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1.

Introduction

The preceding chapters have described a number of frequency do-

main methods that study the behavior of monochromatic wave prop-
agation in optical waveguides. In this chapter, an alternate approach
to numerical guided-wave optics modeling, the finite-difference time-
domain (FDTD) method will be described. The FDTD method is a
direct solution to Maxwell’s time-dependent curl equations and it dif-
fers from the previous methods in the sense that it solves the problem
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in the time-domain. It will be shown in the following sections that by
including the time dependence in the analysis, the FDTD method can
incorporate the effects of reflection and radiation that are commonly
neglected by other methods. The-FDTD method can also model wave
propagation in complex media, such as time-varying, anisotropic, lossy,
dispersive, and nonlinear media.

Although the FDTD method was first proposed in 1966 by Yee
[1] to solve problems in electromagnetic scattering, it has not until
the mid-seventies, when computational power became more accessible,
that the method started to gain popularity in the area of microwave
and millimeter-wave research. With the continual advances in com-
puter research and the reduction of computational costs, the FDTD
method is being applied at problem associated with increasingly higher
frequencies, from microwave to millimeter-wave to optics. There is a
strong possibility that the FDTD method will become one of the most
versatile and powerful methods in solving problems involving electro-
magnetic wave interactions.

In this chapter we are concerned mainly with applying the FDTD
method to solve optical waveguide problems. Along with the basic Yee
formulations, recent advances in FDTD formulations for more complex
media will be presented. We will introduce two alternate approaches
that are more computationally efficient and which maintain the same
degree of accuracy when applied to two-dimensional problems or in the
analysis of weakly guiding structures. Even though the FDTD method
does demand relatively high computational resources and using it to
solve optically large structures may be expensive, there are certain op-
tical devices of current interest whose development can benefit from the
FDTD analysis. We will address the applicability issues in latter part of
the chapter. With this in mind, an overview of the FDTD method will
be given in section 2 which will describe the development of the FDTD
method; the general characteristics and the operational principles of
the method will also be discussed. The overview is designed specifi-
cally for readers whose interest is to obtain general understanding of
the FDTD method without having to delving into the mathematics.
In section 3, the basic FDTD algorithm will be presented in detail.
The basic algorithm deals with wave propagation in linear, lossless,
and nondispersive media. Here, the behavior of the wave propagator,
such as numerical stability and numerical dispersion, will be discussed.
The implementation details, such as on the excitation of input signal
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and on the handling of outgoing wave at the external boundary w111 be
provided.

The alternate approaches will be presented in Section 4. The mo-
tivation for the development of the scalar and semi-vectorial FDTD
methods. will be addressed first, which will be followed by the formula-
tion and limitations of the alternative approaches. Section 5 emphasizes
the modlﬁcatlons to the basic FDTD algorithm when applied to more
complex media, such as dispersive and time varying media. Examples
of the FDTD simulation will also be provided.

"The method has recently been extended to analyze wave propa-
gation in nonlinear medium. However, this subject is out of the scope
of this book and interested readers should consult the works of Goor-
jian and Taflove [2,3], and Ziolkowski [4]. In the conclusion, we will
discuss research trends on the FDTD algorithm in optics and the type
of structures whose analysis can be benefited from the FDTD analysis.

2.  Overview of the FDTD Method

The FDTD method was initially used by Yee (1] for analyzing the
two-dimensional problem of the scattering of transverse magnetic (TM)
pulses from rectangular cylindrical conductors. The method was later
extended to three dimensional cases with steady-state excitation by
Taflove and Brodwin [5]. With the increase in computational power of
the late seventies, larger and more complex problems have been solved
by the FDTD method. The method has been applied to a number of
problems in the area of microwave and millimeter wave research [6-
11]. As the integrated optical circuits (IOCs) become more compact,
the FDTD method becomes more applicable to the analysis of these
I0Cs [12-17]. The validity of the FDTD method for optical waveg-
uide analysis was investigated by Chu and Chaudhuri [12]. It has been
applied to characterize fast photoconductive switches [18], to the anal-
ysis of roughsurface effects in mirrors [15], and to the characterization
of planar fluorescence sensors: It has recently been extended to study
problems involving ultrafast pulse propagation in nonlinear media [2,3].

Similar to the beam propagation method (BPM), the FDTD
method also models the propagation of an incident electromagnetic
wave into a volume of space containing the structure of interest. The
FDTD algorithm, however, is based on the finite difference expression
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of the set of Maxwell’s equations instead of the one-way wave equation
in the BPM. Thus, the FDTD wave propagator involves marching in
time rather than marching in space as is the BPM.

In Cartesian coordinates, the FDTD propagator is formulated by
discretizing the volume into cells. As an example, the Yee lattice where

the components of E and H are positioned at alternate half inter-
vals is shown in Fig. 1. The discretization of the coupled Maxwell’s
time-dependent curl equations is done by solving them using the leap-

frog method [19], where the E and H and fields are evaluated at
alternate half time steps. The central difference form, which attains a
second order accuracy in the discretization interval, is used to represent
the partial derivatives in the curl equations. By repeatedly applying the
propagator, the incident wave can then be tracked as it passes through
the volume. The wave-tracking is completed when the steady-state or
the late-time behavior are observed at the sampling location. The re-
sult is a set of complete field descriptions that contain the solution to
the problem within the volume at the sampling time intervals.

Figure 1. Yee’s lattice.
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The advantages of the FDTD method are its simplicity and its
versatility. By formulating the computational procedure locally and
time-explicitly, the complete interaction between the incident wave and
the geometry can be analyzed portion by portion at any given time.
The localization of the procedure allows the analysis to be performed
without having to find the simultaneous solution to the entire problem.
Furthermore, the curl equations generate the boundary conditions at
the media interfaces so that no special treatment is needed at these
interfaces. The above features, combined with the discretization of the
structure of interest, allow the FDTD method to solve a very large class
of problems, including arbitrarily shaped or profiled complex structures
which may involve electrically or magnetically anisotropic media.

