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1. Introduction

In geophysical prospecting one often ends up trying to solve an
inverse problem. In this paper one class of such problems is addressed
where a typical prospecting situation is simulated.

When an area with indications of mineable ores is found the
prospecting usually enters a phase of extensive subsurface probing by
means of long bore holes in order to establish the location, quality and
extent of the ores. These bore holes provide the information needed
to make the decision of how and if to mine an outcrop. However, it is
very expensive and time consuming to drill these holes. It is therefore
of vital interest to minimize the number of holes and to optimize their
distribution.

Thus the problem that is approached in this paper is; is it possi-
ble to determine the size, location and orientation of an ore by making
scattering experiments on the surface of the ground or in a nearby
bore hole? Furthermore, since real data are always more or less con-
taminated with noise, it is important to determine how well a recon-
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struction can be made in such a case.

Without any a priori information about the size or shape of the
ore the problem is not well posed. To stabilize the numerical algorithm
some regularization of the problem has to be introduced. This can be
made by a restriction of the form of the subterranean inhomogeneity.
Since most sulphide ore bodies in Northern Sweden are very thin com-
pared to their lateral extensions an appropriate model for these is to
approximate them with a thin, perfectly conducting, elliptic disk.

The scattering domain under consideration consists of a halfspace
with an overburden. Submerged in the halfspace is a perfectly conduct-
ing elliptic disk which models the target ore. The scattering domain
is excited by a time-harmonic field emitted by a loop antenna on the
ground and the total field or the scattered field is calculated along a
bore hole or in a mesh on the surface of the ground. In total, there are
eleven free parameters in the model. The scatterer is described by the
size, aspect ratio, location of the center, and the three Euler angles.
The halfspace is described by its resistivity, and the overburden by its
thickness and resistivity. The span of these free parameters constitute
the parameter space of the problem.

In this model the forward problem can be stated. Given a point x
in the parameter space, find the field values d at the prescribed field
points, i.e.,

m(x) =d

where the function m is non-linear. This forward problem is solved
with the null-field approach which is further described in the appendix.

The corresponding inverse problem is now stated. Given a set d
of data, find the corresponding point x in the parameter space for
which m(z) gives an optimal fit to the data in some suitable norm.
This inverse problem is solved with a data fitting procedure of Newton

type.

2. Optimization Techniques

In this section the optimization techniques used are presented.
Optimization techniques have been used extensively to solve inverse
problems. An overview of the use of optimization techniques to solve
electromagnetic inverse problems can be found in [6]. For an extensive



Three-dimensional subterranean target identification 143

presentation of optimization based on the Newton method the reader
is referred to [3].

The optimization problem is to fit a set of data (y;,d;),i =
1,...,m,with amodel M(z,y).Here x € R" is a point in the param-
eter space, y; are the space coordinates of the i : th “measurement”
and d; is the data of the same. It is convenient to introduce a residual
function

R:R"—>R™ |, m>n

whose components are defined as
ri(z) = M(z,y;)—d; , i=1,...,m

Given this residual function, the problem at hand can be written as a
minimization problem

: A R 2
min f(z) = min SR (2)R(z) = min o ; ri(z)
This problem is normally referred to as the nonlinear least-squares
problem.
One possible approach to solve the nonlinear least-squares prob-
lem is to make an affine model M.(x) of R(x) around the current
point z., i.e.,

M.(z) = R(z.) + J(zc)(x — x.) (2.1)

where J(x);; = Ori(z)/0x; is the Jacobian. Normally, one can not
expect to find an x4 such that M.(xy) = 0 since it is an overde-
termined system. ( M. : R® — R™, m > n). One classic approach
to this problem is to choose xy as the minimizer of the linear least-
squares problem .

min 2[|M.(2)]3

TER™

If J(z.) has full rank the solution can be written as
vy =20 — [T () I (2)] " TT (2 Rlxe) (2.2)

Methods based on this iterate are referred to as Gauss-Newton type
methods.
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One complication with the Gauss-Newton method is that the Ja-
cobian might be very ill-conditioned, reflecting the fact that the model
is insensitive to variations in certain directions in the parameter space.

