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1. Introduction

Anisotropic waveguides play an important role in many appli-
cations in the fields of microwave and optical wave, and numerous
studies have been concentrated largely on the propagational feature
of such complex guided wave structures. For example, multimnode
propagating characteristics in anisotropic optical waveguides [1], bi-
mode propagation in guided containing gyromagnetic medium [2], and
the loss of anisotropic waveguides [3]. Recently, there has been much
attention paid to the wave propagation in a new kind of waveguide
structure, known as chirowaveguide [4-6]. In 1990, Engheta and Pelet
first demonstrated the hybrid mode behavior in parallel-plate and cir-
cular metallic chirowaveguides [7,8]; Svedin also examined the mode
characteristics in circular chirowaveguides using finite-element method
[9]. In 1992, Mahmoud investigated the effect of mode bifurcation in
circular chirowaveguides with metallic and constant impedance walls,
respectively [10,11], Pelet and Engheta finished the modal analysis for
rectangular chirowaveguide with the help of finite-difference technique
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[12]. Lindell, Tretyakov and Oksanen examined the wave behaviour in
biisotropic layered structure according to the vector transmission-line
and circuit theory [13]. Koiviso, Tretyakov and Oksanen considered
guided waves in a general class of waveguides filled with biisotropic
media [14]. But, to the authors’ best knowledge, most of their studies
are limited to reciprocal or nonreciprocal isotropic chiral cases.

In the present study, we introduce a new kind of multilayered
bianisotropic Faraday chirowaveguide based on the constitutive model
suggested by Engheta, Jaggard and Kowarz, et al [15-18]. Then, the
general dispersion equation for various cases is derived analytically,
solved numerically. Some new phenomena are discovered and compared
with the reciprocal chirowaveguides. Also, the lossy effect of material
is considered carefully.

2. The Field Expression of the Problem

Figure 1 shows the geometry of the problem. In Fig. 1 (a), it is
assumed that the waveguide wall is characterized by impedance Zj
and admittance Y, defined at p = Ry, while Fig. 1(b) corresponds
to the case of circular open chirowaveguide, and the permittivity and
permeability in the region of R > Ry_1 are supposed to be gy and

Ho -

(a) (b)

Figure 1. The cross section of the multilayered Faraday chirowaveguide.
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In the frequency domain, the constitutive relations of Faraday
chiral materials are described by the following equations for the time

harmonic excitation (e~™?):
(4) : () = ()
D =ME  +ie"B (1)
() \—(9) A ()
H =¢9E +p@1'B  j=12--N-1 (2

where [¢1)], [u1)] are the permittivity and permeability tensors repre-
sented by 3 x 3 matrices in any given coordinate system in which the
field vectors are 3-element column vectors. Here we pay our attention
to matrices of the form

eW _ig) o 9 ikl o
0= [ig® &P 0 | = @ L9 0 | (3)
0 0 &Y 0 0 ud
for the chiroferrite media (¢@) =0, egj ) = sgj )) , we have
o [ o e
N R G Mo =
[Wo ]2 —w? w? — [wg]?
and wo = |y|H, @) |fy]M , where Héj) is the magnitude of

the internal dc blas ﬁeld and its direction is chosen to be along the
positive Z -axis; M §J ) is the saturation magnetization of the chirofer-
rite, and 7 is the gyromagnetic ratio (= —2.21 x 10° rad m/C). The
lossless character of the Faraday chiral media is implied by the Her-
mitian nature of the tensors: [C]* = [C*]T = [C](C : €¥), uU)) and
& = &, where the embellishments **7 denote the Hermitian adjoint,

the complex conjugate, and the transpose, respectively. However, for a

lossy medium, a—:g ),z—:gj), ug ), and ,u(]) n (3) should be complex.