In the computer implementation of the FDTD method, the stor-
age and run-time increase linearly with N, the number of unknown field

components in the set of E and H fields. Implicit techniques, such
as the moment method using the volume integral formulation, require
storage and run-time proportional to N2. The explicit scheme is well
suited for parallel processing and vectorization. The FDTD algorithm
takes full advantage of machines that can provide these special func-
tions. When applying the FDTD method in solving optical waveguide
problems, the following considerations should be taken into account:
i) In optical waveguide structures, as shown in Fig 2, where the
guided waves propagate along the axial direction with the decay-
ing transverse field extending to infinity, the waves will glance off
the side-boundaries of the computation region but arrive at the
end-boundary broadside. It is necessary to formulate boundary
conditions at these planes so that they will only absorb incoming
waves without generating any spurious reflection that can affect
the solutions. In general, absorption at the side-boundaries is dif-
ficult and absorption at the end-boundaries is easier.
if) The FDTD algorithm is the solution to an initial value problem
and it requires an excitation scheme to start the simulation. Al-
though the excitation can be of the form of a point source or a
plane wave, the incident wave in most optical waveguide prob-
lems generally has the form of a guided mode. A poor excitation
scheme will generate unwanted transient and backward propagat-
ing parasitic waves which can create noise problems.
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Figure 2. A typical optical waveguide structure.

iii) Typically, the waveform at the waveguide output is the superposi-
~ tion of a finite number of guided modes and a continuous spectrum

of radiation modes. In order to determine the amount of guided
power in the waveguide, one can extend the computation region
until all the radiations are detached, with only the guided modes
remaining in the waveguides. However, this process adds an ex-
tra burden on the computation resources. A procedure that can
separate the amount of guided power from the total power in the
near field would be beneficial.

The solution in the frequency domain is usually obtalned by us-
ing a single frequency continuous wave (CW) excitation and is
determined from the steady-state field values. However, it is also
possible to simulate a pulse propagating through the structure
and then obtain the frequency domain solution from the time
domain solution. The solutions obtained from the two types of
simulations may disagree; the difference originates from the dis-
cretization size. Since the pulse is a broadband signal and provides
the frequency domain result through discrete fast Fourier trans-
form (FFT) of the time domain result, it is more susceptible to
numerical dispersion and numerical noise.

The minimum waveguide wavelength in the structure must be es-
timated to determine the number of sampling points per wave-
length; otherwise, the waveform will disperse as it propagates
along the waveguide. The topic of numerical dispersion will be
discussed in 3.4.
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3. Formulation and Implementation in Cartesian
Coordinate

In the following sections, the FDTD formulation in Cartesian co-
ordinates for a linear and nondispersive medium will be presented. We
will use this basic formulation to illustrate the various features of the
FDTD algorithm. We will also discuss the error behaviors and pointers
for implementing the FDTD method in optical waveguide analysis.

8.1 Basic Formulation.

Consider a linear medium in which the property tensors, the per-
mittivity tensor €, the permeability tensor 12, and the conductivity
tensor a are time independent. Using the MKS system of units, Max-
well’s time dependent curl equations in the medium are:

~  LOH
Vxe-——uﬁ— (1)
Vx—ﬁ=??—;+32 2)

where € and H are the electric and magnetic field vectors, respec-
tively. We will normalize € and H as follows:

¢ =vie E (3)
H =& H (4)

The magnitudes of the normalized fields E and H are now of the
same order. This reduces the amount of truncation and the round-
off errors during the computation procedure. Substituting the set of
normalized fields into (1) and (2) results in:

E =-— 5
Vx Hy o (5)
Vx H =¢ +0 Zog FE (6)
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where 7 = ct, €r=€ /€0 and €=p /o are, respectively, the relative
permittivity and permeability tensors. Zy = (uo/eo)l/ 2 is the free-
space impedance, and ¢ = (eouo)‘l/ 2 is the velocity of light in free-
space.

- In the Cartesian coordinate system, if we assume the principal
axes of the property tensors of the medium are aligned with the axes
of the coordinate, that is,

- €xx 0 0 - Uzx 0 0
€r =0 €y 0], =0 py, O
0 0 €, 0 0 Y
and
- Ozz O 0
c=|0 oy 0 (7
0 0 o0z

then the Cartesian component form of the normalized curl equations
is:

OH, = i g@l — OE; | (8)
Or  pzz| 0z Oy |

0H, _ 1 [0E, OE;] o)
ot pyl 8z Bz |

0H, 1 [0E, OE,]

O pz| Oy Oz | (10)
0E, 1 [8H, 0H, '

or —emloy  0r CmboB: (11)
O0E, 1 [0H, OH, ]

O €| 0z Oz _ayyZOEy_ (12)
0E, 1 [0H, OH, '

or |0z oy m=PE (13)

In order to solve the set of equations (8) to (13), Yee introduced the
leap-frog schemes. Following Yee’s notation, we represent a point in
space in the lattice by

(03, v, Z) = ('LA.’I), ]Ay> kAZ) = (iaja k) (14)
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and a function of space and time by
f(z,y, ;1) = f(idz, jAy, kAz;nAt) = f*(i, j, k) (15)

where Az, Ay, and Az are the space increments, At is the time in-
crement and i, j, k and n are integers. The space and time derivatives
in the set of Egs. (8) to (13) can then be expressed in the centered dif-
ference form. The advantage of using the centered difference form is
that the expression is second-order accurate in the discretized incre-
ment. The difference equations for %;— and %{ are:

afn(i,j,k) — fn(z + 1/23j>k) — fn(z " l/zsj’ k) + O(A$2)
oz Az

8f™(i, 4, k) _ fMH2(0,5,k) — [V, 5, k)
ot N At

The accuracy of (16) and (17) is utilized in the FDTD scheme by
positioning the field components as shown in Fig. 1 and evaluating the

(16)

+ O(At?) (17)

E and H fields at alternate half time steps. Expressing the partial
derivatives in (8) to (13) by the centered expressions of (16) and (17)
results in the following system of finite-difference equations:

HMV2(4,5 +1/2,k +1/2) = HE V206, + 1/2,k + 1/2)

4 cAt
ﬂxm(ﬁj + 1/2a k+ 1/2)
E{;(i,j+1/2,k+1)-E§'(i,j+l/2,k) (18)
) Az
_EZ(G,j+1,k+1/2) — E}(i, j,k+1/2)
Ay
Hy Y2304 1/2, 5,k +1/2) = HF V(i +1/2, 5,k + 1/2)
+ cAt
ﬂyy(i + 1/23j7k + 1/2)
{E;‘(z’-l— 1,5,k +1/2) — E™i, 5,k + 1/2) (19)
’ Az

E_,?(z + 1/2,3',]{: + 1) - E;‘(z + 1/2,j, k')
- Az
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HIMV2(5 4172, +1/2,k) = HFV2(i+1/2,5 + 1/2, k)
cAt '
SR ESVoN)
EZ(i+1/2,j+1,k)— EZ}i+1/2,5,k) (20)
) Ay
_Ej(+1,j+1/2,k) - Ej(i,j + 1/2,k)
Az

M1 8
N cAt
€xz(+1/2,5, k)M (i + 1/2, 5, k) |
Hr Y2 41/2,5 4+ 1/2,k) — HEPY2(64+1/2,5 = 1/2, k)
: . 5 ,

CHTYRa41/2,5,k +1/2) — By T4 12,5,k - 1/2)
Az

Ezti(i+1/2,j,k) =

(21)

