dz
and o
[tz =0uds~(i/8) [ | wote
A= 2=0 (88)
2 [ 1ol dz
Thus, the modal reflection coefficient may be calculated as
R=|A-[*/]A4]*.
100 L=150 pum
S
Z 80
]
% 60
O
=
2 40
L
@ 20
0 70

AXA)

Figure 11. Reflection coefficient for the fundamental mode as a function
wavelength, A — Ag = A, in a periodic waveguide defined in Egs. 81 and

82 for different lengths, L, of the periodic corrugations.

With the above procedure, we were able to obtain [46] the typical
variation of the reflection coefficient as a function of A\ = A — Xg



Collocation method for wave propagation 181

shown in Fig. 11 for different values of the length L. The curves are
very similar to those obtained using the coupled mode theory [49]. In
the above example, we have neglected the presence of radiation modes
at and after z = L. However, in propagating the field from z =L to
z = 0, the radiation modes are included. One can, therefore, estimate
the power coupled into radiation and other modes by calculating the
difference integral

/lw(x,z =0) — (A4 + A_)yo)?dz
2/|¢(m,z =0)|*dz

In the above example, it was found that the power coupled into these
modes is between 0.1 — 0.2% for the given wavelength range.

7.2 Waveguides with Random Variations

Next, we consider an application in which the perturbation-type
of expansion is used to obtain the effect of z-dependent variation in
the refractive index on wave propagation. In particular, we consider a
planar waveguide with weak random index variations:

n?(z, 2) =13 + (n} — n3) f(z)[1 + 6¢(z)] (89)

where f(z) defines the index profile and £(z) is a random function
of z. The parameter 6 defines the strength of randomness in the
refractive index and we consider that é < 1.

Propagation of waves in a random medium has been a subject
of extensive investigations. Amongst the various theories that have
been developed, the moment method [50], in which one directly ob-
tains equations describing the evolution of the correlation function of
the electric field, appears to be the most elegant method. The second
moment equation, solution of which determines the average intensity
distribution across the beam profile, is easily solved. The fourth mo-
ment equation, which contains information about the intensity fluctua-
tions and intensity correlations, is more difficult to analyze. The fourth
moment equation has been studied by perturbation [51,52], asymptotic
[53,54] and numerical techniques [55-57]. An alternative approach is to
solve the stochastic wave equation directly by Monte Carlo techniques
[58]; the obvious drawback being that a large computational effort is
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required if reasonably accurate estimates of the moments of the field
are required.

Comparatively fewer studies have been made on optical wave-
guides with random inhomogeneities. In this case, the governing equa-
tions become much more complicated. Goyal et al. [59] and Sharma et
al. [60] have studied fluctuations in the beam width parameter, and
mode conversion for Gaussian beams in random square law media.
Propagation of Gaussian beams in square law media has been ana-
lytically studied by Papanicoloaou et al. [61] and they have obtained
expressions for average beam intensity and intensity fluctuations, but
no expressions for the these quantities have been obtained for general
waveguiding structures. Crosignani et al. [62] have developed a set of
statistical coupled equations for second and fourth moments of the
mode amplitude in a fiber for studying mode coupling and evaluation
of cross-correlation between powers of different modes; but, these ex-
pressions become very complicated if one has to take radiation modes
into account.

We show here briefly that the collocation method can be used for
a numerical study [17] of wave propagation in waveguides with random
perturbations in the refractive index, such as the one defined in Eq. 89
above. The Helmholtz equation for the refractive index of Eq. 89 can
be converted into the following matrix differential equation (see Sec.
2.1 for details)

%ﬁi +[BA~! + R(2)]¥(2) =0 (90)

which on using the Fresnel approximation reduces to a first order equa-
tion (c¢f. Eq. 22)

% = [BA™! + R(2) — k21| X (2)/2ik = —iGX — i66(2) DX (91)

where ¢ = (BA~! + Ry — k%I)/2k is a constant matrix and R(z)
has been written as a sum of a deterministic part, Ry and a stochastic

part:
R(z) = Ro + 6§(2)D (92)

with
D = k3(n? —n3) x diag.{f(z1) f(=z2) ... f(zn)} (93)
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In order to solve Eq. 91, we consider following expansion in orders of
6: .
X=X+6X +80+... (94)

which when used in Eq. 91 gives the following equations for different
expansion terms:

dx . .
—(—t-z-“ == ZgXO (95)
% = — iGX, — it(2)DXo (96)
%% = —iGX — it(2)DX 97)