Since the gyrotropy and chirality are introduced simultaneously
in above waveguide structures, T'E,, ,,, and T'M,,,, modes cannot be
supported. The propagating modes along the positive Z -axis are al-
ways hybrid and they are commonly classified into HE,, ,,, and EH,,
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(TEnm — HEy, pm, TM,m — EH,,,). Substituting egs. (1) and (2)
into Maxwell’s crul equations and considering the z-dependence of all
the field components to be of the form e?*, the transverse compo-
nents of hybrid modes can be expressed in terms of the longitudinal
field components Egj) and Hz(j ) for any layer j after tedious mathe-
matical manipulation, given by
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S B R i B e
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Az(ljg) — [ (J)b(J) 4 CL( )b(J) + az(lj)bé])]/D(j)
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A9 — [ — o) bg> )/ D)
agj) = - iwfgj)li(j ) _ _wg /’Ll .a ') — w%(j),aff) _ —iwugj),

of) = —wlg? + 59%0‘)], af) = iwfe? + P,

()

a

b — g2 4 a2 0) — (D) _ q01240) 30) _ (D) | o0

bfl) _ aéj)aff) + agj)aéj),bg) _ aéj)2 (J)2 b(J) _ aff)aé) agj)ag )7



Multilayered Faraday chirowaveguides

b9 — Pa) — o) 4 — o2 4 (D) 0 _
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where « is a complex quantity expressed as v = i3—a, with 8 and «
being real quantities and representing the propagation constant and the
attenuation rate of the mode, respectively. In Eq. (4), the transverse

()

components FE

and H Z(j ) are coupled with each other, and with

respect to the geometry of the problem, Egj ) and H ,9 ) are expressed

as

HY = U + WUV (6)

with
viuY 4+ 59U =0 (7)

o0 (Y 4 ey + \/(ij) — )2 —4cPc)
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Thus, using Egs. (4)—(8), the tangential field components for the waveg-
uides (Fig. 1(a)(b)) are derived, and in layer 1

Egl) — [Dgl)‘sf_(i_l)Jn(1 /S_(:)p) + D(l)S(l)J A/ (1)p ingo (ga)
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In Fig. 1(a), the tangential field components in the region of Ry_1 <
p < Ry are

EM = D) 1,(7, p) + DY N,y (4, )€™ (11a)

H™ = DY) Ju(3,) + DYV Nu(, )™ (11b)

Ny iyn
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and in Fig. 1(b) (p > Rn_1 ), we have

EMN = DIV HD (y,p)e™e, HN) = DIV HD (3, p)e™ (120,b)
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myn w / in
EMN = (DM SE D (4,0) = DR BN (4, p)le e (12¢)
YoP Yo
TWE / yn in
Y = (DY ==Y () + DY S HO ()l (12d)
0 0

where 72 = k3 + %, k3 = w?upeo . The propagation factor elyz—iwt)
is understood and suppressed in (9)-(12). J,(-) is the Bessel function,
Ny, (+) is the Neumann function, and Hr(ll)(-) is the Hankel function of
the first kind and order n, n may be either positive or negative integer.
Dgl) ~ Dgl) , ng )~ fo ), and D%N) ~ Dle) are the constants which
are determined by the boundary conditions at p = Ry,---, Ry .

3. Dispersion Equation of the Hybrid Modes

For N — 1 layers of loading in Fig. 1(a), the dispersion equation
of modes HE,, ,, and EHy,, is given by 2(2N +1) x 2(2N +1) ma-
trix equation. In numerically solving the equation, the computer time
required become cumbersome as the number of layers increases. An
efficient method for formulating the dispersion equation for an arbi-
trary number of layers can be utilized using the transmission-matrix
technique[19-21], in which the boundary matching equations at each
medium interface are written as 4 x 4 matrix equations. At p = R

M) MY 0 0] o
M) o0 o [p
MY MY o of| o

T

2 2 2 2) 7] 2)7
Ny N NG NG D
2 2 2 2 2
N Ny Ngg NP || Dy

2 2 2 2 2

2 2 2 2 2
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At p=R; 2<j<N-2)
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where the boundary equations

j+1
N{i )
j+1
Néﬁ )
41
Wefi )

j+1
N

o O O O
o O o O

E&N)/HéN) = 7, H(N)/E(N) =Y,

© z

putD
Py
py+D

pyth

(N) 7

157

(16)

have been taken into account, and all the matric elements in (13)—(15)

are presented in Appendix 1.
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Thus, the above boundary equations (13)-(15) may be simplified
as

at p=Ry: My DM = Ny D@ (17a)
p=Ry: My, D®) = N3y D) (17b)
p=Rn_1: My_1ywn-1y DY = Nyw_1yD™ (17c)