M (3,5 +1/2,k)
MG, i +1/2,k)
+ cAt
€yy(isJ +1/2,K) M (3,5 + 1/2,k)
22 54 1/2,k +1/2) — HiPY2(,5 + 172,k — 1/2)
Az

CHMRG41/2,5+1/2,k) - HEVYRG - 12,5+ 1/2,k)
Az - :

E;‘“(i, i+1/2,k) = E}(i,j +1/2,k)

(22)
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M;(i,j,k+1/2)
MF(@, 5,k +1/2)
et
T s k+ 2ME (g K+ 1/2)
HMY2(641/2,5,k +1/2) — HEPY2 (G — 1/2,3,.': +1/2)
Az

Hyt 2,5 +1/2,k +1/2) — He 72,5 = 1/2,k + 1/2)

E7(i,5,k+1/2)

B}, 5, k+1/2) =

(23)
where

IR ou(i, J, k)eAt o
ME@G, 5, k) = 1+ 7, d l=uzy, 24
7 (6,5, k) 2en(i g, k) ° and l=uz,y,2 (24)
The system of Egs. (18) to (23) will be called the FDTD propaga-
tor. The function of the propagator is to transform the field distribution
within the computation region from t=n to t =n+1.
Notice that the material properties ¢,, and o are related to the

components of the E field difference equations, and ., , is associated

with the H field difference equations. For example, E. is dependent
on €z; and 0., and H, is dependent only on pzz. The FDTD pro-
cedure can be applied to the anisotropic situations directly, with the
structure geometry defined by specifying the matenal propemes at
the locations of the field components. Although €, o, and u are
not specified at the same spatial point, since E and H are spatially
separated, this poses no problem when nonmagnetic materials are con-
sidered. -

3.2 Time Marching.

The operation of the propagator can be described as follows. For
t<n, assume that the field distributions E (r) and H (?) are
known everywhere within the reglon The components of the H field

at t =n+1/2 can be evaluated by updatmg their values at ¢t =n—1/2

by using the time derivative of H, %;H-, at t = n. Since Q%H—. is
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—

related to the space derivatives of E by the curl equations, % at
t = n can be determined from the known values of E at t = n,

thus resulting in (18) to (20). The calculation of E att=n +1 is
erformed using (2 1) to (23). The algonthm repeats the same process,

with E and H interchanged, and with H at t=n+1/2 given.

The simulation of wave propagation is performed by repeatedly
implementing the propagator. Notice that the field component at a
given location and time is a function of its adjacent field components
in the lattice at half a time step earlier. For example, HE Y 2(i Jj+
1/2,k +1/2) in (18) is a function of EJ(i,j + 1/2,k + 1), E}(i,j +
1/2,k),E2(i,j+ 1,k +1/2) and E?(i, J,k+ 1/2), along with its own
value at t = n — 1/2. The new value of the field component at any
lattice point can be determined independently at a given time instant.
This allows the computational procedure to be fully vectorizable and
is well suited for parallel processing.

During the simulation, the propagator is applied to the total field
and therefore reflections that are generated by the discontinuities in
the geometry at a given time step will become an integral part of
the simulation at a later step. The ability to analyze reflection is a
very powerful feature of the FDTD method. Unlike other simulation
methods such as BPM which simulate wave propagation in the forward
sense, the FDTD method preserves the complete information of the
interaction between the wave and the geometry during its simulation.

3.8 Stability Criterion.

The stability criterion, the condition imposed on the ratio between
the space and time increments, arises from the choice of the time-
explicit differencing scheme. This condition is referred as the Courant-
Friedrichs-Lewy (CFL) condition [20], which simply states that a dif-
ferencing scheme cannot be convergent if the domain of dependence of
a point in the finite differencing scheme does not include all points in
the domain of dependence of the governing differential equation.

Consider the space-time diagram in Fig. 3, where each row of
points on the diagram corresponds to the sampling points in space at
a given instant of time. The shaded area contains the past history of
the value at point (k;n), such that it is determined in part by values
at points (k—1;n—1) to (k+1;n—1). If this domain is a subset of the
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differencing domain of dependency enclosed by the dashed lines, then
the scheme is stable; otherwise, it is unstable with divergent results.

The stability criterion can be derived from a number of methods
[5], and its role in the error analysis of the scheme will be further
studied in the next section. In a sourceless and homogeneous medium,
the stability criteria for multidimensional problems are [5]:

ct (cAt = Az) sample point
n o o\ & © o’/
Az /‘_. e
n—1 O =0 O, o
(ct =12) ALY 7
- o o,
n—3 S~
n—4
n—5 /
/.
k=2 k-1 k k+1 k+2

Figure 3. CFL condition for stability in one dimension.

1-D: vAt < Az (25)

[ 1 1 V2
—_ : < | —— —_—
2-D vAt A 22 + ' 2] (26)

1 1 p 172
3—-D: vAt < ]

Ax? + Ay? + Az? (27)

where v is the velocity of light in the medium. In the FDTD simula-
tions, the value of v is chosen to be the maximum wave phase velocity
expected within the model.
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3.4 Numerical Error Analysis.

In addition to the roundoff errors associated Vwith,the finite rep-
resentation of numbers in the computer, there is an additional source
of error. associated with the method. When simulating wave propa-
gation on a discretized domain, a complex multiplicative factor v is
superposed onto the numerical solution. The induced error arises from
the fact that a discretized domain is a dispersive propagating medium
which is characterized by a frequency dependent phase velocity. Since
the errors are propagating errors that increase with the number of time
steps, these amplitude and phase distortions will play a important role
in determining the accuracy of the solution.

The error associated with the numerically discretized simulation
of wave propagation can be determined from the von Neumann sta-
bility analysis [19,21], or by a Fourier analysis [22]. A comprehensive
discussion on the subject of numerical dispersion in the various differ-
encing schemes is given in [23]. Here we will perform the von Neumann
analysis to determine the 7 of a one dimensional FDTD scheme. The
procedure considers the simulation of propagation of a single frequency
wave using the differencing scheme. It determines the complex ampli-
tude v imposed on the original waveform by the scheme. The analysis
can only be applied on an nondissipative medium in which the ampli-
tude of the solution remains constant. In one dimension, the FDTD
differencing scheme with €,, =1,4,, =1 and ¢,, =0 is:

8 H," (k) | 8 0 1} |H," (k) (28)
or | Ez"(k) |~ 0z |1 0] E(k)
Assume that the solution to the above differencing scheme is
HPMR)) o s [H2O)
AN, iBkAZ y
[Ez"w) =T B2 #9)

where the vector on the right-hand side is the exact initial condition,
v is a complex number, and (B is the propagation constant in the
medium. Substituting (29)-into (28) yields the following system of
equations:

| 0] | 'ylf?'—.'y‘l/'?. —_jRSiﬁ(H) HyO(VAO)'
0] ~ | —jRsin(@) AY2—~"Y2 || E.°(0) (30)
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where § = BAz/2 and R = cAt/Az. The values of -y for the non-
trivial solution in (30) are given by : o

(31)

exp i {tan"l 4 [ 4R?sin(0) — 4R*sin%(6) . }}
T=exp 1 — 4R2sin*(0) + 4R%sin%(0) |
provided R satisfies the CFL condition. : :

The error caused by the discretization can be determined -from
the magnitude and phase of . The magnitude of < determines the
spurious increase or decrease of the original wave amplitude. For this
reason, it is called the amplitude factor. In the case of spurious increase
when the factor is larger than unity, the system is unstable and the
stability criterion will not be met. For the spurious decrease case, the
high frequency components of the waveform will dissipate very quxckly
and the system fails to model these components.