In order to overcome this we will make a different use of the affine
model (2.1). This approach is based on the singular value decomposi-
tion (SVD) of the Jacobian matrix (J € R™*™)

J=UDVT

Here U € R™*™ and V € R™*"™ are orthogonal matrices. The matrix
D € R"™™ is diagonal with its entries defined by d;; = p; > 0,7 =
1,...,min(m,n), dij = 0,7 # j. The p;’s are called the singular values
of J. Given the SVD of J, it is possible to define a generalized inverse,
the Moore-Penrose inverse, as

0, pi =0
df, =0, i

gt = Ypi >0
Ji=vDlu" | Di=¢ "

Through this generalized inverse M.(z) =0 has a unique solution
zy =x.— J () R(ze)

This iterate is called the SVD-Newton iterate.

The Moore-Penrose inverse also provides a natural way to reg-
ularize the problem. This is due to the following; if the problem is
insensitive to variations in one of the parameters, or a linear combina-
tion of parameters, this means that the column vectors of the Jacobian
has a high degree of linear dependence and the condition number of the
matrix is very high. In terms of the SVD, this implies that the matrix
has one or more very small singular values. The condition number &
is in fact defined as k = pmaz/imin - The idea is to suppress this lin-
ear dependence of the column vectors, thus making the matrix better
conditioned. This is done by introducing a regularizing parameter A
and to define a regularized Moore-Penrose inverse through

1/#% pi > N
i < A2
dT =0, i

Jl=vpluT | Di=
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The regularizing parameter has the effect of masking off directions in
the parameter space in which the problem is ill-conditioned.

The strategy is to start the optimization with some A > 0, large
enough to make the Jacobian J/I well behaved. In this way a point
x) is found which minimizes the rms-error of the residuals for the
affine model and which is hopefully near the true minimizer x, of the
problem. Then the parameter A\ is decreased, making the Jacobian
more ill-conditioned. But since z) is close to x,, the algorithm is in
a better position to handle this. This procedure is repeated until the
minimizer z, is found. In this way the search is guided down to the
minimizer. Keeping the Jacobian well behaved while z. is far away
from the minimizer =z, saving the difficult parts until z. is close
to x4 .

If the data are clean, then reducing A will decrease the rms-
error of the datafit, monotonically, eventually making =, — =z, as
A — 0. If, however, the data are contaminated with noise, then the
rms-error might actually increase as A gets very small. In such a case,
the procedure is stopped at the optimal A which gives the best fit.
The problem of choosing the optimal A is in general tractable.

All variations of the Newton iteration are based on making a local
model around the current point. Hence, these methods are at best
locally convergent and have to be augmented with a global strategy in
order to achieve global convergence. The SVD-Newton step (2) might
actually fail to be a descent step in certain situations, e.g. if the problem
at hand is not a small residual problem or the problem is very nonlinear.
In such situations the step might be too long and that the optimal
minimizer within the range of the Newton step might be located in a
slightly different direction.

In this paper, a backward line tracing strategy is chosen. This is
done as follows: First the Newton step is tried. If this step gives an
acceptable decrease in residual, it is accepted. If not, a backtracing
along the Newton direction is employed. Other strategies, i.e., trust
region approaches, are possible [3].
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3. Results

In this section the performance of the algorithm is presented by
a number of numerical calculations. The performance is compared for
different types of data, i.e., bore hole measurements or surface grid
measurements, and the sensitivity of the reconstruction to error in the
data is investigated.

It is natural to separate the total field into a regional field and
an anomalous field. The term regional field refers to the field scattered
from large-scale structures, such as layering, with no target ore present.
By anomalous field is understood the scattered field due to the presence
of the target ore. This break up of the field enters in a natural way in the
forward solver (A.16-A.18). In prospecting situations there are often
a priori information about the regional structures and their physical
properties, which can be utilized to separate the total field. In general
though it is a nontrivial problem to extract the anomalous field. The
first reconstructions are made with anomalous field data, i.e., it is
assumed that the total field is properly separated into a regional and
an anomalous field. The more general problem of both separating the
field and reconstructing the target as well as the regional parameters
is addressed at the end of this section.

The first class of reconstructions to be presented uses data along
a bore hole. At each field point the data consist of all three components
of the anomalous field, both magnitude and phase information.

