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1. Introduction

Numerous research studies on target identification have been pro-
posed in the past several years [1-7]. All methods have to deal with
scattered fields which are highly dependent on frequency, polarization,
and target aspect. To reduce the complex dependence the scattered
fields are usually converted into the time-domain, including the late-
time response which includes the natural frequencies of the target [2,6]
and the early time response (or the range profile) which provides de-
tailed information about the target [4,5]. A remarkable advantage of
the late-time response is its aspect independence which eliminates the
need for storage of aspect-dependent information [2]. However, the
bandwidth restriction and the lack of directivity of antennas at the
low frequencies at which late-time information is available preclude
the use of this information.

In contrast, using range profiles as the feature vector represen-
tation for aerospace target identification has been proved simple, ro-
bust, and range-insensitive [4,5]. However, range profiles are aspect-
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dependent. Requirements for aspect increment in order to obtain a
useful but not wasteful data storage have been discussed in [8]. It was
found that a radar with higher range resolution can tolerate more as-
pect variation, yielding a significant advantage in saving memory space
for establishing the data base, yet it requires a higher sampling of data
for each range profile. A one-dimensional discrete wavelet transform
on the early-time response has been proposed to reduce the amount of
data that must be stored for each aspect angle [7]. In this paper we
will also apply the wavelet transform to reduce the data storage space,
but treat it from a different point of view.

The wavelet transform was originally developed to overcome the
inherent fixed resolution property of the short-time Fourier transform.
The wavelet transform uses multiscale windows and is more efficient
at providing multiscale resolution [9,10]. The wavelet transform is also
closely related to multiscale edge detection [11]. This property will be
used to compress the data base and to identify a target.

The paper is organized as follows. A brief review of the wavelet
transform theory and multi-scale edge detection is presented in Sec-
tion II. The method of applying the wavelet transform to radar signal
processing and the procedure of establishing the compressed data base
will be described in Section III. In Section IV the decision rules and
the effect of Gaussian noise on the recognition performance will be dis-
cussed. The recognition performance obtained by different data bases
and discrimination schemes will be compared as well. Finally, a few
concluding remarks summarize the paper.

2. Wavelet Transform and Multiscale Edge Detection

The relation between wavelet transform and multiscale edge de-
tection was first discussed by Mallat and Zhong [11]. An introduction
to wavelet theory can be found in [10,13]. Let hs(z) be the dilation of
any function h(z) by scaling factor s, i.e.,

hs(x) = (1/s)h(z/s) (1)
A wavelet transform is computed by convolving the signal with a di-

lated wavelet. The wavelet transform of f(x) at the scale s and po-
sition x, computed with respect to the wavelet (z), is defined by

WEF(s, x) = fxps(x) (2)
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where ‘%’ denotes convolution. From this equation we know that the
wavelet transform can be thought as a kind of bandpass filter operation;
its bandwidth can be adjusted by changing the scaling factors [12].

Most multiscale edge detectors smooth the signal at various scales
and detect sharp variation points from their first-order derivative. So,
if we suppose that o(x) is the first-order derivative of a smoothing
function 6(z), (6(z) converges to 0 at infinity and its integral is
equal to 1), i.e.,

p(z) = di(x)/dx (3)
We can show that

WE(s, z) = f*(sdbs/dz)(z) = s%(f*@s)(x) (4)

The wavelet transforms W F(s, x) are the first derivative of the sig-
nal smoothed at the scale s. The local extrema of WF(s, z) thus
correspond to the inflection points of f*0s(z) and the extrema detec-
tion corresponds to an edge detection [11]. The maxima of the abso-
lute value of the first derivative are sharp variation points of fx*fs(z),
whereas the minima correspond to slow variations. We can easily se-
lect the sharp variation points by detecting only the local maximum
of |[WF(s, z)|. When the scale s is large, the convolution with 6s(z)
removes small signal fluctuations. We therefore only detect the sharp
variations of large structures. Besides detecting local maxima, we can
also record values of W F'(s, x) at the maximum locations, which mea-
sure the derivatives at the inflection points.

3. Application of Wavelet Transform to Feature
Representation

As indicated in the previous section the wavelet transform is re-
lated to multiscale edge detection and the local maximum of |W F(s, x)|
corresponds to the sharp variation points. It is known that positions
of sharp variation are the most important feature of a 1-D curve. In
this section we will describe how to apply wavelet transform in feature
representation.