-. The phase of y will introduce a phase factor on the solutnon “This
is the origin of the numerical dispersion in the differencing scheme. The
amount of dispersion is determined by @, which is a measure of the
number of sample points in a wavelength. Generally, the ratio between
the number of sample points and waveguide wavelength is 79 > 12Az,
in order to ensure accuracy of the simulation,

Although < in the FDTD schende is complex and carries a phase
factor, its magnitude is unity (see [5,21] for the proof of |y| =1 in three
dimensions) and is independent of the ratio R provided it satisfies the
CFL condition. The fact that there is no amplitude change is one of
the advantages of the FDTD method.

3.5 Absorbing Boundary Conditions.

As mentioned in 3.2, the field component in the propagator is a
function of its adjacent values. However, the computation region is fi-
nite and field values that are outside of the computation region will be
needed if the propagator of (18)-(23) is used to calculate the nodes at
the boundary. One can derive modified propagators for the boundary
nodes that are functions of the nodes within the computation region

only. The modified propagators are formulated from the various absorb-
ing boundary conditions. These conditions assume wave that arrives at
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the boundary is outgoing, so that the behavior of the wave is governed
by the one-way equations [24-26]. The propagator for the boundary can
be derived by expressing the one-way equation into its finite- difference
form. However, the propagation constant of the outgoing wave in the
one-way equation is not known. One has to approximate the value of
the propagation constant. The order of the approximation corresponds
to the order of the modified propagator, boundary condition. Some of
the boundary condition used in the FDTD analysis are [5,11,27-32].
In general, to perfectly absorb an outgoing multifrequency wave at
an arbitrary angle is difficult. The absorbing boundary conditions are
usually not perfect and it will generate small spurious reflections at
the boundary.

In the example presented in this chapter, the absorbing boundary
condition proposed by [30] is found to be the most efficient. A brief
derivation of this absorbing boundary condition will be presented in
order to gain an understanding of the various approximations behind
this and other boundary conditions.

Consider a truncation plane or boundary located at = = 0, with
the computation region at = > 0. The absorbing boundary condition is
needed to absorb the outgoing wave propagating in the —z direction.
The outgoing wave is assumed to be the plane wave solution to the
scalar wave equation and can bé expressed as:

¢=¢wm{¢ﬁ+@x+&y+m4} (32)

where 3,8, and (3, are the propagation constants in the z,y and 2
directions. Furthermore, with ko = w/c,

kS — B — By - B =0

. 1/2
m=m& @—@} (33)

KK

or
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The expression (32) is differentiated with respect to = to obtain
a
— — 1 et 4
[ p Jﬁz] ¢=0 (34)

which is the governing equation for the absorbing boundary condition.
If Bz is known, (34) explicitly relates ¢(z = 0) with ¢(z = Azx), so
that values at the boundary can be determined without information
from outside the region. The problem is to find the appropriate value
for B, In the second order boundary condition Mur [30] approximates
(33) by

1

Bz = ko [1 - W(Bﬁ + ﬁzQ)} (35)

with error of the order O [(By2 + ﬁz2)2

Let us pause now to analyze the sources of error in this and other
absorbing boundary conditions. In order to explicitly express the val-
ues at the truncation boundary by the values within the computation
region, one has to estimate the propagation velocity normal to the
truncation plane. In this case, the value of 3, is determined from f3,
and (.. The error in the expression for 3, is related to the magnitude
of B, and (B, with the accuracy of the expression inversely propor-
tional to some order of 3, and (.. This indicates that the boundary
condition successfully absorbs paraxial waves traveling normal to the
truncation boundary. As the wave direction starts to deviate from the
axis and arrives at the boundary at a glancing angle, the spurious
reflection from the boundary increases accordingly.

The approximate expression of §; is substituted into (34), with
jko is replaced by the operator 9/9r, to obtain:

d? 0% 1] 0% &
{—"arax_Eﬁ+'2'[a—;ﬁ5Z}¢”° (36)
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The difference expression for (36) evaluated at x =1/2, t =n is

¢"+1(0, j’ k) = _¢n—l(1’ ja k)

Ei—iﬁ n 23’ [¢"+1(1’ 3, k) + "0, k)]
(cAt)zAa;

2Azx s s
bt 003,84 970,3.0) | + RS

{5 [0+ 10 48705+ 18 - 26703,
+ ¢n(0’j) k)) + ¢n(1,j - 1>k) +¢n(0aj - 1>k)]

2
+ le [¢n(1:]ak + 1) + ¢n(01j)k + 1) - 2(¢n(1$]a k) :

+ ¢n(0)])k)) +¢n(1’ja k — 1) + ¢n(0aj)k - 1)] }

37)
Typically, the reflection from the truncation boundary using the second
order boundary condition amounts to about 3% for normal incident,
where the waveguide is perpendicular to the truncation plane. The to-
tal amount of reflection increases when the waveguide axis is no longer
normal to the truncation plane. However, the propagation direction of
the reflected signal now differs from the axial direction of the waveg-
uide, thus the coupling of the reflection to the waveguide is small. The
absorbing boundary condition is only required for the field compo-
nents parallel to the truncation plane. The perpendicular components
can be evaluated from these parallel components. A similar expression
for the boundary condition for the edges and corners can be derived
by assuming the directions for the wave.

The treatment of outgoing waves at the truncation boundary
is critical in the analysis of structures in an open region. Improper
boundary conditions will introduce spurious reflections that distort the
proper solution. Readers should consult with references [24-26,30,31]
for a better understanding of the operation and formulations of the
different absorbing boundary conditions.
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8.6 Source Ezxcitation, Total Field, and Reflected Field Regions.

