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1. Introduction

Electromagnetic chirality describes the effect of handedness in
electrodynamics. Since chirality gives rise to handedness, circularly po-
larized waves of different handedness have characteristic interactions
with chiral media. This means that two wavenumbers are present, one
of each circularly polarized mode, and a given object will appear to
be one of two sizes depending upon the polarization of the illuminat-
ing wave [1,2]. For this reason, several canonical curved geometries
coated with chiral layers are examined to quantify this polarization ef-
fect on angular scattering. The geometries of interest are coated metal-
lic spheres and cylinders and homogeneous chiral spheres and cylinders.
The interplay of these geometries with electromagnetic chirality and
their joint effect on depolarization are analyzed. Of interest are the
physical principles of electromagnetic chirality involved with angular
scattering and the relative effects of curvature, loss, and degree of chi-
rality. The dependence of Mueller matrices on chirality is investigated
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in a first step toward remote sensing and characterization of chiral
coated particles from angular scattering measurements.

Selected work in electromagnetic chirality includes scattering from
chiral objects with planar [3–6], cylindrical [7–10], spherical [7,11–14],
ellipsoidal [15] and wire geometries [16,17]. Most of this work has con-
centrated on backscatter and total scatter cross-sections. Here the dif-
ferential scattering cross-sections are examined.

In the following sections, a mathematical description of waves in
chiral media is given and the eigenmode expansions for layered cylin-
drical and spherical geometries are formulated. The scattering cross-
sections and Mueller matrices for a chiral coated metallic cylinder and
sphere are determined and compared through a coordinated set of ex-
amples.

2. Electromagnetic Chirality and Curved Geometries

Chirality refers to the lack of bilateral symmetry in an object, and
chiral structures can be classified as either right or left handed. A collec-
tion of chiral structures of a similar handedness forms a chiral material.
Such materials possess an intrinsic handedness due to their microscopic
composition. An isotropic, reciprocal chiral medium can be described
by the set of generalized constitutive relations, D = εE + iξcB and
H = iξcE + (1/µ)B where E,B,D and H are the usual electromag-
netic field vectors [1]. The permeability and permittivity are repre-
sented by µ and ε , respectively, and the chirality admittance ξc is a
quantity introduced to incorporate the effects of chirality. In particu-
lar, ξc is a measure of the degree of chirality of the medium through
its magnitude. The sign of ξc specifies the medium handedness.

From the generalized chiral constitutive relations and the time-
harmonic Maxwell’s equations for (e−iωt) excitation, the chiral Helm-
holtz equation in a sourceless region is found to be,

∇×∇×C− 2ωµξc∇×C− ω2µεC = 0 (1)

where C is any of the electromagnetic field vectors and k(= ω
√
µε)

the intrinsic wavenumber of the medium. From this equation, it is
found that propagating eigenmodes within such media consist of two
circularly-polarized waves with characteristic wavenumbers, k± =
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2π/λ± = ±ωµξc +
√

k2 + (ωµξc)2 . Here, the + and – subscripts de-
note the right circularly polarized (RCP) and left circularly polarized
(LCP) modes, respectively.

Seeking to scalarize the chiral Helmholtz equation, a set of vec-
tor wave functions is formulated to characterize waves within the chi-
ral layer. The classical eigenmodes m(k) and n(k) [18] of the achiral
Helmholtz equation, however, do not satisfy this equation due to the
second curl term in (1). Instead, a linear combination is taken to form
a new set of chiral eigenfunctions,{

A(k)
B(k)

}
=

1√
2

[
m(k)± n(k)

]
. (2)

These new wave functions are unaltered by the curl operator,

∇×
{

A(k)
B(k)

}
= ±k

{
A(k)
B(k)

}
(3)

and therefore satisfy the chiral Helmholtz equation (1). This is a gener-
alization of the circularly polarized eigenmodes of the planar case and
this concept is applicable for any of the separable coordinate systems.

2.1 Cylindrical Layers

Consider the problem geometry of Fig. 1a. A plane wave traveling
in free space is incident on a perfectly conducting metal cylinder of ra-
dius a , upon which a chiral layer of thickness ∆ has been placed. The
chiral layer is characterized by a chiral impedance ηc and wavenum-
bers k+ and k− .

