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1. INTRODUCTION

Many radar detection algorithms use both the amplitude and Doppler
informations of the backscattered wave or the complex coherent wave
measured in only one receiving polarization channel. Usually, detecting
moving targets in stationary clutter is carried out by Doppler filter-
ing. This technique is unfitted when targets and clutter are moving
at approximately the same speed, as it is in this study, or when the
radar Doppler ambiguity is small. This is a limitation of actual radar
systems. A new dimension has been added in order to overcome such
problem : radar polarimetry.

Radar polarimetry, based on the measurement of the complete radar
scattering matrix, allows to define new detection schemes. In this
paper, some of these new detection algorithms are applied to real data
measurements, and compared, whenever possible, to single channel
processing.

Clutter and target measurements have been made possible with
CIM, a Ka-band high-resolution polarimetric radar developed by L.C.
T.A.R. (Le Centre THOMSON d’Applications Radar) for the detection
of targets in slow-moving stationary clutter environments. In the first
part of this paper, a short description of this system and the related
data are given. Polarimetry gave birth to several new descriptive radar
target detection parameters, among them: entropy (H), polarization
degree (p), Signal Span (SS), phase difference, ellipticity ( τ ) and ori-
entation ( φ ). Thus polarimetric parameter behaviour is not identical
for clutter and for targets with clutter, and could lead to the improve-
ment of radar detection algorithms. This makes up the second part of
this paper. Then, different detection algorithms are presented. They
are split in two different categories: the first approach uses a statistical
model of clutter and of target-in-clutter. The optimal algorithm and
sub-optimal methods are also tested and we have derived theoretically
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and evaluated the Maximum Likelihood Ratio for a K law distribution
assumption.

The second approach uses a parametric description of the back-
scattered waves. We propose a new algorithm based on an auto-
regressive modelling of the polarimetric clutter fluctuations.

Then, the results are presented, often in terms of the probability
of detection as a function of the target to clutter power ratio. The
probabilities of false alarm (Pfa) that we use may seem unrealistically
too high to the readers, but the small number of available data is the
reason why it was impossible to work with a lower Pfa.

Finally, as the CIM radar is not a full polarimetric system, it is
important to specify that all the detection algorithms that will be
presented in this paper do not utilize further distinctive parameters
recovered from higher order complete Sinclair [S (2 × 2) ], Kennaugh
[K (4×4) ], covariance [ Σ(3×3) ] matrix formulations or group-theory,
Lie aspects as target entropy, OPCE coefficients and “relative co-pol
phase difference” or “phase correlation coefficient”, etc [4,5,7].

2. DEVICE AND DATA

2.1 The CIM Radar for Stationary or Slowly Moving Target
Detection

The CIM radar has been developed by L.C.T.A.R for the detection
of slowly moving or stationary vehicles hidden in ground clutter. It is
a high-resolution radar, using polarization diversity on reception. The
radar CIM is conceptually a non-coherent device. However, coherency
is made possible and locally restored by using a stationary fixed trihe-
dral reference target. Its characteristics are summarized in Figure 1.

2.2 Clutter and Target Measurements

The clutter backscatter was measured during the autumn of 1993 at
the L.C.T.A.R. outdoor measurements base. Each elementary clutter
set is made up, for a given azimuth and a given elevation, of a set of
15 range profiles of 1000 resolution cells each, which corresponds to an
acquisition time around 100 ms. For each acquisition, the wind speed
and direction are registered with high accuracy. A long time period of
measurement is fixed to 10 seconds, which corresponds to an equivalent
“antenna rotation” speed of π/5 rd/s.
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Figure 1. CIM radar characteristics.

To illustrate the algorithms presented in this paper, two kinds of
clutter have been selected, as can be seen from inspection of Figure 2.
The edge of the forest, where a target is present, will be used to illus-
trate the detection test scenario, and the hedge and house configura-
tion defines the specific test targets as treated in the part of this paper
concerning the polarimetric parameters.

Figure 2. Description of the radar scattering environment.
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Targets were first measured at the CELAR (Centre Electronique de
l’Armement) outdoor measurements base, using the same CIM radar.
Then, the range profiles of the targets are artificially added to the
radar scattering environment range profiles, with a given target-to-
clutter ratio.