Five airplane models are chosen as known targets. They are: a
C-130 model, an AH-64 helicopter model, a B-52 bomber model, a
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SR-71 spy plane model and a space shuttle model. Their physical sizes
range from 40 ¢m to 80 cm and within 12 c¢m in height. Zero degrees
in the azimuthal direction is defined as in the head-on direction and
90° is the fuselage direction. For each object three independent ex-
periments are conducted at three elevation angles, § = 0°, 10°, and
20° . For each elevation angle the object is rotated from ¢ = —6° to
24° with an increment of 0.6° and there are 51 total aspects observed.
For each aspect the fields with range corrected with respect to the ro-
tational center are measured at step frequencies ranging from 6 GHz
to 16 GHz with an increment of 0.1 GHz. The range profile of each
aspect is obtained by Fourier transforming the field with respect to
2k = 47 f/c, where f is the frequency and c is the speed of light. We
choose the absolute value of the range profile and the feature vector
rather than the complex form or the real part of the range profile. The
reason for choosing the absolute value form is the much higher toler-
ance of angular estimation error or frequency discrepancy, especially
in the case of a real target of size as large as 30m [8]. It was found
that the complex form can not tolerate an aspect variation as small as
0.03° while the absolute value form can tolerate as great as 3° vari-
ation [8]. Range profile of each aspect is represented by 64 sampling
points. It has been suggested that direct correlation of target range
profiles with their stored counterparts provides a simple, robust, and
range-shift-insensitive method for target identification [4,5]. However,
storing complete range profiles at many aspects for each target requires
massive memory space. In the following we will combine the wavelet
transform and the local maximum detection technique to preprocess
the range profile and compress the data representation.

The chosen wavelet function and its corresponding smoothing
function are shown in Figure 1. This is a quadratic spline of com-
pact support, which has been further defined in [11]. We use the fast
wavelet transform algorithm developed by Mallat and Zhong [11] to
perform the wavelet transform. This algorithm requires O(N -logy, N)
operations for an N -point data. Shown in Figure 2 are the normalized
range profiles of the five targets measured at 6 = 10° and ¢ = 0°
and their wavelet transforms computed on six scales. We can see that
all wavelet transforms look similar when the scale is large. Therefore
only the wavelet transforms at s = 2!, 22, and 23 are chosen to
represent the target range profiles. As stated in the previous section,
a wavelet transform can be thought of as a bandpass filter operation.
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Therefore, the three wavelet transforms correspond to the outputs of
the range profiles passing through three bandpass filters having the
highest frequency passbands. It is noted that the range profiles in the
absolute value form are all nonnegative, but their wavelet transform
counterparts can be positive or negative as seen in the figures. This is
a good property for target discrimination when correlative processing
is performed, because the relative distance of the correlation coefficient
between correct and wrong targets can be greater as will be seen in
the later section.
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Figure 1. (a) The chosen wavelet function. (b) The corresponding

smoothing function.

To store the feature representation the wavelet transforms must
be discretized. Instead of storing all uniform sampling points we can
only store information about local extrema of the |WF(m, n)| where
s =2 and m =1 or 2 or 3. The steps are as follows: For each
scale 2™, find all points n such that |WF(m, n)| is greater than
|WF(m, n—1)| and |WF(m, n+1)|. After that, record these extrema
points’ locations and their values W F'(m, n). As stated in Section II,
this operation is equivalent to multiscale edge detection. After edge
detection, the wavelet transforms shown in Figure 2(a) become as those
shown in Figure 3. It is easily observed that the number of peak points
has been reduced and most points have very small values close to zero.
Therefore we can set a threshold value and store only those points
exceeding the threshold and discard all others, yielding a reduction in
data storage.
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Figure 2. Range profiles and their wavelet transforms computed in six
scales, the targets, (a) AH-64, (b) B-52.
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Figure 2. Range profiles and their wavelet transforms computed in six
scales, the targets, (¢) SR-71, (d) C-130.



64

s
w
%

Li and Li

Figure 2. Range profiles and their wavelet transforms computed in six

scales, the targets, (e) Space shuttle.
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Figure 3. Results after multiscale edge detection.