The solution of Eq. 95 can be obtained analytically as
Xo(z) = exp[—1Gz] Xo(0) (98)

Further, solutions to Eqs.96 and 97 can be written as
2
Xi(z) = —i / £ expl-iG(z — DXo(F)dz  (99)

Xo(2)=—1 / ’ £(2) exp[—iG(z — 2)| DXy (2)d2! (100)

The averages of quantities Ap, X} and X, and their products can be
expressed as finite sums over simple functions such as exponentials of
the elements of the various matrices involved. The algebra is simplified
if the field at z = 0 is a mode of the waveguide. Using this procedure,
we can find the expressions for the moments of the field and ensemble
averages of various important quantities such as, the electric field, field
intensity and intensity fluctuations. The details of these computations
are given elsewhere [17]. The analysis can also be applied to uniform
medium with random fluctuations in the refractive index.

7.8 Evaluation of Modes of Uniform Waveguides

Although the main application of the collocation method is in the
study of structures nonuniform in the direction of propagation, it can
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also be used simply and effectively for obtaining the modes of a wave-
guide. In case of uniform waveguides, the orthogonal collocation method
results in a matrix eigenvalue equation, the solution of which yields the
propagation constants and modal field distributions. We have solved
this eigenvalue problem for different planar waveguides and have shown
that the accuracies obtained using the collocation method are compa-
rable to those obtained using the Galerkin method for the same number
of basis functions and the computational effort taken is much less [9].
However, in case of refractive index profiles with a discontinuity, the
collocation method yields poorer results for the propagation constant
which can be improved by a simple perturbative correction.

We again consider the collocation equation, Eq. 18. For a mode in
a uniform waveguide, ¥(2) can be written as Wqexp(—ifz), where
W, represents the modal field pattern at the collocation points, which
remains unchanged along the length of the waveguide, and 3 is the
propagation constant. Substituting this form for ¥(z) in the matrix
differential equation, Eq. 18, we obtain

SW¥, = 52¥, (101)

which is a standard matrix eigenvalue equation. S is a real but not
symmetric matrix. However, by a similarity transformation, which
leaves the eigenvalues of S unchanged, it can be transformed into a real
symmetric matrix (See Appendix A for details). Thus, the eigenvalues
and eigenvectors are all real and since the evaluation of eigenvalues for
a symmetric matrix is much simpler, the computational effort required
is also considerably reduced.

A number of numerical examples are given in Ref. [9] and we will
not include any example here. We would, however, like to add that
in the collocation method, it is also possible to take advantage of the
variable transformation in evaluation of the propagation constant.

8.  Application to Nonlinear Pulse Propagation through
Optical Fibers

8.1 Generalized Nonlinear Schridinger Equation

It is well known that the effect of pulse dispersion in optical fibers
can be reduced by the use of the nonlinear Kerr effect as proposed by
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Hasegawa and Tappert [63] and experimentally verified by Mollenauer
et al. {64]. A large number of interesting nonlinear phenomena occur in
optical fibers due to the interplay of nonlinear and dispersive effects.
Under some specific conditions solitons exist; solitons are pulses with
specific shapes which travel undistorted for extremely large distances
as a result of balance between nonlinear and dispersive effects in a fiber
(see, e.g., [65,66]).