2.3 Notation

The radar return is measured and expressed in a polarimetric Sin-
clair vector formulation; i.e., back-scatter complex phasor in contrast
to forward propagation Jones vector [3] which must strictly be treated
separately [6,7,38].

X =
[
XA
XB

]
=

[
XAi + jXAq
XBi + jXBq

]
=

[
|XA|ejδA
|XB|ejδB

]
(1)

where XA and XB denote A and B = A⊥ part of the received
signal, and (i, q) denote the in-phase and quadrature part of each of
these components.

We define X̃ as the notation which will be used for the centered
form of X

X̃ = X − E[X] =
[
X̃A
X̃B

]
=

[
|X̃A|ejΦX̃A
|X̃B|ejΦX̃B

]
(2)

The coherency matrix of the polarimetric Sinclair vector is

Σ = E
{
X̃ X̃

∗T}
= σ

[
1 ρ

√
γ

ρ∗
√
γ γ

]
(3)

with

σ = E
{
|X̃A|2

}
; γ =

E
{
|X̃B|2

}
E

{
|X̃A|2

} ; ρ
√
γ =

E
{
X̃AX̃B∗

}
E

{
|X̃A|2

} ; (4)

where σ , γ and ρ represent the different polarimetric co and cross-
correlation terms.

3. POLARIMETRIC PARAMETERS

3.1 Definition

Polarimetry produced several new radar detection parameters, in-
cluding entropy, polarization degree, phase difference, ellipticity and
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orientation. The behaviour of these parameters are not identical for
clutter and targets-in-clutter. That is why they could lead to improve-
ments in radar detection. This section introduces some of these novel
parameters and corresponding results are presented for real data mea-
surements.

The phase difference between Sinclair components is defined as:

δ = δB − δA = Arg(XB)−Arg(XA) (5)

Figure 3. Orientation and tilt angle representation of polarization
ellipse.

In the original wave plane, the tip of the electric field trajectory
as a function of time is an ellipse. Orientation is the angle between
the horizontal axis and the ellipse major axis. This angle, denoted φ ,
restricted to values between −π

2 and π
2 , can be written as a function

of the Sinclair vector [27]

tg2φ =
2|XA||XB|
|XA|2 − |XB|2 cos δ (6)

The tilt angle τ is the angle measured between the minor and the
major axis of the ellipse. τ can take any real value between −π

4 and
π
4 and can be expressed as

sin 2τ =
2|XA||XB||
|XA|2 + |XB|2 sin δ (7)
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These two parameters are shown on Figure 3. Results will be focused
on the standard deviation of these two angles.

A partially polarized wave can be defined from the expression of the
coherency matrix J [26]. This matrix is calculated from the product
of the electric field intensity and its conjugate

J =
〈
XX∗T

〉
=

[
〈XAXA∗〉 〈XAXB∗〉
〈XBXA∗〉 〈XBXB∗〉

]
=

[
J11 J12

J21 J22

]
(8)

Also, the associated Stokes vector is defined by

g[E] =



g0 = |XA|2 + |XB|2
g1 = |XA|2 − |XB|2
g2 = 2R(XAXB∗)
g3 = −2T (XAXB∗)


 = g0




1
cos 2φ cos 2τ
sin 2φ cos 2τ

sin 2τ


 (9)

It can be shown that the coherency matrix can be written from the
Stokes vector [3,6,7,38]

J =
1
2

[
g0 + g1 g2 − jg3
g2 + jg3 g0 − g1

]
(10)

A partially polarized wave can be written as a uncoherent sum of a
completely polarized wave and a completely unpolarized wave [5,7]



g0
g1
g2
g3


 = g0




1− p
0
0
0


 + g0




p
p cos 2φ cos 2τ
p sin 2φ cos 2τ

p sin 2τ


 (11)

The polarization degree ( p ) is the ratio of the completely polarized
wave over the total power of this wave

p =

√
g2
1 + g2

2 + g2
3

g0
, 0 ≤ p ≤ 1 (12)