Furthermore, Eq. (17) can be expressed as
M DY = MDWY) (18)

where M = N21M2_21N32 x 'M(_lel)(Nfl)NN(N—l)’ and it must have
the following form

[m11 mi2 0 07
mor mo2 0 0
M= m31 m32 0 0 (19)
mg1 ma2 0 0
Combining (13)—(15) with (17)—(19), we find
Ml(}) Ml(%) —mi1  —Mmi2 Dﬁl)
1 1 1
MZ(%) MQ(%) —m21 —MN22 DéN) -0 (20)
Mél) M?EQ) —ma3i1 —ma39 Dé )
Mﬁ) Mzg) —Mmg1  —1M42 DiN)

For a nontrivial solution of (20), the determinant of the 4 x 4 matrix
must be zero. This leads to the following equation for v of propagating
modes:

Ml(}) Ml(%) —mi1 —Mi2

M2q) MQ(;) —ma1 —MN22
det
Mzﬁ) M?S) —m31 —M32

Mﬁ) Mg) —M41  —MN42
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This is the dispersion equation for hybrid modes in a circular multilay-
ered loaded Faraday chirowaveguide. Following the similar procedure
used above, we can also obtain the generalized dispersion equation of
the 4x4 matrix for circular multilayered open case. Equation (21) may
be solved numerically by using Mueller’s method of calculating roots,
and naturally, it includes the special case of perfectly conducting wall
(Z():O, Y0—>OO)

4. The Effects of Constitutive Parameters

Based on the results of the previous section, we have developed
a computer code to examine the dispersion characteristics for hybrid
modes propagating in various Faraday chirowaveguides, and different
phenomena are demonstrated as the constitutive parameters of Fara-
day chiral media are changed. Since the properties of a Faraday chi-
ral medium have never been completely characterized either at mi-
crowave or millimeter wave frequencies, we had to assume the material
properties used in the calculations. The values used for the consti-
tutive parameters are related to what are reported in the literature
[7,9,11,12,22].

The normalized modal phase constant (3/ky and attenuation rate
a/ko for modes EHy; and HE.; in a totally filled circular Faraday
chirowaveguide with perfectly conducting wall are plotted versus kqRp
in Fig. 2.

In Fig. 2, some notable effects can be easily found. At first, both
B/ko and «/ky are enhanced due to the loss of material is increased;
for different order of hybrid mode, the attenuation degree is differ-
ent. Secondly, with the increasing of frequency, the propagation con-
stant (3/kop increases but normalized attenuation rate «/ky decreases.
Obviously, for the special lossless case, the value of « is equal to
zero. As in a reciprocal biisotropic chirowaveguide, the hybrid modes
HE,,1(n # 0) propagating in Faraday chirowaveguides are bifur-
cated. In addition, when the anisotropy of permittivity tensor is intro-
duced in a Faraday chirowaveguide, the cut-off wavelengths of modes
HE,,1 and HFE_, 1 are not equal to each other, although the nu-
merical results have not been presented here.



160 Yin et al.

() &Y =103 mho ) €Y =5 x 1073 mh
Figure 2. Dlspersmn diagrams for modes in a totally filled circular Fara-
day chirowaveguide with perfectly conducting wall. g(l) =0, Zp =0,
Yy — 00y M g = 02757, w(M jwly) = 0.3, &) = &V = (12.6 4 0.1d)e0 (- -
s et = el = (12,6 + 0.31)e0 (—).
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(a)

(b)

(c)

Figure 3. Dispersion diagrams for modes in a one-layer central loaded
Faraday chirowaveguide, 1 = 0.8Ry. (a) 651) = 651) = 12.6e9, ¢V =
0, MM g = 02757, w(M /wV = 0.3, € = 10~3mho, Zy = 0, Yy — .
(b) The parameters are the same as (a), and fgl) = 5 x 1073mho. (c)
g =0, MM g = 0.275T, W Jwh) = 0.3, € = 5x10-3mho, Zy = 0, Y, =
—1.25x 10734, eV = &l = (12.64+0.1i)eg (- - -); et = £l = (12.6+0.3i)e0
(—)-
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Figure 3 shows the dispersion behaviour of hybrid modes in a one-
layer central circular Faraday chirowaveguide, and the lossless case of
loaded materials is also given (Fig. 3 (a) (b)).