From the classical cylindrical eigenmodes mn(k) and nn(k) , a
set of chiral wave functions can be constructed of the form,

{
A(q)
n (k)

B(q)
n (k)

}
=

1√
2

[
in

ρ
Zn(kρ)einφêρ −

∂Zn(kρ)
∂ρ

einφêφ ± kZn(kρ)einφêz

]
(4)

where q = 1, 2, 3, 4 indicates that Zn(kρ) becomes one of the Bessel
functions Jn(kρ), Yn(kρ), H

(1)
n (kρ) , and H

(2)
n (kρ) , respectively. Here
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êρ, êφ , and êz are unit vectors. These functions determine the cross-
polar ( rabn and rban ) and co-polar ( raan and rbbn ) angular scattering
coefficients of the coated cylinder (see Appendix).

Figure 1. Scattering geometry.

The cylindrical wave function expansion of an incident RCP plane
wave is given by,

Ei
+ = ê+e

ik0x =
(

êy + iêz√
2

)
eik0x =

i

k0

∞∑
n=−∞

inA(1)
n (k0). (5)

The scattered field due to this wave is expressed by,

Er
+ =

i

k0

∞∑
n=−∞

in
[
raan A(3)

n (k0) + rabn B(3)
n (k0)

]
. (6)

Taking the large argument approximations for the Bessel functions, the
chiral cylindrical vector wave functions reduce in the far-field regime
to,

{
A(3)
n (k0)

B(3)
n (k0)

}
= −(1 + i)

√
k0

2πρ
(−i)neik0ρeinφ (êφ ± iêz) . (7)
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The scattered field becomes,

Er
+ = (1−i)

√
1

2πk0ρ
eik0ρ

∞∑
n=−∞

[
raan (êφ+iêz)+rabn (êφ−iêz)

]
einφ. (8)

The co-polar (RCP → RCP) and cross-polar (RCP → LCP) differ-
ential scattering cross-sections per unit length are defined as,

dσ

dφ

∣∣∣∣
RCP→RCP

= lim
ρ→∞

ρ
|êr∗+ •Er

+|2
|ê∗+ •Ei

+|2
=

2
πk0

∣∣∣∣∣
∞∑
n=1

raan einφ

∣∣∣∣∣
2

(9)

dσ

dφ

∣∣∣∣
RCP→LCP

= lim
ρ→∞

ρ
|êr∗− •Er

+|2
|ê∗+ •Ei

+|2
=

2
πk0

∣∣∣∣∣
∞∑
n=1

rabn einφ

∣∣∣∣∣
2

(10)

with

êr± =
êφ ± iêz√

2
. (11)

For an incident LCP plane wave, the cylindrical expansion is given by

Ei
− = ê−eik0x =

(
êy − iêz√

2

)
eik0x =

i

k0

∞∑
n=−∞

inB(1)
n (k0) (12)

and the far-zone scattered field is written,

Er
− = (1− i)

√
1

2πk0ρ
eik0ρ

∞∑
n=−∞

[
rban (êφ + iêz) + rbbn (êφ − iêz)

]
einφ.

(13)
The cross-polar (LCP → RCP) and co-polar (LCP → LCP) differ-
ential scattering cross-sections per unit length are given by,

dσ

dφ

∣∣∣∣
LCP→RCP

= lim
ρ→∞

ρ

∣∣êr∗+ •Er
−
∣∣2∣∣ê∗− •Ei
−
∣∣2 =

2
πk0

∣∣∣ ∞∑
n=1

rban einφ
∣∣∣2 (14)
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dσ

dφ

∣∣∣∣
LCP→LCP

= lim
ρ→∞

ρ

∣∣êr∗− •Er
−
∣∣2∣∣ê∗− •Ei
−
∣∣2 =

2
πk0

∣∣∣ ∞∑
n=1

rbbn e
inφ

∣∣∣2 . (15)

The spherical case is treated in the same manner in the next section.
The four relations (9), (10), (14), and (15) are used in the examples of
section III.