More precisely, p is equal to 1 if the received wave is completely po-
larized. The determinant of the coherency matrix is then equal to 0.
p takes the value 0 if the received wave is completely unpolarized.
Then, J11 = J22 and J12 = J21 = 0 . Any intermediate value corre-
sponds to partially polarized waves.
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We now introduce another definition of polarimetric entropy (H )
introduced by Shane Cloude [8–13] and applied here to a wave instead
of a target. The polarimetric entropy (H ) of the wave is obtained
from the knowledge of the two eigenvalues λ1 and λ2 of the coherency
matrix J , and is defined as

H = −
2∑

k=1

pk log2(pk) (13)

with
pk =

λk
λ1 + λ2

(14)

H assumes any real value between 0 and 1 . When H = 0 , the
measured environment is so-called perfectly polarized. When H = 1 ,
the measured environment is so-called completely unpolarized, and
presenting “polarimetric white noise”.

3.2 Behaviour of the Measured Polarimetric Parameters

The behaviour of these different polarimetric parameters are given
for the specific hedge and house target case, since two motionless ob-
jects are naturally present in this scene: the trihedral and the house.
These variations correspond to only one set of measurements as has
been defined earlier on for the polarimetric phase difference, and 6
consecutive sets of measurements for any other parameter.

The log-scale has been used for polarization degree, polarimetric
entropy, ellipticity angle and orientation angle standard deviation, to
highlight the differences between clutter and target behaviour, as can
be seen on Figure 4.

The phase difference is constant at the trihedral level and random
outside this area. The polarization degree is equal to 1 at the trihedral
level and very close to 1 at the house level. The hedge does not always
have a strong polarization variation (the polarization degree can reach
0.98 at this level). On the other hand, man made targets have the
same entropy. They can be easily distinguished from natural clutter.
The corresponding entropy gap is close to 25 dB. Obstacles are still
clearly set apart from natural clutter when the standard deviations of
τ and φ are displayed. Still, trihedral and building behaviours are
very close to each other. τ is such that 15 dB separates steady targets
from the less dispersing clutter spot. This difference reduces to 10 dB
when the angle φ is considered.
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Figure 4. Polarimetric Parameter derivation for 15 consecutive mea-
surements (phase difference) and 6 sets of measurements (other pa-
rameters).

We can now conclude that these different polarimetric parameters
show important variations when they are studied on natural clutter or
man made objects. Using this polarimetric information, we can intro-
duce novel detection procedures and schemes which can be foreseen.

4. DETECTION ALGORITHMS

4.1 Introduction

Two kinds of methods are tested for comparison with the standard
detection objective. The first uses the well-known polarimetric likeli-
hood ratio test. Statistical models of clutter and of target-in-clutter
are required to compute this algorithm. Here a Gaussian and a non-
Gaussian model are selected. Alternative sub-optimal procedures are
also tested [29–31].
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The second kind of method uses polarimetric and parametric de-
scription of the scene. The Poelman Virtual Polarization Algorithm
[33–37] and Autoregressive Models [21] are part of this category.

4.2 Non-parametric Methods

The received polarimetric vector X enters one of these two cate-
gories [1,29]: X represents only the clutter (Assumption Ho ) or X
represents both target and clutter (Assumption H1 ).

The decision test, the Neyman-Pearson criterion, takes the form of
a likelihood ratio:

λ(X̃) =
PH1(X̃)
PHo(X̃)

(15)

where PH1(X̃) and PHo(X̃) are respectively the conditional proba-
bility of X̃ in hypothesis Ho and H1 . (15) is then compared to a
threshold, T . Two kinds of errors can be made:

• Deciding the absence of a target when it is actually present.

• Deciding the presence of a target when only clutter is present.

This misinterpretation is commonly called probability of false alarm
(Pfa) and its value is noted as:

Pfa = PHo

{
λ(X̃) > T

}
(16)

whereas, the probability of detection (Pd) is given by:

Pd = PH1

{
λ(X̃) > T

}
(17)

T is an adaptive threshold. It depends on the desired probability
of false alarm. The Neyman-Pearson test is optimal in the sense that,
for a fixed value of Pfa, it maximizes the probability of detection, Pd.