In this subsection we will present the methodology in defining a
+2z propagating incident waveform. We will separate the computation
region into two subregions, the total field region and the reflected field
region. The plane separating these regions is called the incident plane.
In the total field region, structures of interest such as a junction or
more complicated structures are defined. The interaction between the
incident wave and the waveguide geometry will take place in this region
so that its field quantities must retain the information of both the
incident and scattered waves. In the reflected field region, there are no
junctions or discontinuities and the field quantities in this region are the
reflections from the total field region. Since there are no discontinuities
in this region, these signal will not be reflected back into the total field
region.

The excitation scheme of a +z propagating incident waveform
consists of a total field region and a reflected field region that are
located at z > 0 and z < 0, respectively. One can consider that the
incident field is being generated by a flashlight located on the incident
plane facing the +z direction. The flashlight is turned off for ¢ < 0
and the field values in the whole computation region are equal to zero.
At t =0 the flashlight is turned on and illuminates only the total field
region. If the excitation scheme is perfect, there should not be any light
detected by an observer located in the reflected region, unless there are
some obstacles such as discontinuities in the total field region which
would generate the reflection.

The incident wave can be generated by specifying the exact field
distribution on the incident plane at each time interval. However, along
with the required incident waveform, this method also generates the
2 propagating parasitic waves. The characteristics of these undesired
waves are investigated using a Fourier analysis in [33], where it is shown
that these are the backward solutions to the discretized wave equations
and that their wavelengths, Ap, are in the interval 2Az > Ap > 4Az.
These parasitic waves can reflect off the end boundary and propagate
into the total field region. This can affect the accuracy of the solution.

In order to reduce the number of parasitic waves, the source is
being excited into the waveguide geometry using the following pro-
cedure. Consider the two-dimensional transverse electric (TE) com-
putation mesh in Fig. 4, where the total field region is located at
z > k and the reflected field region is located at z < k. The incident
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plane is denoted by the dashed line. The evaluation of E,"(i,k) and

H,"'/2(4,k1/2) , using the FDTD propagator, requires knowledge of
the preceding half time step values of the field components across the
incident plane. In order to ensure consistency during the computational
procedure, the incident field H™.M? is added to H,™Y2(5,k—1/2) in

Z,n
the difference equation for E, "(sz) When calculating the value for
H,"V2(4, k —1/2)), which is in the reflected field region, the incident
field E7,,. is subtracted from E,"(i,k) in the difference equation for

y,inc
H,™*Y2(3,k — 1/2) . The subtraction of the incident field at the inci-
dent plane is necessary to reduce the amount of parasitic waves and
enhance the dynamic range of the FDTD scheme.
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Figure 4. Source excitation condition in a 2- D TE mesh.
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The source excitation scheme is not limited to generating only the
+2z propagating incident wave. In continuous wave (CW) excitation,
the time dependence of the incident field is a single-frequency sinusoidal
function, so that:

Ginc(t, kinc; ) = Ginc(i, Kinc) sin(nkocAt + ;) (38)

where ko = 2n/) and where X is the wavelength of the optical
signal. The initial phase offset 6; is the phase difference between points
in the incident plane. This offset can be adjusted to define the direction
of the incident field. Eq. (38) is often multiplied by a taper function:

s(t) =1 —exp{-t/7} t>0 (39)

where 7 is a time constant to reduce the transient effect. In pulse
excitation, expression (38) is modulated by a slowly varying envelope
function. For the Gaussian pulse, the envelope function is:
(nedt Ty | '
ncAt —

_...______9.} (40)

G(t) = exp —[ -

where Tp is the time offset and w is the pulse width parameter.

8.7 Data Interpretation.

The result obtained from the FDTD simulation procedure de-
scribed in the preceding section is the set of field values on the dis-
cretized region at the sampled time intervals. However, one would like
to express the form of solution in the optical waveguide analysis in
term of the power distributions or modal expressions. Using the sim-
ple example of wave propagation in a slab waveguide, the conversion
from the large amount of raw data to the desired modal parameters of
interest will be discussed in this section.

3.7.1 Propagation in a dielectric slab.

The dielectric slab considered in this example is shown in Fig. 5,
and has the following waveguide parameters: d = 0.3um,ny = 1
and n; = 1.5. The guided modes supported by the geometry are the
TEo,TE,,TMpy and TM; modes. Since the solution to the step-index
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waveguide can be determined analytically, the exact field distribution
of the slab waveguide is used as the incident wave. For arbitrary graded
index or three-dimensional structures where the exact field distribu-
tions of the guided modes are difficult to obtain, the propagation char-
acteristic of the structures must be predetermined by approaches such
as the WKB [34] or finite-element method {35-37]. For convenience, we
consider only the CW simulation of the TE mode propagation, where
Ey,H;, and H, are the nonzero field components. The computation
region in this example consists of 80 x 100 cells, with the mesh de-
fined in 1 < 7 < 80; 1 < k < 100. The incident plane is located
at k = 40. The increments used are Az = Az = 2cAt = 0.5um.
As a first example, the +2z propagating TEy mode at A\ = 1um is
launched from the incident plane at ¢ = 0, that is at n = 0. The
power carried by the incident field is normalized to one unit, so that
Py = |Ag|? = 1 where Ap is the normalized TE; modal amplitude.
The E, distributions along the z-axis (i = 40) at time steps n =
40, 120 and 400 are shown in Fig. 6. The response to the excitation
of the geometry is characterized by the transient at the leading edge
of the waveforms at n = 40 and 120. In order to obtain steady-state
values at a given location it is necessary to wait until this transient
has passed. The waveform at k& < 40 is the parasitic wave generated
by the excitation condition described in the previous section.

no

[ Ep——

m - Z 24

N

= k=100
k=1 incident
plane

Figure 5. The dielectric slab waveguide.
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There are a number of ways to determine the steady-state am-
plitude |E,| of the field component at a given location. The most
direct way is to monitor the field values at the location and record the
maximum and minimum values at each time step. The peak-to-peak
amplitude can be evaluated from the difference between the extremum
values. When using this approach, the recording should start after the
transient has passed; therefore, it is necessary to calculate the peak-
to-peak value for each time cycle until the value becomes constant.
Another approach is to assume that the simulation has reached the
steady-state and there is only a phase difference of kocAt between the
field values obtained form two consecutive time steps. Here, the un-
knowns are the magnitude and phase of the complex amplitude of the
field component. With the two field values it is possible to determine
these unknowns.

The advantages of this method are that it requires only two con-
secutive values to provide both the phase and magnitude of the field
component. The calculation can be performed at the very last time step
so that it requires much less computation time and it is not necessary
to assign additional memory for recording the previous values. Due
to its simplicity, this will be the approach used in all of the analyses
for determining the steady-state results. However, when applying this
method, one must note that if the amplitudes are calculated before the
steady-state has been reached, the values from two consecutive time
steps no longer differ by a phase constant. The resulting amplitude will
be influenced by the improperly defined phase difference. This method
is also very sensitive to numerical noise. In situations where there are
noise problems, such as near the truncation boundaries, more sampling
points would be needed to obtain a stable field amplitude.