The nonlinear evolution of short pulses in an optical fiber is usu-
ally described by the nonlinear Schrédinger equation (NLS) which has
been analytically solved [67]. The NLS equation holds good for pulses of
picosecond duration. However, some assumptions implicit in the equa-
tion are no longer valid for pulses of smaller duration, particularly, in
the femtosecond regime. Hence, the NLS equation has to be modified
to include a host of other phenomena, such as higher order dispersion,
higher order nonlinearities, attenuation and self-steepening. Thus, in
presence of Kerr-like nonlinearity, pulse propagation can be described
by the Generalized Nonlinear Schrédinger Equation (GNLSE) {65,68]

08 g OB _ 0B
o€ T T 57 T 0%s
= (|EPE+is>(EPE) - B2 (EP)  (102)
or R= 87

where it is assumed that the pulse is propagating in the region of
anomalous dispersion ( 82 = d?8/dw? < 0). The space and time vari-
ables are normalized such that

¢ =26l /TS
T = V2T/To; (103)
T=1t-p5z

where T represents the reduced time (measured from the pulse center),
Tp is the width of the pulse and B; = df3/dw is the inverse of the group
velocity of the pulse. In Eq. 102, E(z,t) denotes the envelope of the
electric field and is assumed to be a slowly varying function of z and
t:

¥(z,t) = E(z,1)e"—F2) (104)
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Further, in Eq. 102, «y is the attenuation coefficient and the parameters
6, s and 7, represent, respectively, the effect of higher order disper-
sion, self-steepening and the retarded nonlinear response. Explicitly,
these can be written as

6 =v2B3/3|Ba| To,

s =2v2/woTo (105)
Tr =\/§TR/TO

where 3 = d38/dw? is the third order dispersion parameter and T,
is related to the slope of the Raman gain in the fiber [65]. All these
parameters 6, s and 7, vary inversely with the pulse width and are
negligible for pulses with Ty > 1 ps, and become appreciable for pulses
in the femtosecond regime.

Analytic solutions of Eq. 102 are possible only for few specific
cases and in most cases, the GNLSE has to be solved numerically. The
numerical method commonly used to solve the GNLSE is the split-
step Fourier method [65,69], which is in fact a form of the BPM. This
type of procedure has some inherent drawbacks. One has to use nu-
merical differentiation in evaluating terms containing derivatives of the
pulse envelope. Further, the effects of nonlinearity and dispersion are
assumed to be separated in space, whereas in reality both act simulta-
neously. The collocation method does not suffer from these drawbacks
and the numerical examples show that the collocation method is con-
siderably more efficient even for solving GNLSE.

8.2 Collocation Method for the GNLSE

We begin by expressing the pulse envelope E(£,7) as a linear
combination of the Hermite-Gauss functions, ¢,(1) = H,_i(ar)
exp(—a?12/2):

N
E(&1) =) ca(6)@n(r) (106)
n=1

a being the width parameter. The collocation points are now defined
as the N zeroes of Hy(ar). Applying the collocation principle as
described in Sec. 2.1, Eq. 102 can be converted into the following matrix
differential equation:
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i% +iyE+BAT'E—i6DAT'E
= —[PE +is(QFAT'E* + 2PFFAT'E)]
— 1 (QFAT'E* + PFAT'E) (107)

where E(§) is a column vector of the values of E(£,7;) at con-
secutive collocation points 7; and P and Q are diagonal matrices
with the successive diagonal elements being |E(§, 'r_,-)l2 and E%(¢,75),
respectively. The elements of the N x N matrices A,B,D and I are
defined as:

Ajn =Pn (Tj)

__ @Ppn
"o dT2 T=T;
A da(pn
e dT3 T=Tj
7 d‘pn
Fijn =—— e, (108)

Various derivatives of ¢.(7) can be analytically evaluated using the
recurrence formulae for Hy(7) [25]. The matrix equation, Eq. 107, is
solved using the Runge-Kutta method starting from the given pulse
shape E(§ =0,7) at £=0.

8.3 Numerical Example

To establish the accuracies obtainable using the collocation me-
thod, we consider an example for which an analytical solution is known.
Neglecting the effects of loss, third order dispersion, self steepening
and the retarded nonlinear response, Eq. 102 reduces to the nonlinear
Schrédinger (NLS) equation:

OE O°E 2
Za—§+-é‘1_—2'+lEt E=0 (109)
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which gives solitons as its solutions. The fundamental soliton has an
initial pulse shape defined by (see, e.g., [65])

E(¢§ = 0,7) = sech(r/V?2) (110)
In our example, we have propagated this pulse using the collocation

method upto £ = 2 and have calculated the correlation factor (CF')
of the output pulse amplitude with the input pulse amplitude:

/E*(£ =2,7) E(€=0,7) dr

(111)
\/ [15€=2,nPar. [ 15€ =0,nPdr

CF =

=7

0 BPM 64

1-|CF|
I

. OoCM

10 30 50 70

Figure 12. The error in the correlation factor, 1-|CF|, (Eq. 111) as a
function of the number of collocation points, N, after propagation of
the fundamental soliton through a distance, £ =2, using the collocation
method (OCM). Also shown is the error in the BPM with 64 sample

points.
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Ideally the absolute value of the correlation factor should be equal
to unity since only phase changes with £ . The deviation of the absolute
value of the correlation factor from unity gives a measure of the error
in the method of propagation. We have plotted this error as a function
of the number of collocation points in Fig. 12. We have performed
the same computations using the split-step Fourier method (BPM).
We see that the accuracy of little over 10~%, obtained by using 64
BPM points, can be obtained by using 35 collocation points and the
computation time required is about half. On the other hand, in about
the same amount of computation time (i.e., with N = 50, since, in
the collocation method the computation time increases as N?), an
improvement in accuracy by about two orders of magnitude can be
obtained.

More examples on pulse propagation including the effects of higher
order dispersion, self-steepening and retarded response are included in
Refs. [15,16].

9. Summary

In conclusion, we have described the collocation method for pro-
pagation of optical fields through waveguiding structures and have pre-
sented some numerical examples for demonstrating the validity of the
methods presented and for comparing wherever possible with the com-
monly used Beam Propagation Method (BPM).

We have shown through examples that the collocation method
has a substantial computational advantage over the BPM. The collo-
cation method converts the Helmholtz equation into a matrix differ-
ential equation and the accuracy of this matrix representation can, in
principle, be improved in an unlimited fashion as the size of the ma-
trices involved increases. This, however, increases the computational
effort involved and one generally has to make a compromise between
the accuracy obtained and the computational effort put in. For a de-
sired accuracy, the computational effort in the collocation method is
substantially smaller (typically by a factor of about two or more) in
comparison to the BPM. In addition, there are several advantageous
features in the collocation method that cannot be implemented in the
methods like the BPM. We have shown, for example, that a variable
transformation in the collocation method can be used to improve accu-
racy by orders of magnitude for a given computational effort. Another



190 Sharma

feature is that one can choose the set of basis functions which is suitable
for the given problem. Thus, while for planar waveguiding problems the
Hermite-Gauss functions are better, the sinusoidal functions are bet-
ter suited for the study of the propagation problems in homogeneous
media.

As mentioned above, the collocation method results in a matrix
differential equation (which has been termed as the collocation equa-
tion); this is a great advantage, since this equation can be solved in a
variety of ways depending on the problem at hand. One could solve it
using a direct method like the Runge-Kutta method or the predictor-
corrector method [25,27], or, by using matrix operator algebra, or, by
using a perturbative approach wherever applicable. For homogeneous
media, even analytical solutions are possible.

Unlike in the BPM, the collocation method retains the second
order differentials of the Helmholtz equation. This allows the use of
the collocation equation for waveguiding problems in which reflections
are involved. Indeed, we have shown that the propagation through a
periodic structure can be treated very elegantly in a semi-analytical
fashion using the collocation method.

The collocation method is general enough to be applicable to other
propagation problem not based on the Helmholtz equation. We have
used this method to solve the generalized nonlinear Schrédinger equa-
tion to model nonlinear pulse propagation through optical fibers. It can
also be similarly applied to nonlinear propagation problems in planar
waveguides.

There are, however, a number of aspects connected with the col-
location method which are still to be investigated. The behavior of
the field at the edge of the computation window (the last collocation
point in this case), particularly in comparison to the BPM, needs a
detailed study. Problem of reflection from nonperiodic structures can
also be handled, but is still to be demonstrated. Extension to solu-
tion of vector wave equation remains to be explored. Like any other
method based on basis functions, which along with their derivatives
are continuous, the collocation method also runs into some difficulty
while being used for step-index profiles. Change of variable to crowed
sampling points around the step is likely to improve accuracy, but this
remains to be explored. Further, higher order split-step methods which
have recently been used for the BPM [70-72] can be implemented in a
straightforward manner for the collocation method.
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Appendix A: Properties of Matrices A and S.