The most common and most often used Probability Density
Function (PDF), is the Gaussian distribution. Here the random vari-
able X̃ is assumed to fit a vectorial Gaussian law [14,23,24,29,39].

P (X̃) =
1

π2|Σ| exp
(
−X̃∗TΣ−1X̃

)
(18)
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Taking the neperian logarithm of the Maximum Likelihood Ratio
(MLR) leads to the following well known expression

X̃
∗T (

Σ−1
c − Σ−1

c+t

)
X̃ + ln

|Σc|
|Σc+t|

(19)

where the subscripts c and c + t respectively stand for clutter and
target in clutter. (19) has to be compared to ln(T ) . The above relation
can be rewritten as a difference of two distances

dc(X̃)− dc+t(X̃) (20)

which is lower, equal or greater to ln(T ) . If we derive the equation
(20) versus the polarimetric parameters of the covariance matrix Σ ,
it has been shown that [29]

di(X̃) =
|X̃A|2

σi (1− |ρi|2)
+

|X̃B|2
σiγi (1− |ρi|2)

− 2|ρi||X̃A||X̃B|
σi
√
γi (1− |ρi|2)

× cos(ΦX̃A − ΦX̃B − Φρi) + ln(γi) + ln
(
σi

(
1− |ρi|2

))
(21)

where i = c or c + t . This detector is said to be optimal in the
sense that it uses the entire polarimetric information: polarimetric
amplitude (

∣∣∣X̃A∣∣∣, ∣∣∣X̃B∣∣∣ ) and relative polarimetric phase difference
( ΦX̃A − ΦX̃B ). The Optimal Polarimetric Detector (OPD) then ap-
plies weighting (the weights are combinations of σi , γi and ρi as
shown in expression (21)) to the radar measurements before making
its decision [29], a concept which was originally developed for the Op-
timal Polarimetric Matched Filter (OPMF) and introduced by W.M.
Boerner as described in [4,5,7].

However, as the range resolution of radar systems improved, the
clutter appeared less homogeneous. New descriptions of clutter and
targets-in-clutter were found as models [23,24]. The K-PDF stands
as a good model for nonhomogeneous scenes. For example, backscat-
tering from meadows, trees, waves on water surfaces, are all random
variables well-modelled by the K law. The non-homogeneity is intro-
duced by modelling the PDF of the random variable X̃ as the product



12 Morin et al.

of a Gamma distribution, characterizing the spatial variability of in-
tensity g, and a Gaussian distribution representing the speckle, Ỹ
[2,23,24,29,40,41]:

X̃ =
√
g Ỹ (22)

with

P (g) =
1
ḡ

(
g

ḡ

)v−1 1
Γ(v)

exp
(
−g
ḡ

)
(23)

in which ḡ and v are related to the mean and variance of P (g) as

E(G) = ḡv and E(g2) = ḡ2v(v + 1) (24)

Setting ḡ = 1
α and v = α , the one-parameter K-PDF is obtained

P (X̃) =
2

π2|Σ|
α

2+α
2(

X̃
∗T

Σ−1X̃
) 2−α

2 Γ(α)
Kα−2

(√
2α

(
X̃
∗T

Σ−1X̃
) 1

2

)

(25)
where K is the modified Bessel function of second kind and of order v

Kv(z) =
1
2π

I−v(z)− Iv(z)
sin(πv)

(26)

where

Iv(z) = exp(−1
2
vπj)Jv

(
zej

π
2

)
(27)

The parameter α is calculated from the higher moments of the
signal intensity [2,41]

I(m) =

〈
|X̃A|2m

〉〈
|X̃A|2

〉m +
〈
|X̃B|2m

〉〈
|X̃B|2

〉m
2

(28)

m is the order of the normalized intensity moments. These moments
are found to be equal to

I(m) =
m!Γ(m+ α)
αmΓ(α)

(29)
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We have shown that taking the logarithm of the MLR leads to the
following expression

ln




ḡcvcΓ(vc)|Σc|
[
ḡcX̃

∗T
Σ−1
c X̃

] 2−vc
2

Kvc+t−2

(
2

√
X̃
∗T

Σ−1
c+tX̃

ḡc+t

)