All range profiles measured at 6 = 10° are wavelet transformed,
edge detected, and stored as the data base. The data sets corresponding
to s =2', 22 and 22 are denoted by DATA-1, DATA-2, and DATA-3
respectively. After edge detection different range profiles have different
number of peaks. The average number of peaks averaged for all five
targets and 51 aspects for the three scales 2!, 22, and 23 are 42, 21,
and 11 respectively and are shown in the first three rows of Table 1. It
is seen the average number of peak points for the scale 2! is 42, which
is not much smaller than 64, the original number of points stored for a
range profile. If we set the threshold values as 10%, 20%, and 30% of the
largest value respectively, their average number of peaks are reduced
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to 24, 25, and 9 and are shown in the last three rows of Table 1.
The corresponding data sets are denoted by DATA-4, DATA-5, and
DATA-6. Clearly, the amount of data to be stored has been compressed.
The compression ratio seems not as as great as reported in [7], where
a range profile is represented by 256 points and the 32 largest wavelet
coefficients are stored, yielding a compression ration of 8. However,
the average number of peaks to be stored for DATA-4 is 24, which is
smaller than 32.

| Sele | Threshold | et | 7
Data 1| 2! 0 42 1.01
Data 2| 22 0 21 2.03
Data 3| 9° 0 11 3.88
Data 4| 9! | 0.05 24 1.78
Data 5| 2! | 0.1 15 2.84
Data 6/ 2! | 0.15 9 4.74

Table 1. Number of stored points and compression ratio for different

data sets.

Next we calculate the data compression ratio obtained by the
proposed method and the range profile method. The proposed method
requires 4 bytes and 2 bytes to store a floating point and an integer
point respectively. An uncompressed range profile has 64 floating sam-
pling points and needs 64 x 4 bytes, while the compressed one needs
2 bytes to store the location and 4 bytes to store the amplitude for
each peak point. Therefore the compression ratio can be calculated by

64 x4 64

no. of maxima x (4+2) no. of maxima x 1.5
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Results of compression ratio for different scales and different thresholds
are shown in Table 1.

4. Recognition Performance

In this section we compare recognition performances obtained by
different feature vector representations. The decision rule to be used
in target identification is the matching score method [4,5], which is
summarized as follows:

Given two real feature vectors fi(x) and fo(x), the normalized
correlation coefficient at a range shift Az is defined by

‘/fl fg 37+A:c)d

‘/’fl )[Pdz - /\fz )[Pda

Schwartz’s inequality states that 0 < C1a(Ax) < 1. Assume Cia(Axo)
is the maximum of Cj2(Azx) for all range shifts, then Cia(Axg) is
called the matching score for the two feature vectors fi; and fy and
is denoted by C(f1, f2).

Let the data base consist of feature vectors {g;j(x)}, where g;;(x)
is the jth vector in the predefined class. For an incoming feature vector
f(x) belonging to an unknown class, the decision rule is:

Calculate the matching scores, C(f, g;;), for all possible g;;(z) .
Determine f(z) to be in class ig if C(f, givjo) = C(f,gij) for any
class-feature pair (i, j) other than (i, jo) .

For an incoming target, the measured quantity is the range profile.
We then wavelet transform the measured range profile and find its
local maxima, and then use the results as the feature vector f(z).
The matching scores are then calculated by correlating f(x) with all
{gij(x)} stored in the data base. One may also convert each stored
9ij(x) into a range profile waveform g;;(z) through an inverse wavelet
transform, and then calculate matching scores between the measure
range profile and the converted range profiles {ggj ()} as was done
in [7]. The latter method requires inversely wavelet transforming all
feature vectors stored in the data base, while the former only requires
one wavelet transform and can save much computing time.

Ci2(Ax)

1/2
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There are also two methods to calculate the matching scores. One
is to calculate the correlation coefficients of f(x) and g;;(z) at every
Ax and then to choose the largest one. This can be obtained by us-
ing the efficient inverse FF'T method. The order of the operations is
(3N logy N) for an N -point feature vector pair. The second method
is to use the centroid-alignment method [5], which is to preprocess all
range profiles by finding their centroids first and then range-shifting
them with respect to the centroid. There the feature vectors are all
aligned with respect to their centroids. The matching score is then
obtained by calculating the correlation coefficient of f(z) and g;;(x)
with zero range shift. Order of the operation is N, which is much
smaller than 3N -logy, N. For a correct recognition, the testing and
the stored feature vectors are aligned and will give a maximum corre-
lation coefficient with zero shift. For a wrong pairing, the correlation
coefficient so obtained may not be the maximum, but it is desired that
the matching score be as small as possible in such a wrong pairing case.
In the following we use the centroid-alignment method to identify tar-
gets.

In a real radar system, noise will contaminate the measured range
profile and the unknown target aspect may not be at the same condition
as it was in establishing the data base. In the following we will examine
the effect of Gaussian noise and aspect variation on the recognition
performance.