We derive, in this Appendix, some of the properties of matrices
A and S. The matrix A is defined in Eq. 14. The Hermite-Gauss
functions, ¢n(z) are the functions used in the Gaussian quadrature
procedure over the interval oo to —oo [25,26]. In this procedure, an
integral over an infinite domain can be ezractly converted into a fi-
nite summation if the integrand satisfies certain conditions. Using this
property, we can write

o N
[ onlwdm(uidu = 3 W20 (1)6m (1) = 62m

j=1

where © = oz and W2 are the weight functions tabulated in the
Gaussian quadrature tables [25,26]. The integral on the left side is
equal to the Kronecker delta, &;; because the functions ¢,(u) are
orthonormal to each other. The summation in the above equation can
be written in terms of matrices as

(WAYT(WA) =1

where W is a diagonal matrix with W;, Wy, ..., Wy as its diagonal
elements. With simple manipulations, this equation can be written as

AAT = (WwT)-!
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which gives an analytical expression for the inverse of A
A~ = AT(WWT) = ATW?

Thus, the inverse of A can be found by simply multiplying the trans-
pose of A by a known diagonal matrix W?2.
The functions ¢n(u) satisfy the following differential equation
(25]
d*¢n,
du?
and, hence, the elements of matrix B, defined in Eq. 16, can be written
as

= [u? — (2n — 1)]¢n(u)

Bjn = a2[u12~ —(2n - 1)]Ajn
which, in the matrix form, can be written as
B=D;A-AD,

where D; and Ds are defined in Eq. 28. The matrix S can now be
written as

S=D;+R-ADA" 1 =D, — AD,A"!

where D, is a diagonal matrix. Now, we make a similarity transfor-
mation of S by A to obtain

S'=A"'SA=A"'D,A -D,

We have seen above that AAT is a diagonal matrix and since all
diagonal matrices commute with each other, we can write

D; =(AAT)D4(AAT)"!
A7ID4A =ATD,(AT)!
=(A"'D,A)T
which shows that A~!D4A is a symmetric matrix and hence, S’ is

also a real symmetric matrix. Thus, the eigenvalues and eigenvectors
of S’ and S are all real.
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Appendix B: Properties of Matrix H,.

We show, in this Appendix, that the matrix H, defined in Eq.
48 is similar to a real symmetric matrix. The matrix 132 is a positive
definite diagonal matrix and hence, we can write it as a square of
another diagonal matrix D, whose diagonal elements are square roots
of the corresponding elements of D, . Thus,

H, =FAD?A"!

A"'H,A =A"'FAD?,

DA-'H,AD~! =DA~!FAD,
(DA~HHy (DA™Y =DATW?FAD,

where we have used A~! = ATW?. The matrix on the right hand
side of the last equation above is a symmetric matrix, since apart from
A, all other matrices are diagonal matrices which are symmetric and
commute with each other. This proves that the matrix H, is similar
to a real symmetric matrix.

References

1. Fleck, J. A.,Jr., J. R. Morris, and M. D. Feit, “Time-dependent
propagation of high energy laser beams through the atmosphere,”
Appl. Phys., Vol. 10, 129-160, 1976.

2. Feit, M. D., and J. A. Fleck, Jr., “Light propagation in graded-
index optical fibers,” Appl. Opt., Vol. 17, 3990-3998, 1978.

3. Feit, M. D., and J. A. Fleck, Jr., “Calculation of dispersion in
graded-index multimode fibers by a propagating beam method,”
Appl. Opt., Vol. 18, 2843-2851, 1979.

4. Feit, M. D, and J. A. Fleck, Jr., “Computation of mode properties
in optical fiber waveguides by a propagating beam method,” Appl.
Opt., Vol. 19, 1154-1166, 1980.

5. Feit, M. D., and J. A. Fleck, Jr., “Computation of mode eigen-
functions in graded-index optical fibers by the propagating beam
method,” Appl. Opt., Vol. 19, 2240-2246, 1980.

6. Feit, M. D., and J. A. Fleck, Jr., “Mode properties of optical fibers
with lossy components by the propagating beam method,” Appl.
Opt., Vol. 20, 848-856, 1981.