ḡc+tvc+tΓ(vc+t)|Σc+t|
[
ḡc+tX̃

∗T
Σ−1
c+tX̃

] 2−vc+t
2

Kvc−2

(
2

√
X̃
∗T

Σ−1
c X̃

ḡc

)



(30)

Then, a comparison between (30) and ln(T ) has to be made. As
has been done for the Gaussian case, the expression given in (30) can
be rewritten as a difference between two distances

dc(X̃)− dc+t(X̃) (31)

If we derive the equation (31) versus the polarimetric parameters of
the covariance matrix Σ , we show that

di(X̃) = vi ln(Γ(vi)) + ln(|Σi|)− ln
(
Kvi−2

(
2
qi√
ḡi

))

+
(

2− vi
2

)
(ln(ḡi) + 2 ln(qi)) ; i = c, c+ t (32)

and
q2i = X̃

∗T
Σ−1
i X̃ (33)

The two methods previously discussed are optimal when the dif-
ferent assumptions are encountered. However, there exist sub-optimal
methods as the Polarimetric Whitening Filter (PWF) and the Polari-
metric Signal Span (PSS).

The Polarimetric Whitening Filter is a simple quadratic algorithm.
The principle of this method is investigating the more appropriate
channel combination, in order to minimize the coefficient of variation
Cz = σz

mz
, where mz and σz are respectively the expectation and

the standard deviation of z = X̃
∗T
AX̃ . A is the unknown, and is

assumed to be hermitian positive definite. Provided that the clutter
is multi-gaussian distributed and that texture is channel invariant, the
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solution is shown to be : A = Σ−1
x where Σx is the covariance matrix

of X [29]
X̃
∗T

Σ−1
c X̃ (34)

is then compared to a threshold, T . The PWF is not optimal since it
ignores the target-plus-clutter covariance information. No appropriate
PDF modelling is required. Only the clutter covariance has to be
learned.

The Polarimetric Signal Span (PSS) calculates the summation of
the intensities measured in each polarization channel [29]

X̃
∗T
X̃ =

∣∣∣X̃A∣∣∣2 +
∣∣∣X̃B∣∣∣2 (35)

A comparison is then made between (35) and a threshold, T . This
detector does not take into account the phase components of the Sin-
clair vectors.

4.3 Parametric Methods

The first parametric method presented is the Virtual Polarization
Adaptation (VPA), which has been developed by A.J Poelman [33–37],
and is based on the assumption that clutter and target-plus-clutter
backscattered signals have different polarization states.

The Figure 5 shows the Poelman VPA filter:

Figure 5. The A. J. Poelman VPA filter setup.
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For more details concerning the Poelman VPA processing, the reader
is invited to read the originator’s papers [33–37] given in references.

The filter response is minimal for clutter echoes. That is due to
the values of the coefficients of the set of filters f extracted from the
clutter backscatter, the center of which is orthogonal to clutter po-
larization. Due to polarization differences, orthogonality is lost when
a target appears. Output power then increases at the Poelman VPA
filter output.

For each resolution cell, the first step of the process calculates the
mean temporal Stokes vector

gm =
〈
g
x

〉
=




go
go cos 2φm cos 2τm
go sin 2φm cos 2τm

go sin 2τm


 (36)

While operating the Poelman Polarization Vector Translation
(PVT) [34], the “cloud” formed by the clutter backscattered Sinclair
vectors is recentered on an arbitrary chosen polarization. For this ap-
plication, the left-hand circular polarization has been chosen because
of its closeness to the mean polarization state of the clutter received
signals. Using the Huynen Sinclair vector decomposition [15–20], the
translated received signal XT can be written

XT =
1√
2

[
1 j
j 1

] [
cos τm −j sin τm
−j sin τm cos τm

] [
cosφm sinφm
− sinφm cosφm

]
X

(37)
The Huynen reference matrix, given in (37), is stored and further

multiplied to every Sinclair vector from the next set of measurements.
The non-linear translation filter reduces clutter spread in the po-

larization space. Thus, weak differences between clutter and targets
are increased and revealed. An area of clutter presence is defined
around the left-hand circular polarization. Processing the Poelman
Non-Linear Polarization Vector Translation (NLPVT) [35] implies that
each polarization vector located inside this area comes closer to left-
hand circular polarization (North pole of the Poincaré sphere). On the
other hand, vectors located outside this area are rejected and trans-
posed towards the orthogonal polarization, i.e. right-hand circular po-
larization (South pole of the Poincaré sphere) as we can see on Figure 6.