2.2 Spherical Layers

Consider Fig. 1b, where a plane wave is incident upon a perfectly
conducting sphere of radius a coated with a spherical chiral layer of
thickness ∆ . The chiral layer is characterized by a chiral impedance
ηc and wavenumbers k+ and k− .

From the orthogonal spherical eigenmodes m e
o
mn(k) and

n e
o
mn(k) , the chiral wave functions are constructed. They are given

by,




A(q)
e
o
mn

(k)

B(q)
e
o
mn

(k)




=
1√
2

[
m

sin θ
Pm
n (cos θ)

{− sin
+ cos

}
(mφ)

(
zn(kr)êθ ±

1
kr

∂

∂r
[rzn(kr)]êφ

)

+
∂Pm

n (cos θ)
∂θ

{cos
sin

}
(mφ)

(
± 1
kr

∂

∂r
[rzn(kr)]êθ − zn(kr)êφ

)

± n(n + 1)Pm
n (cos θ)

{cos
sin

}
(mφ)

zn(kr)
kr

êr

]
(16)

where q = 1, 2, 3, 4, indicates that zn(kr) represents the spherical
Bessel functions jn(kr), yn(kr), h

(1)
n (kr) and h

(2)
n (kr) , respectively,

and where êθ , êφ , and êr are unit vectors. Here, Pm
n (cos θ) is an

associated Legendre function of order m and degree n . These wave
functions can be utilized to find the cross-polar ( Γabmn and Γbamn ) and
co-polar ( Γaamn and Γbbmn ) scattering coefficients for the coated metallic
sphere (see Appendix).
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The spherical wave function expansion of an incident RCP plane
wave is given by,

Ei
+ = ê+e

ik0z =
(

êx + iêy√
2

)
eik0z

=
∞∑
n=1

in
2n + 1
n(n + 1)

[
A(1)
o1n(k0)− iA(1)

e1n(k0)
]
. (17)

If this wave were incident on the coated sphere, the scattered field can
be found directly from the above results to be,

Er
+ =

∞∑
n=1

in
2n + 1
n(n + 1)

[
Γaa1nA

(3)
o1n(k0) + Γab1nB

(3)
o1n(k0)

−i
{

Γaa1nA
(3)
e1n(k0) + Γab1nB

(3)
e1n(k0)

}]
. (18)

To determine the differential scattering cross-sections, the spherical
Bessel functions are replaced by their far-field approximations. The
chiral wave functions reduce to,

{
A(3)
e1n(k0)

B(3)
e1n(k0)

}
=

(−i)n e
ik0r

k0r

[
iP 1
n(cos θ)
sin θ

sinφ± ∂P 1
n(cos θ)
∂θ

cosφ
]

(êθ ± iêφ)√
2

(19)

{
A(3)
o1n(k0)

B(3)
o1n(k0)

}
=

(−i)n e
ik0r

k0r

[
±∂P 1

n(cos θ)
∂θ

sinφ− iP 1
n(cos θ)
sin θ

cosφ
]

(êθ ± iêφ)√
2

(20)

and the far-zone scattered field is written,
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Er
+ =

i√
2
eik0r

k0r
eiφ

∞∑
n=1

2n + 1
n(n + 1){

Γaa1n

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]
(êθ + iêφ)

+ Γab1n

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]
(êθ − iêφ)

}
.

(21)
The co-polar (RCP→ RCP) and cross-polar (RCP → LCP) differen-
tial scattering cross-sections are defined as,

dσ

dΩ

∣∣∣∣
RCP→RCP

= lim
r→∞

r2 |êr∗+ •Er
+|2

|ê∗+ •Ei
+|2

=
1
k2

0

∣∣∣∣∣
∞∑
n=1

2n + 1
n(n + 1)

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]
Γaa1n

∣∣∣∣∣
2

(22)

dσ

dΩ

∣∣∣∣
RCP→LCP

= lim
r→∞

r2 |êr∗− •Er
+|2

|ê∗+ •Ei
+|2

=
1
k2

0

∣∣∣∣∣
∞∑
n=1

2n + 1
n(n + 1)

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]
Γab1n

∣∣∣∣∣
2

(23)
with

êr± =
êθ ± iêφ√

2
. (24)