First we define the signal to noise ratio of a complex range profile
in the presence of Gaussian noise. Let f(x;) represent the i th sampled
value of the complex range profile. The total power of the range profile
is defined as Zf\;1 |f?(x;)|, where N is the number of sampled points.
The Gaussian noise has a variance o2. The signal to noise ratio is then

defined by S,, = w In the simulation each sampled value f(z;)
is added by a complex value n;, whose real part and imaginary part
are normally distributed with a zero mean and a variance given by
o2 = (X |f(x:)|?)/NS, for a given signal to noise ratio S, .

All range profiles measured at elevation angle § = 10° are artifi-
cially contaminated with Gaussian noise and are to be identified. For
each given S, , fifty independent noise sets are added to each range
profile. The recognition rate is defined as the percentage of successful
identification for all trials (50 x 51 x 5 for the present case). Shown
in Figure 4 are the average recognition rates by using DATA-1 through
DATA-6 and the uncompressed data set (i.e., using the range profile
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data directly) for different signal to noise ratios. It is seen all average
recognition rates are greater than 60% when the signal to noise ratio is
as low as 3 dB. The performance obtained by DATA-5 (2! scale and
20% threshold) is better than that obtained by DATA-2 (22 scale) al-
though the former has a greater compression ratio. The reason is that
wavelet transform with a higher scale will smooth the original curve
and lose the subtle distinction. The whole average recognition rate is
better than that obtained by the neural network approach (the rates
are 72% for S,, = 10 dB and 42% for S,, =5 dB) [5,14], but is a little
worse than that obtained by the uncompressed data set (i.e., using the
range profile data directly). Another measure of the quality of the dis-
crimination decision is given by the ratio between the peak correlation
and the next largest value [4,7,14]. The greater the ratio, the better
the discrimination. Shown in Figure 5 are the ratios for different noise
levels. It is seen the ratio obtained by the uncompressed data is the
smallest, because elements of such feature vectors are all nonnegative,
while the compressed ones have both positive and negative elements
as mentioned in Section III.
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Figure 4. Averaged recognition rates using different data sets with
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Figure 5. Averaged discrimination ratios using different data sets with
several signal to noise ratios.

The immunity to noise contamination shown in Figures 4 and 5
is not as great as that reported in [7]. The range profile used in this
paper is in the absolute value form, obtained after incoherent detection,
not in the real value form as in [7]. It is known that operations like
Fourier transform, wavelet transform, or correlation, are all coherent
processes, and can strongly withstand Gaussian noise contamination,
especially when the number of data points is very large. But using real
or complex range profiles as feature vectors has a big disadvantage,
which has been explained in Section III.



Application of wavelet transform 71

Next we use the range profile measured at § = 0° and 6 = 20° as
the testing range profile and compare them with DATA-1 to DATA-6,
which are derived from those measured at # = 10°. The recognition
rates for each target and the average rate using different data sets are
shown in Figure 6. Some targets (space shuttle, C-130 and B-52) have
high recognition rates, which means that these targets can tolerate
more aspect variation. The SR-71 and AH-64 have very low recognition
rates, which implies a 10° variation in elevation is not permissible for
faithful recognition. Performance obtained by the uncompressed data
is better than those obtained by the compression sets by 5-10%.
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Figure 6. Recognition rates of several targets using different data sets.
The unknown feature vectors are measured at 6§ = 0°, 20°, while those
stored in the data base are measured at 6 = 10°.
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5. Discussion and Conclusion

In this paper we have reviewed the relation between the wavelet
transform and the multiscale edge detection and described how to ap-
ply the wavelet transform in feature vector representation. To estab-
lish the data base the range profile in the absolute value form is first
wavelet transformed, and then its local maxima are detected. Only
those extrema points exceeding a certain threshold value are stored
to represent the feature vector, yielding a reduction in memory stor-
age. When an incoming unknown target is present, the measured range
profile is also converted to the same feature vector form. The match-
ing scores are then calculated by correlating the testing feature vector
with all those stored in the data base. By range-shifting the measured
range profiles with respect to their centroid, the matching scores can be
efficiently computed. We have compared the recognition performance
when feature vectors are represented with different data compression
ratios. When range profiles are contaminated by Gaussian noise, it was
found that the recognition rates obtained by the compressed data sets
are a little worse than those obtained by the uncompressed data set,
but better than those obtained by the neural network approach. The
balance between the sacrifice of recognition ratios or the gain of data
compression should be justified by the system designer.
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