The coordinate system used to describe the geometry has its origin
at the point where the bore hole penetrates the surface. The =z -axis
is directed towards the center of the loop antenna and the z-axis is
directed upward. The bore hole is parametrized by the spherical angles
n and 9, and the length [ along the hole. The antenna is characterized
by the coordinates of the center (z,0,0), and the radius r,. The
scattering geometry is shown in Figure 1. The target scatterer, the
elliptic disk, is characterized by the length of the half axes a and b.
The center of the scatterer is given by (xs,ys, 2s) and the orientation
of the scatterer is given by the Fuler angles v, 8 and 7. Here « is
a rotation around the z-axis, 3 a rotation around the y/-axis, and
v a rotation around the z”-axis [1]. The disk-related parameters are
shown in Figure 2.
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Figure 1. The scattering geometry.
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Figure 2. The size of the elliptic disk is given by the half axes a and b,
and the orientation of the disk given by the Euler angles «, 3 and 7.
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In the computations to follow, the free parameters of the second
column of Table 1 are used to calculate the synthetic data. The source is
located at xy = 800m , its working frequency 20kH z and the radius
ry = 100m . The field points are situated along a bore hole, in the
direction 1 = 150° and ¥ = —45°. In total 25 field points, every 15th
meter starting at [ = 100m , are used.

Parameter | Correct value | Initial guess
T, 400 m 360 m
Ys -100 m -130 m
2 -250 m 280 m
a 100 m 130 m
b 25 m 50 m
a 45 deg 35 deg
8 30 deg 10 deg
vy 60 deg 50 deg

0.5 — 50
0.4 — L 0
Q
g 0.3 ]
2 . -
« @
= 0.2
—— mag (Clean data) —-100
01— phase
—e— mag (Noisy data) A
-o- phase L 7 e L 150
0.0 -
[ | I | [ I ] |

100 150 200 250 300 350 400 450
Distance along bore hole

Figure 3. X component of synthetic data (H-field) along the bore hole.
The field is normalized by a factor MkZ/4r. The lines without markers
show the magnitude (solid line) and phase (broken line) of the clean data.
The lines with markers show the corresponding noise contaminated data.
These data are contaminated with Gaussian noise with zero mean and
standard deviation o = (0.015.
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Figure 4. Y component of synthetic data along the bore hole. All other

parameters are the same as in Figure 3.
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Figure 5. Z component of synthetic data along the bore hole. All other

parameters are the same as in Figure 3.
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Figure 6. The left axis shows the rms error of the field values for three
different values of the regularization parameter )\ in a logarithmic scale.
The right axis shows the corresponding rms error of the parameters in
a linear scale. The data are clean.

All the reconstructions start from the initial guess listed in the
third column of Table 1. The first reconstruction, in the following called
experiment 1, is done using clean data. The magnetic field is normalized
by a factor Mk /4w, where M is the magnetic moment of the source
and k, is the wavenumber of free space. The initial data is shown in
Figures 3-5. In these figures the magnitude of the clean data is shown
as the solid line without markers and the phase as the broken line
without markers, respectively. As is seen in Figure 6 the rms error
decreases monotonically as the regularizing parameter A\ decreases.
This is an indication that the problem is fairly well-posed. In Table 2
the very fast local convergence is manifested. After just a few iterations
the algorithm converges to the minimizer.

Exp 1
A # iterations | rms error
0.1 5 1.291072
0.01 ) 2.43107°
0.001 1 2.42107°

Table 2. Iterations of experiment 1.
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Figure 7. Same as Figure 6 but the data are contaminated with Gaussian
noise with zero mean and standard deviation ¢ = 0.015. Both left and

right axes show the rms errors in linear scales.
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Figure 8. The magnitude of the singular values for five different values
of the regularizing parameter \. Note the slow and even decrease of the

singular values.

In the following experiments the data are contaminated with
noise. The noise is assumed to be generated by an independent noise
source which is modelled by Gaussian noise with zero mean and stan-
dard deviation o, where ¢ is independent of the original data. In



152 Bjorkberg and Kristensson

experiment 2 ¢ is equal to 0.015. The magnitude and the phase of
the contaminated data are shown in Figures 3-5, as marked solid lines
and marked broken lines, respectively. The convergence of the algo-
rithm with these data is shown in Figure 7, where the rms error of the
datafit, left axis, and the rms error of the parameterfit, right axis, are
plotted versus the regularizing parameter A. As demonstrated in the
figure, the algorithm quickly converges to the true minimizer even in
this case. The well-behavedness of the algorithm for bore hole data is
further manifested by the slow decrease in magnitude of the singular
values, as shown in Figure 8.