For an incident LCP plane wave, the spherical expansion is given by,

Ei
− = ê−e

ik0z =
(

êx − iêy√
2

)
eik0z

=
∞∑
n=1

in
2n + 1
n(n + 1)

[
B(1)
o1n(k0) + iB(1)

e1n(k0)
]

(25)
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and the far-zone scattered field is written,

Er
− =

i√
2
eik0r

k0r

∞∑
n=1

2n + 1
n(n + 1){

Γba1n

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]
(êθ + iêφ)

Γbb1n

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]
(êθ − iêφ)

}
(26)

with the following definitions for the cross-polar (LCP → RCP) and
co-polar (LCP → LCP) differential scattering cross-sections,

dσ

dΩ

∣∣∣∣
LCP→RCP

= lim
r→∞

r2 |êr∗+ •Er
−|2

|ê∗− •Ei
−|2

=
1
k2

0

∣∣∣∣∣
∞∑
n=1

2n + 1
n(n + 1)

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]
Γba1n

∣∣∣∣∣
2

(27)

dσ

dΩ

∣∣∣∣
LCP→LCP

= lim
r→∞

r2 |êr∗− •Er
−|2

|ê∗− •Ei
−|2

=
1
k2

0

∣∣∣∣∣
∞∑
n=1

2n + 1
n(n + 1)

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]
Γbb1n

∣∣∣∣∣
2

.

(28)
The four relations (22), (23), (27), and (28) are used in the examples
of the next section.

3. Examples and Results

The differential scattering cross-sections for the chiral coated con-
ducting cylinder and sphere are plotted in Figs. 2, 3, and 4 for the
lossless, lossy permittivity, and lossy permeability cases, respectively.
The top, middle, and bottom plots correspond to chirality admittances
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of η0ξc = 0.0, 0.5, and 1.0. In the lossless case of Fig. 2, the perme-
ability of the layer is that of free space µ = µ0 and the permittivity
is ε = 4ε0 . In Fig. 3, the permeability is µ = µ0 and the permittivity
is ε = (4 + i2)ε0 . This corresponds to a loss ratio of εi/εr = 0.5 . In
Fig. 4, µ = (2 + i)µ0 and ε = 2ε0 . This again corresponds to a loss
ratio of µi/µr = 0.5 . In all figures, the radius of the conducting cylin-
der or sphere is a = λ (where λ is the wavelength associated with
the incident wave frequency) and the thickness of the chiral coating is
∆ = 0.5λ .

We can understand the results of Figs. 2–4 by investigating the
effects of geometry and chirality separately. For the sphere in the
backscatter direction, no co-polar scattering occurs, and in the for-
ward scatter direction, no cross-polar scattering occurs. This agrees
with our physical reasoning since neither the geometry nor the recip-
rocal nature of the medium provide the necessary coupling mechanism
for co-polar backscattering or cross-polar forward scattering. To see the
effect of geometry, consider the equations for the differential scattering
cross-sections. In backscatter (θ = π) , the Legendre functions reduce
to,

P 1
n(cos θ)
sin θ

∣∣∣∣
θ=π

= − ∂P 1
n(cos θ)
∂θ

∣∣∣∣
θ=π

= (−1)n
n(n + 1)

2
. (29)

Thus, the co-polar scattering cross-sections (RCP → RCP and
LCP→LCP) are identically zero. Similarly, in forward scatter (θ = 0) ,
we have,

P 1
n(cos θ)
sin θ

∣∣∣∣
θ=0

=
∂P 1

n(cos θ)
∂θ

∣∣∣∣
θ=0

= (−1)n
n(n + 1)

2
(30)

and no cross-polar scattering (RCP→LCP and LCP→RCP) occurs.
This result is not true for the cylinder, where the geometry will inher-
ently depolarize all scattered waves. This is because of the asymmetry
of the cylinder due to the presence of a preferred geometrical axis.