194

<o

10.

11.

12.

13.

14.

15.

16.

17.

.

Sharma

Feit, M. D., and J. A. Fleck, Jr., “Analysis of rib waveguides and
couplers by the propagating beam method,” J. Opt. Soc. Am. A,
Vol. 7, 73-79, 1990.

Sharma, A., and S. Banerjee, “Method for propagation of total
fields or beams through optical waveguides,” Opt. Lett., Vol. 14,
94-96, 1989.

Banerjee, S., and A. Sharma, “Propagation characteristics of op-
tical waveguiding structures by direct solution of the Helmholtz
equation for total fields,” J. Opt. Soc. Am. A, Vol. 6, 1884-18%4,
1989; Errata: Vol. 7, 2156, 1990.

Sharma, A., and A. Taneja, “Unconditionally stable formulation
of the collocation method,” Presented at the Integrated Photonics
Research Meeting of the Optical Society of America, Monterey
(California, USA), April 9-11, 1991. Paper # TuB4.

Sharma, A., and A. Taneja, “Unconditionally stable procedure to
propagate beams through optical waveguides using the collocation
method,” Opt. Lett., Vol. 16, 1162-1164, 1991.

Sharma, A., and A. Taneja, “Variable-transformed collocation
method for field propagation through waveguiding structures,”
Opt. Lett., Vol. 17, 804-806, 1992.

Sharma, A., and A. Taneja,“Collocation method for field
propagation through optical waveguides: a simple variable trans-
formation to improve accuracy,” in Proc. International Conference
From Galileo’s “Occhialino” to Optoelectronics (Ed. P. Mazzoldi),
Singapore World Scientific, 916-921, 1993.

Taneja, A., and A. Sharma, “Propagation of beams through opti-
cal waveguiding structures: comparison of the beam propagation
method (BPM) and the collocation method,” J. Opt. Soc. Am.
A, Vol. 10, 1739-1745, 1993.

Sharma, A., and S. Banerjee, “A numerical method for solving
the generalized equation for nonlinear pulse propagation through
optical fibers” in Proc. Conference on Emerging Optoelectronic
Technologies, New Delhi Tata McGraw-Hill, 366-369, 1992.

Deb, S., and A. Sharma, “Nonlinear pulse propagation through
optical fibers: an efficient numerical method,” Opt. Eng., Vol. 32,
695699, 1993; Errata: Vol. 32, 2986, 1993.

Deb, S., A. Taneja, and A. Sharma, “Wave propagation through
a randomly perturbed waveguide using the collocation method,”
(to be published).



Collocation method for wave propagation 195

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Frazer, R. A., W. P. Jones, and S. W. Skan, “Approximations
to functions and to the solution of differential equations,” Gt.
Brit. Aero. Res. Council Rept. and Memo., 1799; Reprinted in
Gt. Brit. Air Ministry Aero. Res. Comm. Tech. Rept., Vol. 1,
517-549, 1937.

Lanczos, C., “Trignometric interpolation of empirical and analy-
tical functions,” J. Math. Phys., Vol. 17, 123-199, 1938.
Lanczos, C., Applied Analysis, Englewood Cliffs(NJ) Prentice,
1956.

Finlayson, B. A., and L. E. Scriven, “The method of weighted
residuals — a review,” Appl. Mech. Rev., Vol. 19, 735-748, 1966.
Villadsen, J. V., and W. E. Stewart, “Solution of boundary value
problems by orthogonal collocation,” Chem. Engg. Sci., Vol. 22,
1483-1501, 1967.

Fletcher, C. A. J., Computational Galerkin Methods, New York,
Springer, 1984.

Finlayson, B. A., Method of Weighted Residuals and Variational
Principles with Applications to Fluid Mechanics, Heat and Mass
Transfer, New York Academic, 1972.

Abramowitz, M., and 1. A. Stegun, Handbook of Mathematical
Functions, New York Dover, 1964.

Stroud, A. H., and D. Secrest, Gaussian Quadrature Formulas,
Englewood Cliffs (NJ) Prentice Hall, 1966.

Scarborough, J. B., Numerical Mathematical Analysis, London
Oxford University Press, 1966.