As a final worst case the bore hole data is contaminated with
Gaussian noise with a standard deviation o equal to 0.05. The in-
put data of this experiment, No. 3, is shown in Figures 9-11. As in
Figures 3-5, the marked solid lines and the marked broken lines show
the magnitude and phase of the error contaminated data, respectively.
As seen in the figure the quality of the input data is quite bad in this
case. Still the algorithm gives an acceptable reconstruction. In Figure
12 the convergence for this noise level is demonstrated, and in Figure
13 the decrease of the singular values.
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Figure 9. X component of synthetic data along the bore hole. The lines
without markers show the magnitude (solid line) and phase (broken line)
of the clean data. The lines with markers show the corresponding noise
contaminated data. These data are contaminated with Gaussian noise

with zero mean and standard deviation o = 0.05.
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Figure 10. Y component of synthetic data along the bore hole. All other

parameters are the same as in Figure 9.
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Figure 11. Z component of synthetic data along the bore hole. All other

parameters are the same as in Figure 9.
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Figure 12. Same as Figure 7 but the data are contaminated with Gaussian

noise with zero mean and standard deviation o = 0.05.
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Figure 13. Same as Figure 8 but the standard deviation of the Gaussian
noise is o0 = 0.05.

Next set of experiments presented uses data collected on the
ground surface. Two different meshes are used. The first consists of
three parallel lines running 40m apart from each other. Along each
line seven measurements are made each 20th meter. The second layout
has two more lines placed between the three original lines. Thus, in this
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layout the inter line distance is 20m . In both layouts the scatterer is
placed 60m out along the center line and straight below the same. All
other parameters of the scatterer and the ground are the same as in
the bore hole case.

With clean data the algorithm makes good reconstructions with
both layouts. The convergence of the algorithm in the case of clean
data is shown in Figure 14, where the rms error of the datafit and
the parameter fit are shown for different A. In this figure the five line
layout is used. The three line layout gives the same output.
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Figure 14. Same as Figure 6 with clean data for a surface layout. The
layout consists of 5 parallel lines 20m apart and with 7 measurements

each 20th m along each line.

In the case of noise contaminated data the surface layouts do not
behave as well as in the bore hole case. In Figure 15 the singular values
are shown for noise contaminated data with ¢ = 0.0015 . Note that the
standard deviation of the noise in this case is one order of magnitude
smaller compared to experiment 2. The quality of the reconstruction
with noise contaminated data with standard deviation ¢ = 0.0015 and
a surface layout with five lines, experiment 4, is shown in Figure 16.
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Figure 15. The figure shows the magnitude of the singular values for
different \. The data are collected in the same surface layout as in Figure
14.
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Figure 16. Same as Figure 6 but the standard deviation of the Gaussian

noise is ¢ = 0.0015.

So far all reconstructions are made using anomalous field data.
Thus it is assumed that the total field can be separated into a regional
field and an anomalous field by some means. In general this is a non-
trivial problem which has to be addressed. One of the main difficulties



Three-dimensional subterranean target identification 157

is that the magnitude of the anomalous field is typically only a small
fraction of the total field. This characteristic tends to make the extrac-
tion of the anomalous field sensitive to noise. The reconstruction of the
target parameters is very sensitive to a bias (i.e., a systematic error)
in the anomalous field, due to incorrect separation of the total field
into regional and anomalous fields, respectively. It is therefore of vital
importance that the reconstruction of the regional parameters be ac-
curate. In the previous reconstructions no bias occurs since Gaussian
noise with zero mean is used. Thus this type of noise is much more
well-behaved.

One approach to separate the fields is to use an iterative scheme.
At each step the regional field is approximated by the difference be-
tween the total field and the optimized anomalous field from the pre-
vious iteration. The regional parameters are then determined by an
optimization to this field. In the same way the anomalous field is ap-
proximated as the difference between the total field and the optimized
regional field found above, and the new set of target parameters are
determined by an optimization to this field.