Several conclusions regarding the effect of chirality on angular
scattering can be made from the figures. As chirality is increased, the
co-polar scattering cross-sections are split. This circular birefringence is
a consequence of the different wavenumbers of RCP and LCP waves in
the chiral layer. Waves of each handedness “see” a scatterer of different
size, as evident in the resonance behavior of the co-polar scattering
cross-sections.
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Figure 2. Differential scattering cross-sections for the chiral coated con-

ducting cylinder and sphere plotted as a function of scattering angle

(lossless case).
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Figure 3. Differential scattering cross-sections for the chiral coated con-

ducting cylinder and sphere plotted as a function of scattering angle

(lossy permittivity case).
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Figure 4. Differential scattering cross-sections for the chiral coated con-

ducting cylinder and sphere as a function of scattering angle (lossy per-

meability case).
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For the cross-polar scattering cross-sections, no splitting is evi-
dent. Rather, chirality modifies the magnitude of these cross-sections.
Due to the reciprocity of the medium, waves within the layer travel
equal distances with each handedness for cross-polar scattering and
therefore no distinction exists between RCP→LCP and LCP →RCP
scattering. The addition of chirality, in this case, acts in two ways on
the scattering behavior. Waves see both a new effective wavenumber
kc = (k+ + k−)/2 and impedance ηc = ωµ/kc in the chiral layer.
The first effect modifies the resonance behavior while the second effect
changes the amplitude of scattering due to front-surface impedance
mismatch.

Losses in both permittivity and permeability tend to dampen the
resonance structures of the scattering cross-sections as expected from
physical considerations. In addition, the splitting of the co-polar scat-
tering cross-sections is more easily discerned with increasing loss. For
equal loss ratios in ε and µ , however, we see that the effect of losses in
permeability is greater with increasing chirality. Thus, chirality acts to
intensify effective permeability losses within the coating. This can be
deduced from the form of the chiral wavenumbers, which clearly indi-
cate the linking of permeability losses to overall loss through the ±ωµξc
term. This magnification is not equal for the two co-polar scattering
cross-sections, since RCP and LCP waves possess different wavenum-
bers and experience different losses within the coating. Figure 4 clearly
depicts this circular dichroism.

It is observed that the results of the backscatter case in the figures
are very similar to that of the planar case [5]. In general, the backscatter
results can be predicted from an extension of planar results when the
radius a of the scatterer is on the order of a >

∼ λ .
The Mueller matrix defines the relation between the Stokes pa-

rameters of an incident wave and those of a scattered wave. For circular
polarization, the four Stokes parameters are written,

S0 = (ê∗+ •E)∗(ê∗+ •E) + (ê∗− •E)∗(ê∗− •E)

S1 = (ê∗+ •E)∗(ê∗− •E) + (ê∗− •E)∗(ê∗+ •E)

S2 = (ê∗+ •E)∗(ê∗− •E)− (ê∗− •E)∗(ê∗+ •E)

S3 = (ê∗+ •E)∗(ê∗+ •E)− (ê∗− •E)∗(ê∗− •E)

(31)

where
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ê∗+ •E =
∞∑
n=1

raan einφ +
∞∑
n=1

rban einφ (32)

ê∗− •E =
∞∑
n=1

rabn einφ +
∞∑
n=1

rbbn e
inφ (33)

for the cylindrical case and

ê∗+ •E =
∞∑
n=1

2n + 1
n(n + 1)

Γaa1n

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]

+
∞∑
n=1

2n + 1
n(n + 1)

Γab1n

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]
(34)

ê∗− •E =
∞∑
n=1

2n + 1
n(n + 1)

Γba1n

[
P 1
n(cos θ)
sin θ

− ∂P 1
n(cos θ)
∂θ

]

+
∞∑
n=1

2n + 1
n(n + 1)

Γbb1n

[
P 1
n(cos θ)
sin θ

+
∂P 1

n(cos θ)
∂θ

]
(35)

for the spherical case. The Mueller matrix is given by,


Sr0

Sr1

Sr2

Sr3


 =




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44







Si0

Si1

Si2

Si3


 . (36)