Adams, M. J., An Introduction to Optical Waveguides, Chichester
Wiley, 1981.

Yevick, D., and B. Hermansson, “New approach to perturbed op-
tical waveguides,” Opt. Lett., Vol. 11, 103-105, 1986.

Gear, C. W., Numerical Initial Value Problems in Ordinary Dif-
ferential Equations, Englewood Cliffs (NJ) Prentice-Hall, 1971.
Aitken, R. C., (ed.), Stiff Computations, New York Oxford Press,
1985.

Hall, G., and J. M. Watt, Modern Numerical Methods for Ordi-
nary Differential Equation, Oxford Clarendon, 1976.

Rahman, B. M. A., and J. B. Davies, “Finite-element analysis
of optical and microwave waveguide problems,” IEEE Trans. Mi-
crowave Theory Tech., Vol. MTT-32, 20-28, 1984.



196

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Sharma

Scarmozzino, R., and R. M. Osgood, Jr., “Comparison of finite-
difference and Fourier-transform solutions of the parabolic wave
equation with emphasis on integrated optic applications,” J. Opt.
Soc. Am. A, Vol. 8, 724-731, 1991.

Knox, R. M., and P. P. Toulis, “Integrated circuits for millimeter
through optical frequency range,” Symp. Submillimeter Waves,
Broohlyn Polytechnic Institute, 1970.

Hocker, G. B., and W. K. Burns, “Mode dispersion in diffused
channel waveguides by the effective index method,” Appl. Opt.,
Vol. 16, 113-118, 1977.

Sharma, A., “On approximate theories of single mode rectangular
waveguides,” Opt. Quantum Electron., Vol. 21, 517-520, 1989.
Sharma, A., “A method for obtaining optimum equivalent 1-D
index profiles for 2-D index profiles of optical waveguides,” Optics
in Complex Systems, F.Lanzl, H.-J. Preuss, G.Weigelt, eds., Proc.
SPIE, Vol. 1319, 118, 1990.

Mevenkemp, W., and E. Voges, “Modeling and beam propagation
analysis of integrated electro-optic devices,” A E U, Vol. 40, 289~
296, 1986.

Marcatili, E. A. J., and A. A. Hardy, “The azimuthal effective
index method,” IEEE J. Quantum Electron., Vol. QE-24, 766—
774, 1988.

Komori, K., S. Arai, Y. Suematsu, I. Arima, and M. Aoki, “Single
mode properties of distributed reflector lasers,” IEEE J. Quantum
Electron., Vol. QE-25, 1235-1244, 1989.

Wang, S., “Principles of distributed feedback and distributed
Bragg reflector lasers,” IEEE J.Quantum Electron., Vol. QE-10,
413-427, 1974.

Hadjicostas, G., J. K. Butler, G. A. Evans, N. W. Carlson, and R.
Amantea, “A numerical investigation of wave interactions in di-
electric waveguides with periodic surface corrugations,” IEEFE J.
Quantum Electron., Vol. QE-26, 893-902, 1990.

Kogelnik, H., and C. V. Shank, “Coupled wave theory of dis-
tributed feedback lasers,” J. Appl. Phys., Vol. 43, 2327-2335,
1972.

Jaggard, D. L., and C. Elachi, “Floquet and coupled wave analysis
of higher order Bragg coupling in a periodic medium,” J. Opt. Soc.
Am., Vol. 66, 537-539, 1975.



Collocation method for wave propagation 197

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Sharma, A., and S. Deb, “Wave propagation through peiodic
waveguides: a numerical simulation method,” Presented at Lin-
ear and Nonlinear Integrated Optics Conference in International
Symposium on Integrated Optics, Lindau (Germany), April 11-15,
1994 (to appear in Proc. SPIE, Vol. 2212).

Ballman, R., Introduction to Matrixz Analysis, New York McGraw
Hill, 1960. .

Agrawal, G. P., and A. H. Bobeck, “Modeling of distributed feed-
back semiconductor lasers with axially-varying parameters,” IEEE
J. Quantum Electron., Vol. QE-24, 2407-2414, 1988.