This process is repeated until convergence is reached. Noting that
the regional field constitutes the major part of the total field; the to-
tal field itself is used as a first approximation to the regional field.
Symbolically the iteration process can be written as

{ H?eg = HtOt - H?eg,opt

Hgnom = HtOt - H?eg,opt - Hgnom,opt

{ Hl%eg - HtOt - H(a)nom,opt - ngg,opt
H;nom = Hio — H%eg,opt H;nom,opt

{ H;’Leg - HtOt - Hgn:)lm,opt - H?eg,opt
Hgnom = H‘DOt - H?eg,opt - Znom,opt

Figure 17 shows the result of the iterative procedure. The geom-
etry is the same as in experiment 1. The data are contaminated with
Gaussian noise with ¢ = 0.01 but this time the total field is used.
As can be seen in the figure the scheme converges to a fix point in
the parameter space giving an acceptable reconstruction of both the
regional parameters as well as the target parameters.
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Figure 17. Separation of the total field into a regional field and an anoma-
lous field. The vertical axis show the rms error in the target parameters

and the horizontal axis the rms error in the regional parameters.

4. Conclusions

The identification of subterranean metallic ores from scattering
experiments is in general not a well-posed problem. However, by re-
stricting the shape of the target the problem is regularized enough to
make it numerically stable. In this paper we have modeled the ore by a
perfectly conducting elliptic disk, which is a reasonable model for the
type of sulphide ores found in Northern Sweden.

Given the assumption that the scattering data can be properly
separated into a regional and an anomalous field it is shown that the
target can be identified from a feasible starting guess. The algorithm
is also shown to be stable to noise for realistically noise contaminated
data.

The separation of the scattering data into a regional and an
anomalous part is a nontrivial problem. The last part of the article
presents a possible way of separating the field and determine the base-
ment parameters as well as the target parameters through an iterative
process. The convergence of this process can be improved by providing
a priori information about the regional large-scale structures and their
physical properties.
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Appendix

A. T-matrix formulation and computation of the
forward problem

In this appendix a brief description of the method used to solve
the forward problem, the null-field method, is given. Since the intention
of this appendix is to give the reader an overview rather than a detailed
description references to appropriate sources are given where needed.
This overview is given in three steps. First the null-field approach is
applied to a perfectly conducting three dimensional scatterer. As a
second step the regional model, consisting of a half-space covered by an
overburden excited by a loop antenna, is considered. Finally these two
models are combined into a complete model which takes into account
the interactions between the various scattering surfaces [4] (cf. also

[5])-

A.1 Null-field approach to 3-d scatterer

The problem is to compute the scattered field, assuming that the
geometry of the scatterer and the incident field is known. The initial
step in the null-field approach is to expand the fields in suitable sets of
global expansion functions. Thus the incident and the scattered fields
are expanded in spherical vector waves around an origin inside the

scatterer ‘ ‘
E™(r) =) anv),(kr)
E*(r) = fovl(kr)

where v’ (kr) and v¢(kr) are the regular and outgoing spherical
vector waves, respectively. These waves are defined as

Vot = J1(kr) Avom (7)

, r j1(kr)] i (kr Al
Voo = WAQUW(?) + I+ 1)‘7[;}; )Aggml(f“) (-1

The outgoing vector waves are defined in a similar way by exchanging
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the spherical bessel function j; with spherical hankel functions of the
first kind hl(l) in (A.1).

Furthermore, the unknown surface field on the scatterer is ex-
panded in tangential vector waves as

J(r)=vx H(r)= %Zanrﬁx (Vx vi(kr))

Here Y is the inverse of the wave impedance, i.e., Y = k/wpu .
Between the expansion coefficients a,, and f,, there is a linear

relation.
fn = E Tnn/an/
n/

Once the T -matrix is found the scattering problem is solved. The null-
field approach provides an algorithm to find a truncated approximation
to T, . This is done by deriving the relations between the incident
field and the surface field, and the scattered field and the surface field,
ie.,

I == Qi (A.2)

frn = Qo (A.3)
n/
The entries of the Q€-matrix are explicitly given by [7], [8]

© :k/{vZ(r) x [V x vi(r)]}-0dS (A.4)
S

The expressions for the ) -matrices of a perfectly conducting el-
lipsoid, which is the scatterer considered in this paper, are given in [2].
Here it suffices to note that the entries in the matrices are integrations
over the surface of the scatterer where the integrands are combinations
of the expansion functions. Hence the @ -matrices can be computed ex-
plicitly. Once the @ -matrices are computed to a given truncation, the
T -matrix is the solution of the matrix equation.