The elements of the Mueller scattering matrix are plotted in Figs. 5
and 6 for a representative coated conducting cylinder and sphere as a
function of scattering angle. The coating has a thickness ∆ = 0.5λ ,
a permeability µ = 2µ0 , and a permittivity ε = 4ε0 . The radius
of the conducting cylinder and sphere is a = λ . In each plot, the
solid and dotted lines correspond to the chiral and achiral layer cases
( η0ξc = 1.0 ), respectively. In the achiral case, the symmetry of the
matrix is clearly evident and given explicitly by
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M13 = M14 = M23 = M24 = 0 (37)

M44 = M33 and M22 = M11. (38)

The symmetry about the main diagonal is due to the reciprocity and
random orientation of particles within the chiral medium. This implies
that only four independent parameters exist, in accordance with the
predictions of Perrin [19] and Van de Hulst [20] for a distribution of
identical particles in random orientation under circular polarization.
The depolarization effect of the cylindrical geometry is again evident
from the off-diagonal Mueller matrix elements, which exhibit nulls for
the spherical case in either the forward or backscattering direction but
not for the cylindrical case.

The addition of electromagnetic chirality manifests itself in two
forms. The first is in the variation in magnitude and resonance behavior
of the matrix element plots. Here, RCP and LCP waves see chiral
coatings of different thickness and impedance. This causes a shift of
the nulls in each of the matrix plots. The second manifestation of
chirality is observed in the Mueller matrix elements M31 , M32 , M41 ,
and M42 of Figs. 5 and 6. When chirality is present, these elements
are non-zero and satisfy the conditions

M31 = M13, M32 = M23, M41 = M14, M42 = M24. (39)

Based on these relationships, only 10 independent elements exist in the
Mueller matrices, agreeing with Perrin’s results [19] for a distribution
of asymmetric particles of one handedness with random orientation.

The total power of the four most sensitive Mueller matrix elements
are calculated by integrating them over angle,

K31 =
∫ 2π

0
M31(α)dα K32 =

∫ 2π

0
M32(α)dα (40)

K41 =
∫ 2π

0
M41(α)dα K42 =

∫ 2π

0
M42(α)dα (41)
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Figure 5. Elements of the Mueller scattering matrix plotted for the

coated conducting cylinder as a function of scattering angle (dotted line

= achiral case, solid line = chiral case).
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Figure 5. Elements of the Mueller scattering matrix plotted for the

coated conducting cylinder as a function of scattering angle (dotted line

= achiral case, solid line = chiral case).
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Figure 6. Elements of the Mueller scattering matrix plotted for the

coated conducting sphere as a function of scattering angle (dotted line

= achiral case, solid line = chiral case).
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Figure 6. Elements of the Mueller scattering matrix plotted for the

coated conducting sphere as a function of scattering angle (dotted line

= achiral case, solid line = chiral case).
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Figure 7. Relative power of the four most sensitive Mueller matrix ele-

ments plotted against chirality for the homogeneous chiral cylinder.
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Figure 7. Relative power of the four most sensitive Mueller matrix ele-

ments plotted against chirality for the homogeneous chiral cylinder.
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Figure 8. Relative power of the four most sensitive Mueller matrix ele-

ments plotted against chirality for the homogeneous chiral sphere.
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Figure 8. Relative power of the four most sensitive Mueller matrix ele-

ments plotted against chirality for the homogeneous chiral sphere.
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and the results are plotted for varying material chirality. In the cases
depicted in Figs. 7 and 8, the geometry is that of a homogeneous chiral
cylinder and sphere, respectively, with radii of 0.2, 0.4, 0.6, 0.8 and 1.0
λ . For these cases, the metal core has been removed to isolate and
emphasize the effects of chirality. In general, the larger the diameter,
the greater the effect of chirality and the larger the magnitude in the
plots. For smaller values of chirality, the log power in these Mueller
matrix elements approximately vary in a linearly manner with the log
of chirality. This linear relation for small values of chirality is con-
sistent with perturbation theory. For larger values, the power in these
elements tends to saturate, since the total intensity scattered is limited
by the incident intensity. It is noted that for even very small chiral-
ity, the power in these Mueller matrix elements is significant. This
suggests that with knowledge of the electromagnetic size of a mate-
rial, the degree of chirality of the material can be remotely determined
through observation of the K31,K32,K41 , and K42 parameters given
in (40)–(41).