The Poelman Multinotch Logic Product Polarization Filter
(MLP) [36, 37] is a reject-band filter in the polarization space. It is
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made of a set of simple reject filters which mean polarization is right-
hand circular. The filters are placed on concentric rings around the
right-hand circular polarization (South pole of the Poincaré sphere).

The output power is calculated as a function of the received and
translated signal Stokes vector g

Xnlpvt
outputted by the Poelman

NLPVT filter and the kth notch filter Stokes vector g
f
k

( k has a

value between 1 and the number of notches, N )

Pout = 10
N∑
k=1

log10

(
1
2
gT
f
k

g
Xnlpvt

)
(38)

The Figures 6 and 7 show the polarization states of the backscat-
tered wave for a given resolution cell, and the position of the filter
notches on the Poincaré planisphere, i.e., the Aitoff-Hammer equal
area projection of the spherical surface [3,6,7,38].

Figure 6. Clutter representation on Aitoff-Hammer equal area pro-
jection of Poincaré sphere: before linear translation (left), after linear
translation (middle) and after non-linear translation (right).

Figure 7. Filter position for only one ring (left) and five rings (right)
on Aitoff-Hammer equal area projection of Poincaré sphere.
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A second parametric method which is based on the signal autore-
gressive (AR) analysis can give also a high degree of auto-adaptation.
It concerns clutter filtering, which is more selective than the classical
techniques of Doppler detection and estimation. The algorithm un-
der study whitens the clutter spectrum, thus achieving an adaptation
to the signal backscattered by the target. The different steps of this
algorithm are given below.

The algorithm introduced in this paragraph is a prediction scheme.
Prior to any processing, several antenna rotations are needed to learn
and analyze the background environment. No target is assumed to be
present during this training stage, from which a set of coefficients is
calculated. After the training stage, these factors are used to predict
the expected received signal corresponding to the next antenna rota-
tion. If this prediction is correct, the difference between this signal and
its forecast, called the innovation, is a realization of a white Gaussian
noise. In each resolution cell, a Fourier Transform of the innovation
autocorrelation function is then applied. If the measured spot has not
changed, the Power Spectral Density (PSD) energy is equitably shared
in all the Doppler filters. If a target appears, the energy is no longer eq-
uitably distributed. Energy peaks appear at frequencies proportional
to the target speed.

The parameters of the autoregressive analysis are calculated for
some range cells where only clutter is present. These cells represent
the reference of only noise for the AR clutter modelling. Then, the
time predicted polarimetric signal vector X̂(n) in a resolution cell is
evaluated from the p preceding measures in the same range cell. A
classical innovation vector calculation X̃(n) = X(n)− X̂(n) achieves
the clutter spectrum whitening.

A quadratic detection in each Doppler filter, with a range CFAR
(Constant False Alarm Rate) is then applied to the innovation process.

Usually, AR procedures use only a one channel receiver. The use of
a polarimetric radar gives the opportunity to make a two-dimensional
AR signal model, which takes into account both A and B = A⊥
polarimetric channels, where A and B = A⊥ denote the pair of or-
thogonal linear polarization states which are used in this study.