3.7.2 Power distribution.

To show the power distribution in the slab at a given time instant,

the instantaneous Poynting vectors ?(?; t) at n = 400 are plotted for
each cell,for 21 < i < 59, 47 < k < 61, and are shown in Fig. 7, where:

S(Fit) x BH(F;t) (41)
The length of the vector is scaled linearly according to its magnitude.

The z-dimension of Fig. 7 spans approximately one waveguide wave-
length. Notice that these vectors are not all pointing in the z direction;
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instead, they show the direction of the instantaneous power flow at each
lattice point. The pattern is time dependent and moves to the right
as a function of time. The energy is confined by the slab within the
envelope of Poynting vectors and propagates along the axial direction.

Using the method described in the previous section, the time-

averaged Poynting vectors ?ave(?) can be determined by first calcu-
lating the steady-state amplitudes for all the field components. Then

?(?) is evaluated by:
S ave(7) = %Re{ﬁ(?;t) x ﬁ*(?;t)} (42)

The time-averaged Poynting vector distribution over the same region as
in Fig. 7 is shown in Fig. 8. In this case all the Poynting vectors point in
the z-direction, showing the guiding characteristic of the T'Ep mode.
Furthermore, the magnitude of the power consists of only one peak
along the transverse z direction, indicating that it is the fundamental
TEy mode. The amount of power carried by the TEy mode in the

slab can be calculated by taking the surface integral of ?ave over a
given transverse plane.
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Figure 7. S (t) distribution in the slab, with TEy incident.
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Figure 8. S (t) distribution in the slab, with Ty incident.

3.7.8 Modal Extraction.

If the power in the slab is carried by only one guided mode then

the surface integral of ?ave over the transverse plane is the power in
that mode. The situation becomes more complex if it is necessary to
determine the power carried by the guided mode which is combined
with the radiation modes and other guided modes.

Consider the multimode propagation in the slab where the inci-
dent waveform is the superposition of the teg mode with Ag =1, the
TE; mode with A; =1/ V2, and also consider that these modes are
in phase at the incident plane. The incident waveform is shown in the
Fig. 9a and the time-averaged power distribution is shown in Fig. 9b.
The power distribution shows the beat pattern between the two modes.
At a given transverse plane, the power distribution is a combination of
the modes with a certain phase difference. As a result, the distribution
repeats itself after a distance L, where:

L =By (43)

and where By and [B; are the propagation constants of the TEy and
TFE; modes, respectively.
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3.7.4 Least Squares Approach.

In order to determine Ap and A; from the power distribution,
it is necessary to calculate the overlap integral between the waveform
distribution and the field distribution of the desired guided mode.

The process of separating the modal components in a waveform
is performed numerically using the least squares approach [38]. Con-
sider the steady-state solution in an optical waveguide analysis. In the
least squares approach, the field distribution at a given point (i,k)
in the computation region is considered to be the combination of the
finite number of guided modes and a continuous spectrum of radiation
modes. The field distribution is expressed as:

N o0
ET(me,zk;t)=Re{EAz(zk;t)E?($i)+ /0 Q(ns)E’(xi)dns} (44)

I=1

where

Az t) = Ay exp{j [wt - Bz + 91} } (45)

and where ET,F9 and E" are the total, guided and radiation field
distributions, respectively, A and Q are the complex amplitudes of the
guided and radiation modes, f3; is the propagation constant of the I**
guided mode and N is the number of guided modes in the waveguide.
The solution of the FDTD simulation is in the form of the total field
distribution, ET . The problem is to determine A from ET .

Here, we seek the least squares solution to Eq. (44), that is; the
minimization of

M N
IR =Y 1ET(z:) = ) AE] ()] (46)
=0 =1

where M is the number of sampling points in the z direction. At a
given instant ¢ = ¢y and at plane 2 = 2y, the discretized form of (44)
can be written as:

T=[Gb+R (47)

where
T; = ET(2;), Giy = Ef(2:), b, = ReA, (48)
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and R is the radiation field distribution. The minimization of (46)
becomes:

The solution of (49) in the least squares sense is the estimated
amplitude distribution. Equation (49) can be solved by a number of
methods, such as by the singular-value decomposition approach [39).
Since the normal modes of the waveguide, including the integral of the
continuous spectrum, are orthogonality to each other, the system is
very stable. Notice that the resulting R is orthogonal to the vectors
in [G], which corresponds to the orthogonal condition between the
integral of the continuous radiation spectrum and each of the guided
modes.

As described earlier, in order to determine the magnitude and
phase of A;, one needs to evaluate b; at t = ¢, and o + At. The
magnitude A; and phase wty — Biz0 + 6 can be obtained from (45).
Once the complex amplitudes of the guided modes are determined, the
radiation field distribution R can be determined directly from Eq. (46).

For structures with canonical waveguide cross-sections as input
and output, where the guided mode distributions are well defined, the
above technique can be applied to determine the energy distribution
in the guided modes and in the radiation modes. However, even if the
geometry of the input and output are arbitrarily shaped, such as in
tapered waveguides, this technique can still be used to determine the
power distributions of the local normal modes at a given transverse
plane.

Using the above technique, the modal amplitudes A¢ and A; for
the simulation in Fig. 9 are extracted and their magnitudes and phases
are shown in Fig. 10a and 10b, respectively. The ripples on the curves
in Fig. 10a correspond to the noise in the system from the sources de-
scribed in the previous sections. The ripples are filtered out by fitting a
straight line (shown as the dashed lines) through the data points. The
extracted magnitudes |Ap| and |A;| are 1.00 and 0.707, respectively.
Since the uniform waveguide contains no axial discontinuity, the mag-
nitudes of the modes are the same as the values excited at the input
plane. The accuracy of the method can be estimated from the plot of
modal phase versus axial distance, where the slopes of the lines cor-
respond to the propagation constants fBo and (). In this case, the
percentage error for the extracted Go and (; are 0.81% and 0.77%,
respectively.
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4. The Scalar and Semi-Vectorial FDTD Algorithms

The method of extracting the modal amplitudes from the total
fields compresses the vast amount of information generated by the
FDTD algorithm into simple expressions that can be interpreted di-
rectly in the more interesting form of power distributions. It is inter-
esting to see that although the algorithm calculates all the field com-
ponent values, only the distribution of one field component is needed
to determine the modal amplitude. In principle, one can solve a par-
ticular waveguide problem by determining only the distribution of the
dominant field component. This is especially true in the case of optical

guided-wave problems where the field intensity, |E‘)|2 , is proportional
to the power distribution.