4. Conclusion

Here, we examine in detail the angular scattering from chiral-
coated and homogeneous chiral objects using Mueller matrices. The
addition of chirality introduces circular birefringence, that is, incident
waves of different handedness “see” scatterers of different electromag-
netic size. This is evident from the splitting and shifting of nulls of
the co-polar scattering cross-section levels in both the cylindrical and
spherical geometries. Waves of one handedness see a smaller cylinder
or sphere than waves of the opposite handedness which is expected due
to the difference in wavenumbers of each wave. As a result, the nulls of
the scattering patterns characteristic of size are shifted in accordance
with their polarization.

Chirality also alters the impedance of the chiral coating which
changes the magnitude of the cross- and co-polar scattering strengths
due to Fresnel-like reflections and interference. These effects are dis-
tinct from the depolarization effect of geometry. The latter are ex-
hibited in the co-polar backscatter and cross-polar forward scatter-
ing cross-sections. These cross-sections are zero for the spherical case
and non-zero for the cylindrical case. Of particular practical interest,
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we note that the cross-polar backscattering results can be predicted
from an extension of planar results for curved objects of modest size
or larger, that is, for the case where the scatterer radius is equal or
greater than one wavelength.

When chirality is present, the Mueller matrix elements M31,M32,
M41 , and M42 are non-zero with average values that are simple func-
tions of the degree of chirality for a wide range of values. The presence
of these matrix elements with finite values is in counterdistinction to
the achiral cases usually examined. Furthermore, these results are ob-
servable for small or modest sized cylinders and spheres and for very
thin coatings. This suggests that the existence and degree of chirality
of a material can be determined through remote observation of these
Mueller matrix elements. These elements are highly sensitive to the de-
gree of chirality and are significant for very small values of chirality and
so become prime candidates for the remote detection and characteriza-
tion of chirality in scatterers. In addition they are a demonstration of
the symmetry properties of Mueller matrices first examined by Perrin.
For all of these reasons, the result of finite Mueller matrix elements
M31,M32,M41 , and M42 lead us to believe that further research in
this area of electromagnetic chirality will be fruitful.

Appendix

Cylindrical Scattering Coefficients

The An and Bn incident wave cases will be considered sepa-
rately. Consider an incident wave of the form,

{
Ei

iη0Hi

}
=

∞∑
n=−∞

A(1)
n (k0) (A.1)

with η0 and k0 equal to the free space impedance and wavenumber,
respectively. Associated with this inward travelling cylindrical wave is
a reflected wave,

{
Er

iη0Hr

}
=

∞∑
n=−∞

raan A(3)
n (k0)± rabn B(3)

n (k0) (A.2)

The wave within the layer is given by,
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{
Ec

iηcHc

}
=

∞∑
n=−∞

anA(1)
n (k+)±bnB(1)

n (k−)+cnA(3)
n (k+)±dnB(3)

n (k−).

(A.3)
Applying boundary conditions at the inner and outer surfaces of the
chiral layer, one can solve the resulting set of simultaneous equations to
determine the scattering coefficients raan and rabn . In a similar fashion,
the scattering coefficients rban and rbbn can be found by assuming an
incident wave of the form B(1)

n (k0) .
Matching boundary conditions, we find the scattering coefficients

by solving the matrix,




B0 B0 −A+ −A− −B+ −B−
D0 −D0 −C+ C− −D+ D−

B0 −B0 −γA+ γA− −γB+ γB−

D0 D0 −γC+ −γC− −γD+ −γD−
0 0 E+ E− F+ F−

0 0 G+ −G− H+ −H−







raan
rabn
an

bn

cn

dn




=




A0

C0

−A0

−C0

0

0




(A.4)
where,

A0 = k0J
′
n(k0b) B0 = k0H

(1)′
n (k0b)

C0 = k0Jn(k0b) D0 = k0H
(1)
n (k0b)

A± = k±J ′n(k±b) B± = k±H
(1)′
n (k±b)

C± = k±Jn(k±b) D± = k±H
(1)
n (k±b)

E± = k±J ′n(k±a) F± = k±H
(1)′
n (k±a)

G± = k±Jn(k±a) H± = k±H
(1)
n (k±a).