TQ = —Q' (A.5)
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A.2 Stratified ground excited by loop antenna

In the previous section it was natural to use spherical wave func-
tions since the scatterer was a three dimensional object. In the current
setting with a stratified ground it is more natural to work with plane
vector waves. The reason for this is that the boundary conditions are
easy to fulfil with plane waves. A plane wave that impinges on a plane
interface gives rise to a reflected plane wave and a transmitted plane
wave. The amplitudes are given by the reflection and transmission co-
efficients, respectively, and the directions of propagation are given by
Snell’s law. The natural starting point is thus to expand the known
incident field and the scattered field in plane waves, i.e.,(cf., e.g., [5])

27

/dﬁ/smadaao(ko)@j(ko;r) (A.6)

1o

2 27
E*(r)=>)_ / g / sin o dab (ko) @ (ko; T) (A7)

Jj=1 0

M

Einc (’P) —

J

where CL are integration contours in the complex «-plane chosen in
such a way that ksina € [0,00). Integration over Cy refers to up
going waves, and C_ to down going waves.

In order to simplify the notation the following convention, in-
troduced in [4], is adopted. Integration and summation over j are
suppressed and we write

2 27
> [ ds, [ sina,dass(h)g k) = 17 of
J=ly Cy

i.e., the domain of integration is represented by an arrow and the index
of the material parameters are indicated by the superscript. In this
notation Egs. (A.6) and (A.7) are written

Within the layer both up and down going waves exist whereas in the
lower half-space only down going waves can exist since the half-space is
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now assumed to be homogeneous and a radiation condition is assumed
at infinity. In the new notation these fields are

E'(r) =®|(r)a| + ®}(r)5]
E*(r) =& (r)a?

Once more the null-field approach provides an algorithm to solve for
the unknown fields. In symbolic form the relations can be written as

{ a} =i(Q}ja] + Q115)) "
=~ i(@f]o] + QY6))
al =iQ12a?
foen »
Bt =—iQjla]
The @ -functions introduced above are defined as
Qjj (kv ku1) =2k, /ﬁy AV x @ (k7)) x B (Kyy1;7)
SI/
+ CoBl (ki) x [V x @y (7]} S, v = 0,1

where C, = u,/py+1 - The explicit derivation of equations (A.8) and
(A.9) is given in [4]. These equations (A.8) and (A.9) can be solved
formally to yield

0
i Rm%
ﬂ%:u[—RR] 100 A0

2 _ T 0

af =T} a]
wnere aln are € total reriection an ransmission Ccoelnl-
h RTTL dTﬂ the total reflecti dt issi fhi

cients of the whole layer and the others are transmission and reflection
coeflicients of the individual interfaces.

A.3 Complete model

To form the complete model the models in subsections A.1 and
A .2 have to be combined. To achieve this the transformations between
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the spherical vector waves and the plane vector waves are introduced
(cf., e.g., [3])

®;(k;r) = Bl (k) (kr) (A.11)

2w
¢ (kr) :22/ dﬁ/sinadaan(l%)éj(k;r), 240 (A12)
J 0 Cy

The presence of the scatterer in region 2 implies that in addition to
down going plane waves up going plane waves have to be introduced,
in the region between the scatterer and the plane interface, in order to
meet the boundary conditions. Thus Eq. (A.9) now reads

(o ikt o
B =~ i(Q}tal + Q)

With the use of the transformations (A.11) and (A.12) the equations
(A.2) and (A.3) can be written

(A.13)

B2l a? =iQS,, o (A.14)

If these equations ((A.8), (A.13), (A.14) and (A.15)) are solved for-
mally the fields in the different regions are obtained as

Eo(r) =E§*“(r) + By (r) + E§*"(r) (A.16)
=E'(r) + ®3Rj ] + B (r)T1 B}, T
E, (’I‘) :Egegional (’I‘) + Ezlmom (1‘)

= (@)} + @) (1~ BRI

-1
+ [®1(r) + ®[(r)R|1] [1 — R{{R}}] T B}, Tow
(A.17)

EQ(T) :Egegional ('I‘) + Eczmom(r)

Iy (A.18)
=®1(r)T}|a] + | 505 (kor) + @ (r) R} BY, | Tnr



164 Bjorkberg and Kristensson

Here the T matrix is the solution of Eq.(A.5). Furthermore, the am-
plitude ¢, , defined as

Cn = 20Q5,, Oy

is the solution of
Cp + Ann’cn’ =d,

_ 2t T 0

Ann/ == _2BT?LIRTTB%”N n’''n’
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