Due to the extensive computational requirement of the basic FDTD
algorithm, the scalar and semi-vectorial FDTD algorithms have been
developed to reduce the computational cost by analyzing only the prop-
agation of the dominant field component. In the linear and inhomoge-
neous medium, the coupled Maxwell’s curl equations are combined to
form the vector wave equations:

*PFE — 1 —

He— =V2E -V? [V-G—-EE} (50)
°H p=2 1 —

pe—m =V*H +Vex ;Vx H (51)

If the electric field is linearly polarized in the x direction, where the
dominant field components are E; and H, then both the z compo-
nent of Eq. (50),

8°E, O°E, O0°E, 0 {1 o) E]

Hoe = 52 Vo2 "oz o

d 11 O¢ 0 |10

and the y component of Eq. (51),

O°H, _ 8H, 8 [;%]

B = 5y t €52 | oz
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O¢ 10H;  0el10H,

Ore Oy Oze Oy
can be used to describe the propagation of the field exactly. The terms
are the polarization coupling terms between the dominant
and the minor components. In order to account for polarization ef-
fects, equations for the minor components similar to (52) and (53) are
needed to form two sets of three second order differential equations.
One can solve either one of these sets of simultaneous equations to
determine the full vector behavior.

In the semi-vectorial approximation, the optical signal is assumed
to be linearly polarized, and the polarization couplings are neglected.
Furthermore, the interfaces between the difference indices are assumed
to be parallel to the £ and y directions. After eliminating the polar-
ization coupling terms, the resulting equations are the semi-vectorial
wave equations (SVWEs):

(83)

involving the minor components # | E,

d¢e 1 8H
dz'e

OE, o°E, O°E, 0[10
o2 = o2 T o +%[EE§ E} (54)
&H, 8°H, 0 |18H, d |10H,
o2 = B2 oz|c oz | 0z|c oz (55)

The discontinuities of the normal E field and the tangential H field
at the dielectric interfaces are considered by these equations. This al-
lows the SVWESs to predict the propagation characteristics of the vector
wave.

For two-dimensional problems where 5— , Egs. (54) and (55) re-
duce to the following propagating equations in the TM case:

OE, O0°E, 3 10

o T 022 "oz !e oz E] (56)
OHy _ 0 f1om,) | 9108,
e = am[e 6a:]+ Bz[e 82] (57)

Notice that (57) is exact for linear, nondispersive and isotropic medium.
However, (56) neglects the couplings between the E; and E, compo-
nents so that it is valid only for uniform structures in the 2 direction.



FDTD method for optical waveguide 287

The TE SVWEs with the E, and H, components can be derived in
the similar way. Notice that the SVWEs with E, and H, compo-
nents describe the exact behavior of the TE and TM propagation of
the optical signal In an isotropic region.

When the refractive index changes are small, Ve = 0, the scalar
approximation [40] can be applied, then the SVWEs reduce to the
scalar wave equation (SWE):

,n2 62
V- amt =0 » (58)

where 1) represents the dominant field component. For the z polarized
wave in this example, 1 can either be E; or H,.

In the semi-vectorial (SV) and scalar (S) FDTD algorithms
[41,42], the SVWEs and the SWE are solved numerically using the
finite-difference approach. An explicit time-domain approach similar
to the basic FDTD algorithm is used to solve the reduced wave equa-
tions. In this way, the majority of the advantages of FDTD analysis
are maintained.

The reduced wave equations are second order equations with re-
spect to time. In the modified algorithms, the field values at the two
previous time steps, t = n — 1 and ¢t = n, must be known in order
to calculate the field value at ¢t = n+ 1 . Therefore, it is necessary
to allocate computer memory to store the field values at ¢ = n and
t =n—1. However, with only one unknown field component, the total
required storage in the modified algorithms is smaller than in the basic
FDTD algorithm. Using the same procedure as [19], it can be shown
that the stability criterion for the S-FDTD algorithm is the same as
(27). For the SV-FDTD algorithm to be stable the time increment

must satisfy: :
-1/2
L, Tk } N

Ay? + Az? (59)

T
At < [ ALZ +
where (59) ,T; ;x are the maximum of the harmonic means of the
refractive indices at the interfaces. The indices i,7 and k correspond
to the interface is parallel to the z,y and z direction, respectively.
Here, T = 1 when the electric field is tangential to or the magnetic
field is normal to the interface, otherwise,

2e(l £1)

FOFTIESE l=1,5,k (60)

Tie1 =
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For optical guided-wave problems in two dimensions, there is only one
dominant field component and no polarization couplings; these mod-
ified algorithms are sufficient to describe the propagation behavior of
the optical signal. In terms of computational costs, these algorithms
require approximately 30% less memory and 50% less computational
time then the basic algorithms for the two dimensional problems.

5. Extended FDTD Algorithms

In a medium where the constituent law relating E and D is
more complex, it is necessary to use the more general expression of
Maxwell’s equations:

5 LOH

VXS-—-—}L—@%—‘ (61)
e D - -

VXH:-a—t—+O’E (62)

assuming B = mﬁ?. The extension to the FDTD algorithms must

now establish the constituent relationship between D and E in the
time domain so that it can be incorporated into the formulation. In the
following sections, the extended FDTD algorithms in a time-varying
and dispersive medium will be presented.

5.1 FDTD in a Time Varying Medium.

In the FDTD algorithm for media with extrinsically induced time
varying refractive indices, such as by electro-optical and acousto-optical
effects. The Maxwell’s equations that are used in the basic FDTD al-
gorithm are modified by incorporating the instantaneous relationship
between the electric flux density and the electric field

D()="¢) € (1) (63)
into Eq. (62) so that
V x H= ?(t)§-+ 7 ()F (64)

ot
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where

7 =LE “) +5 (1) (65)

The modified equation is then discretized in the usual way to yield the
propagator. Note that when calculating the field components using
the modified propagator, the values of ¢ and z; at each time step are
required.