Haus, H. A., Waves and Fields in Optoelectronics, Englewood
Cliffs Prentice-Hall, 1984.

Uscinski, B. J., Elements of Wave Propagation in Random Media,
London McGraw-Hill, 1977.

Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave
Propagation, Springfield National Technical Information Service,
1971.

Ishimaru, A., Wave Propagation and Scattering in Random Me-
dia, New York Academic, 1978.

Prokhorov, A. M., F. V. Bunkin, K. S. Gochelashvily, and V. L.
Shishov, “Laser irradiance propagation in turbulent media,” Proc.
IEEE, Vol. 63, 790-811, 1975.

Fante, R. L., “Electromagnetic beam propagation in turbulent me-
dia: an update,” Proc. IEEE, Vol. 68, 1424-1444, 1980.

Brown, W. P.,Jr., “Fourth moment of a wave propagating in a
random medium,” J. Opt. Soc. Am., Vol. 62, 966-971, 1972.
Tur, M., and M. J. Beran, “Propagation of a finite beam through
a random medium,” Opt. Lett., Vol. 5, 306-308, 1982.

Gozani J., “Numerical solution for the fourth order coherence
function of a plane wave propagating in a two-dimensional Kol-
mogorovian medium,” J. Opt. Soc. Am. A, Vol. 2, 2144-2151,
1985.

Flatte, S. M., and F. D. Tappert, “Calculation of the effect of
internal waves on oceanic sound transmission,” J. Acoust. Soc.
Am., Vol. 58, 1151-1159, 1975.

Goyal, I. C., M. S. Sodha, and A. K. Ghatak, “Propagation of
electromagnetic waves in a medium with random radial dielectric-
constant gradient,” J. Opt. Soc. Am., Vol. 63, 940-943, 1973.



198

60

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Sharma

Sharma, A., I. C. Goyal, N. K. Bansal, and A. K. Ghatak, “Pro-
pagation of gaussian beams through parabolic-index optical wave-
guides with random dielectric constant gradient,” Fiber Integrated
Optics, Vol. 2, 299-314, 1979.

Papanicolaou, G. C., D. McLaughlin, and R. Burridge, “A stochas-
tic gaussian beam,” J. Math. Phys., Vol. 14, 84-87, 1973.
Crosignani B., B. Daino, and P. D. Porto, “Statistical coupled
equations in lossless optical fibers,” IEEE Trans. Microwave The-
ory Tech., Vol. MTT-23, 416420, 1975.

Hasegawa, A., and F. Tappert, “Transmission of stationary non-
linear optical pulses in dispersive dielectric fibers, 1. Anomalous
dispersion,” Appl. Phys.Lett., Vol. 142, 142-144, 1973.
Mollenauer, L. F., R. H. Stolen, and J. P. Gordon, “Experimental
observation of picosecond pulse narrowing and solitons in optical
fibers,” Phys. Rev. Lett., Vol. 45, 1095-1098, 1980.

Agrawal, G. P., Nonlinear Fiber Optics, Boston Academic, 1989.
Kumar, A., “Soliton dynamics in a monomode optical fiber,”
Physics Reports, Vol. 187, 63-108, 1990.

Satsuma, J., and N. Yajima, “Initial value problems of one dimen-
sional self-modulation of nonlinear waves in dispersive media,”
Prog. Theor. Phys. Suppl., Vol. 55, 284-306, 1973.

Schubert, M., and B. Wilhelmi, Nonlinear Optics and Quantum
Electronics, New York John Wiley, 1986.

Fisher, R. A., and W. K. Bischel, “The role of linear dispersion
in plane-wave self phase modulation,” Appl. Phys. Lett., Vol. 23,
661-663, 1973.

Hermansson, B., and D. Yevick, “Generalized propagation tech-
niques — application to semiconductor rib waveguide Y-junctions,”
Photon. Technol. Lett., Vol. 2, 738-740, 1990.

Glasner, M., D. Yevick, and B. Hermansson, “High-order general-
ized propagation techniques,” J. Opt. Soc. Am. B, Vol. 8, 413-415,
1991

Hermansson, B., and D. Yevick, “Generalized propagation tech-
niques,” Opt. Lett., Vol. 16, 354-356, 1991.