The AR method used is the covariance method. The auto-regre-
ssive parameters are calculated by minimizing the prediction error
power [21]. Three AR algorithms have been compared: the classical
non-polarimetric one-channel AR model, the polarimetric one-channel
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AR model and the polarimetric two-channel AR model.
For both the one-channel AR model and the polarimetric one chan-

nel AR model, the auto-regressive parameters a(i) are calculated by
minimizing the estimated prediction error power signal ρ̂

ρ̂ =
1

N − p

N−1∑
n=p

∣∣∣∣∣x(n)−
p∑

k=1

a(k)x(n− k)
∣∣∣∣∣
2

(39)

where x(n) is the signal observed at the output of the channel A or
B = A⊥ , at time n and is one of the components of the polarimetric
signal vector X(n) , p is the order of the autoregressive model, and
N is the number of samples. The index n of x(n) is included in the
range [0, N − 1] . ρ̂ is minimized by applying the complex gradient
method. The result is



â(1)
â(2)

...
â(p)


 =



cxx(1, 1) cxx(1, 2) . . . cxx(1, p)
cxx(2, 1) cxx(2, 2) . . . cxx(2, p)

...
... . . .

...
cxx(p, 1) cxx(p, 2) . . . cxx(p, p)



−1 


cxx(1, 0)
cxx(2, 0)

...
cxx(p, 0)



(40)

with

cxx(r, k) =
1

N − p

N−1∑
n=p

x∗(n− r)x(n− k) (41)

For each channel (A or B = A⊥ ), the predicted value is given by

x̂(n) = â(1)x(n− 1) + · · ·+ â(p)x(n− p) (42)

Detection is estimated from the knowledge of the Power Spectral
Density (PSD) function defined in each resolution cell, either PSD
{|x̃j(n)|} for a one-channel AR with j = A or j = B = A⊥ , or PSD
{|x̃A(n)|}+ PSD {|x̃B=A⊥(n)|} for a polarimetric one-channel AR.

Concerning the two-channel polarimetric AR model, the polarimet-
ric signal can be modelled as a complex two-channel signal X(n) which
is defined by

X(n) =
[
xA(n)
xB(n)

]
(43)

where A and B = A⊥ represent the two orthogonal polarimetric
channels. The parameters of the autoregressive analysis are estimated
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in this case by minimizing the sum of the estimated prediction error
powers of the individual channels, for which

ρ̂ = trace (Σ̂) (44)

is minimized with

Σ̂ =
1
N

∑
n

(X(n)− X̂(n))∗(X(n)− X̂(n))T (45)

The expressions for the predicted vectors X̂(n) are

X̂(n) =
p∑
r=1

Λ(r)X(n− r) with dim Λ(r) = 2× 2. (46)

with

µ̂ = trace


 1
N

∑
n

(
p∑
r=0

Λ(r)X(n− r)
)∗( p∑

r=0

Λ(r)X(n− r)
)T



(47)

By minimizing µ̂ , we obtain

p∑
k=1

Cxx(r, k)Λ̂T (k) = Cxx(r, 0) 1 ≤ r ≤ p (48)

hence
 Λ̂T (1)

...
Λ̂T (p)


 =


Cxx(1, 1) . . . Cxx(1, p)

...
...

...
Cxx(p, 1) . . . Cxx(p, p)



−1 

Cxx(1, 0)
...

Cxx(p, 0)


 (49)

with
Cxx(r, k) =

1
N

∑
n

X∗(n− r)XT (n− k) (50)

and

Σ̂ = Cxx(0, 0) +
p∑

k=1

Cxx(0, k)Λ̂T (k) (51)
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Detection is estimated from

PSD {|x̃A(n)|}+ PSD {|x̃B=A⊥(n)|} (52)

5. RESULTS FOR THE NON-PARAMETRIC METHODS

5.1 Probabilities of Detection and False Alarm Calculation

Due to the small number of available measurements, the probability
of false alarm Pfa has been fixed at a constant high value ( 6.6×10−2 ).
The detection threshold is then calculated for the first set of measure-
ments, for which no target is present. This threshold is adaptive since
it depends upon the resolution cell under consideration. Then, the
probability of detection Pd is assessed by counting over-threshold test
results in the area where the target is present.

5.2 Detector Setup

For the Whitening filter and Maximum Likelihood tests, the de-
tector comprises two equal size range gates, and a range area (called
“security ring”) where no data is processed. The first gate is assumed
to contain only clutter, while in the second a target is assumed to be
present. The security ring is used because the target is not considered
as a point target but as a spread one.

Thus, the set of data comprised in the first range gate is assumed
to confirm assumption Ho , while data belonging to the second gate
are supposed to verify assumption H1 .