We will use the time varying FDTD algorithm to demonstrate
the band limitation of a traveling wave Mach-Zehnder modulator. The
limitation is due to the velocity mismatch between the optical and
the rf signals. The schematic of a scaled down modulator is shown in
Fig. 11, where (,,,wn are the rf wave propagation constant and fre-
quency, respectively, and By and wp), are the optical wave propagation
constant and frequency, respectively. The waveguide parameters are:
ny=16,m9 = 1.5An=002,L=19um, 0 =2.86°, and d = 1 um.
The simulations were performed in two dimensions; for the TE case,
at A=13um and wo = 28wy, . The computational mesh consists of
3000 by 200 grid points, with increments Az = Az = 0.05um and
cAt = 0.025 um . The intensity distributions of the modulator after
10000 time steps are shown in Fig. 12 for fo/Bm =1, 2/3, and 1/2.
In Figure 12a, the optical signal travels at the same speed as the rf
signal. The optical signals see the same index distribution along the
parallel section of the modulator and there are no frequency limits on
the modulation. As a result, sharp and distinct pulses are formed at the
output of the modulator. As the degree of mismatch increases, as shown
in Fig. 12b and 12c, the pulses begin to smear into each other and so
the modulation is reduced. In order to measure the modulation for the
various mismatches, the power distributions along the output branch
of the modulator are shown in Fig. 13. These curves are obtained using
the modal extraction techniques as described in the last section. The
modulation depths calculated from the simulation results for 5o/Bm
=1, 1/2, and 1/3 are at 100%, 80.4%, and 7.8%, respectively. Note
that the maximum power of the pulses are below one unit; the loss is
due to the radiation and reflection at the waveguide transitions.
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Figure 11. Schematic of the traveling wave Mach-Zehnder modulator.
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Figure 12. Intensity distributions of the modulator after 10000 time steps.
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Figure 13. Spatial distributions of pulses at the output of the modulator.

5.2 FDTD in a Dispersive Medium.

In a linear dispersive medium the dielectric constant becomes a
function of frequency. The electric flux density D is related to the
electric fielld E by a linear integrodifferential equation:

D(t) = eaneoB(£) + o /0 "Bl — r)x(r)dr (66)

Lubbers et al. [43] discretized the Debye dispersion relationship directly
and incorporated it into the FDTD formulation. The discrete convolu-
tion method was later extended to media with multiple second-order
Lorentz poles describing the complex permittivity [44].

Joseph et al. [45] proposed an alternative approach, the differ-
ential approach, to extend the FDTD method into a linear dispersive
medium. The dispersion relationship e(w) = %(:"-;)Z is converted into a

differential equation by taking the inverse Fourier transform on both
sides. The resulting differential equation is expressed as its difference

form and added into the FDTD formulation that relates D and E .
The differential approach is more intuitive but may require more com-
puter storage [44].
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For most optical materials, the dispersion curve is expressed by
the Sellmeier equation:

w? — w?

N
€(w) = €co + Z Ll (67)
i=1

In the wavelength range of interest, the dispersion curve can be fitted
to the a Sellmeier equation with N =1:

_ €s,1
€(w) = oo + = % (68)

Following the approach used in [45], a differential equation is obtained
by taking the inverse Fourier transform of the dispersion relationship:

E(t) (69)

E@‘ + wy D(t) = Goo'c'[ﬁ + (coowl — €s,1

In the extended FDTD algorithm, the differential equation is expressed
in the difference form:

2 .
Ertl = [2 + ‘?t (€51 — eoow%)} E" - E™! (70)
o0
+ [ D4 D7 (a0 - 2| (1)
oo

and used to evaluate the value of E™*!. The value of D™*! is calcu-
lated by using either the curl equation of(62), or the general form of
the semi-vectorial equation:

2 =
E .
;;,52._\7 -V eEE

82—5) — 1
v (72)

We will use the FDTD algorithm for a dispersive medium to evaluate
the reflective spectra of a grating structure. This example will also
demonstrate the use of pulse excitations in the FDTD analysis. Fig. 14
shows the volume grating to be analyzed. The gratings are assumed
to be made of pure silica having the dispersion relationship near A =
13 pum

B)?
nz(/\) =A+ Y_C2 (73)
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where B = 0.89748 and C = 9.89616 are constants for all the ma-
terials, and A = 2.00000,2.08010, and 2.10933 for n,,ns, and ng,
respectively. The grating period A is equal to 0.4545 um which cor-
responds to the first order grating length at A = 1.3um,A = 8/7.
The thickness of the film d is at 2 um, and there are 100 gratings. We
will perform the simulation for both distributed feedback (DFB) and
distributed Bragg resonator (DBR) filter structures. The DBR has a
phase shift region of A\/4 at the middle of the structure. '
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air /N /4 shift
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-
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Figure 14. Schematic of the volume grating.

In the simulation, the input pulse is sent into the grating struc-
ture. The reflected pulse is then collected and analyzed to determine
the characteristic of the filter. The temporal and axial distributions
of the incident pulse are Guassian. The transverse distribution of the
pulse has the form of a TEp mode profile. The central wavelength
of the pulse Ao is at 1.3 um and the pulse width is at 12)\g. When
choosing the pulse width, one must be aware of that the high frequency
components of the pulse, which may violate the stability criterion. The
effect of these distortion can produce noise that affects the spectrum
of interest. In practice, pulse widths larger than 10)\g should be used.

The temporal distribution of the input pulse is shown in Fig. 15.
The reflection is monitored by performing the modal extraction of the
TEy distribution on the instantaneous field values in the reflected re-
gion. A typical reflected signal is shown in Fig. 16. The reflection in
this case is for a structure with only 20 gratings, and corresponds to
the cumulative reflections from each of the gratings. For a structure
with more grating periods, the reflected pulse train is correspondingly
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longer. In principle, the reflected signal must be taken from ¢ = 0 to
t = x. However, the reflected signal after the third or fourth reflec-
tion is usually very weak and the data gathering can be terminated at
that point. One should also subtract the backward propagating para-
sitic wave from the reflected signal. As mentioned earlier, the parasitic
wave is generated by imperfect excitation conditions. Although the
noise created by the wave may be small, it can reduce the dynamic
range of this method. The noise can be determined by observing the
reflections in the simulation of a uniform structure. Since the structure
should not produce any reflections due to the geometry, the reflec-
tion it does generate is the numerical reflection caused by the source
excitation. Finally, the reflected spectra for the grating structures are
obtained by taking the transfer function between the Fourier transform
of the reflected signal and the input signal. The reflected spectra for
the DFB and DBR filters for the example here are shown in Fig. 17.

1.0 7
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Figure 15. The input Gaussian pulse used in the analysis of grating
structures.
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Figure 16. The reflected pulse train from the grating structure with 20

periods.
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Figure 17. The reflected spectra of the DFB and DBR grating structures.
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6. Conclusion

In summary, the FDTD method is a very versatile and powerful
method for the analysis of electromagnetic wave interactions. It is well
suited for the analysis of compact geometries having strong wave in-
teractions or having weak but extended interactions that can add up
coherently. Current researches are focussed on the improvement of the
efficiency of the method, such as the S-FDTD and SV-FDTD, and to
extend the FDTD algorithm to more complex media, such as disper-
sive and nonlinear media. The method has begun to gain popularity
amongst the researchers in optical modeling and simulation. Recently,
in the 1993 Integrated Photonics Research meeting at Palm Springs,
California, a section was devoted for the development of the time do-
main method .
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