(A.5)

Here, γ = η0/ηc is equal to the ratio of the free space impedance to
the chiral impedance of the chiral coating.
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Spherical Scattering Coefficients

To determine the scattering of the coated sphere configuration,
the incident wave is considered of the form,

{
Ei

iη0Hi

}
=
∞∑
n=1

A(1)
e
0mn

(k0) (A.6)

and a reflected wave,

{
Er

iη0Hr

}
=
∞∑
n=1

ΓaamnA
(3)
e
0mn

(k0)± ΓabmnB
(3)
e
0mn

(k0). (A.7)

The wave within the chiral layer is given by,

{
Ec

iηcHc

}
=
∞∑
n=1

amnA
(1)
e
0mn

(k+)± bmnB
(1)
e
0mn

(k−)+

cmnA
(3)
e
0mn

(k+)± dmnB
(3)
e
0mn

(k−). (A.8)

As with the cylindrical case, applying boundary conditions at the inner
and outer surfaces of the chiral layer leads to a set of simultaneous
equations which can be solved to yield the scattering coefficients Γaamn
and Γabmn . The scattering coefficients Γbamn and Γbbmn can be similarly
determined by assuming an incident wave of the form B(1)

e
0mn

(k0) .
We find the scattering coefficients by solving the matrix,




xv

yv

xv

yv

0

0




=




t11 t12 t13 t14 t15 t16

t21 t22 t23 t24 t25 t26

t11 −t12 γt13 γt14 −γt15 −γt16
t21 −t22 γt23 γt24 −γt25 −γt26
0 0 t53 t54 t55 t56

0 0 t63 t64 t65 t66







Γaae
0mn

Γabe
0mn

amn

bmn

cmn

dmn




(A.9)

where γ = η0/ηc and,



Mueller matrices for scattering from chiral coated curved surfaces 331

j± = jn(k±r) and ∂j± = 1
k±r

∂
∂r [rjn(k±r)]

h± = h
(1)
n (k±r) and ∂h± = 1

k±r
∂
∂r [rh(1)

n (k±r)]

P = Pmn (cos θ)
sin θ and ∂P = ∂Pmn (cos θ)

∂θ

C =
{

cos
sin

}
(mφ) and S =

{
sin
cos

}
(mφ)

j = jn(k0r) and ∂j = 1
k0r

∂
∂r [rjn(k0r)]

h = h
(1)
n (k0r) and ∂h = 1

k0r
∂
∂r [rh(1)

n (k0r)]
(A.10)

and with,

xv = ∓(mjPS)+(∂j∂PC)|r=b
and yv = −(j∂PC)∓ (m∂jPS)|r=b

t11 = ∓(mhPS)−(∂h∂PC)|r=b
and t12 = ±(mhPS) + (∂h∂PC)|r=b

t13 = ∓(mj+PS)+(∂j+∂PC)|r=b
and t14 = ∓(mh+PS) + (∂h+∂PC)|r=b

t15 = ∓(mj−PS)−(∂j−∂PC)|r=b
and t16 = ∓(mh−PS)− (∂h−∂PC)|r=b

t21 = (h∂PC)±(m∂hPS)|r=b
and t22 = (h∂PC)∓ (m∂hPS)|r=b

t23 = −(j+∂PC)∓(m∂j+PS)|r=b
and t24 = −(h+∂PC)∓ (m∂h+PS)|r=b

t25 = −(j−∂PC)±(m∂j−PS)|r=b
and t26 = −(h−∂PC)± (m∂h−PS)|r=b

t53 = ∓(mj+PS)+(∂j+∂PC)|r=a
and t54 = ∓(mh+PS) + (∂h+∂PC)|r=a

t55 = ∓(mj−PS)−(∂j−∂PC)|r=a
and t56 = ∓(mh−PS)− (∂h−∂PC)|r=a
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t63 = −(j+∂PC)∓(m∂j+∂PS)|r=a
and t64 = −(h+∂PC)∓ (m∂h+∂PS)|r=a

t65 = −(j−∂PC)±(m∂j−∂PS)|r=a
and t66 = −(h−∂PC)± (m∂h−∂PS)|r=a.

(A.11)
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