In Figs. 3 (a), (b), the modes with n = £1 are bifurcated into
two branches with different 3 values depending on the sign of n. The
bifurcated degree Afyi1/ko = |B+1— B-1|/ko is mainly determined by
the magnitude of chirality, the thickness of air gap and the intensity of
internal bias field, which has no relation to the sign of &.. Compared
Fig. 3(b) with 3(a), it is easily found that, the cut-off frequencies of
EHpy and HFE411 tend to decrease with chirality admittance increas-
ing.

Figure 4 is the dispersion curves of one-layer coated circular Fara-
day chirowaveguides with perfectly conducting walls.

In Figs. 4 (a), (b), there exist backward waves (dw/dfp < 0) as in
general or periodic waveguide structures. The hybrid modes HF41 1
are bifurcated and originate from same cut-off frequency, ApBy;/ko
depends strongly on the thickness of coated layer, chirality as well
as the internal bias field intensity. Fig. 4(c) shows that, the cut-off
frequency tends to increase with 7 decreasing.

Figure 5 shows the dispersion behaviour of a lossless open circu-
lar Faraday chirowaveguide. Here, only the mode HFE_q; is demon-
strated, and corresponding to different internal bias field intensity.

The primary change cased by varying the bias field intensity in
Fig. 5 is the shift of dispersion curve of mode HE_;;, and the cut-off
frequency is proportional to the bias field intensity approximately.

Finally, we depict each field component for the case of Fig. 3(c),
and the normalized propagation constant and attenuation rate are cho-
sen to be (/ko =0.7287, and «o/ko = 0.3334.

Figure 6 shows that, at the boundary p = Ro, the tangential
electric field components F, and E, are indeed equal to zero. At
the boundary p = R;, the tangential field components E,, E, and
H.,H, are continuous, while E, and H, are not continuous. The
relative level of |E| and |H| are all the function of magnitude of
chirality, the bias field intensity, et al.
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(a) ng) =3 x 1072 mho

(b) £ =5 x 1073 mho

(c) §£2) =5 x 1073 mho

Figure 4. Dispersion diagrams for modes HFE,; 1 in a one-layer coated
circular Faraday chirowaveguide. 6§2) = 552) = 12.6¢q, g(2) =0, M5(2),u0 =
0.275T, w? Jwl? = 0.3, Zy = 0, Yy — o0, (a) (b) 7 = Ry — Ry = 0.2Ry; (c)
7=0.3Ro(—), 0.1Ro (------ ).
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Figure 5. Dispersion diagrams for mode HFE_;; in a open circular Fara-
day chirowaveguide. 5(11) = 5(21) = 12.6¢, MSFUMO = 0.275T, ¢V = 0,

WV Jw®) =03 (1),07(2),1.0(3),1.2(4).

Figure 6. The field distribution of mode EHj; in a one-layer central
loaded Faraday chirowaveguide with perfectly conducting wall. egl) =

eV = (12,6 + 0.1d)eg, gV = 0, Ry = 0.8Ry, koRy = 1.4005, My =
0.275T, w! Jwl) = 0.3, ¢ = 10~3mho, Zy =0, Yy — oo.

5. Conclusion

In this paper we have studied the hybrid mode characteristics
in bianisotropic Faraday chirowaveguides theoretically. The general
field equations and dispersion equation of the guided waves have been
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derived in the explicit forms which are also suitable for the circular
cylindrical magnetosplasma chirowaveguides. The appearance of the
different effects discussed above depends on the combination of many
factors: geometrical sizes of the waveguide, constitutive parameters of
the Faraday chiral media, et al. Our results provide much insight into
the physical properties of the Faraday chirowaveguides. Furthermore,
the hybrid mode characteristics in much more complex Faraday chir-
wavegudies are being investigated and work in this area is in progress.

Appendix

In (13)-(15), the matrix elements are

1 (1 1 1
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G = 10 11 R) + Zon(v Ruv),
:
G = MO N1 () Rv) + ZoNo(, i),
:
G5 = P g, R) + Yadu (3 B
G = 20 NI () Ri) + Yo, B), G5 = — 21 1 (3, R),
70 Yo RN
Gy = %Nnmw .
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