A test calculation is made for each Sinclair vector of the central
range cell of the second range gate, as can be seen on Figure 8.

This detector is then entirely moved by one resolution range cell. If
the assumptions (Ho and H1 respectively in the first and the second
gate) are not satisfied, there is no detection. It happens when both
range gates contain only clutter, as during the learning phase (first
antenna rotation), when the thresholds were calculated.
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Figure 8. The detector setup. Ring and window sizes are adjustable.

The following curves, on Figure 9, represent the Probability of de-
tection (Pd) as a function of the range gate size. Different curves are
shown, each corresponding to a given ring size. The sliding range gate
size is successively set to 1,3,5, and 7 resolution cells.

Figure 9. Probability of detection as a function of window size.
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It appears that for a given range gate size, the probability of detec-
tion increases while the security ring size increases. More precisely, it
seems that the choice of a security ring larger than the target is neces-
sary. In addition, the probability of detection is improved when range
gate sizes are increased, particularly if the ring size is small. If not,
the curve slope can be negative. This is due to false alarms induced by
two different kinds of remote clutters. Later on, results will be given
for range gates and security ring sizes respectively equal to 7 and 45
resolution cells.

5.3 Results

In this paragraph, the radial target speed is equal to 0.14 m/s.
Probabilities of detection (in %) are given as a function of the target-
to-clutter ratio (in dB). One and two channel detection schemes are
shown on the same graph on Figures 10 and 11.

Figure 10. The Signal SPAN detector results.
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Figure 11. The Whitening Filter results.

Taking the two polarimetric channels into account improves the de-
tection process when the target-to-clutter ratio is greater than 4 dB.
From the measurements, we can see that a probability of detection
equal to 90% requires a target-to-clutter ratio of 4.5 dB when two po-
larimetric channels are considered, 6.5 dB if only the channel B = A⊥
is read.

Taking two polarimetric channels into account simultaneously re-
sults in a large improvement in the Whitening Filter performances.
This improvement is equal to about 3 dB compared to the most effec-
tive channel (i.e the channel B = A⊥ ). For a probability of detection
equal to 90%, a target-to-clutter ratio equal to 3.2 dB is required in
the two-channel configuration, 6 dB if only the channel B = A⊥ is
considered, and 8.6 dB when it is the channel A .

It is known that the Maximum Likelihood Ratio (MLR) tests are
optimal. They give better results than those obtained using the pre-
ceding methods. The results shown in this section correspond to the
edge of the wooded region. Using probability adequation test on the
data, the selected clutter appears to be independently K distributed
in each channel. The Gaussian PDF, which is a particular case of
the K distribution (α → ∞ ) does not fit the clutter as well. How-
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ever, when a two-channel processing is considered, it happens that the
Gaussian distributed clutter assumption leads to better results than
the K distributed one. This trend is reversed when only one channel
is considered. The reason of this reversal is that relation (28) is not
optimal for the derivation of α in the two-channel case. (28) is true
only if it is assumed that α gets the same value in channel A and
channel B = A⊥ . The physical meaning of this statement is that the
texture is polarization independent. Deriving α more appropriately
could be the subject of a future study.

A probability of detection equal to 90% when the K law is selected
corresponds to a target-to-clutter ratio of -0.6 dB when A and B = A⊥
channels are both selected. This ratio reaches 1.7 dB and 4.4 dB when
only B = A⊥ or A polarization channels respectively are chosen. For
the same probability of detection, a signal-to-clutter ratio of -1.2 dB
is sufficient when the Gaussian law is considered. Ratios of 5.5 dB are
then gained compared to a one-channel device system, since 4.1 dB
and 6.8 dB are respectively the measured requested ratios on each of
the two channels separately taken.

Figure 12. Maximum Likelihood Ratio (MLR) results.

When the two channels are considered, it can be seen that the best
method is the Maximum Likelihood Ratio test, for which 3 dB are
gained compared to the Whitening Filter results. This last algorithm
produces nearly a 2 dB gain compared to the less effective method,
the complete polarimetric Signal Span magnitude only, as should be
expected since valuable polarimetric phase information was discarded.
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Figure 13. Comparison of Polarimetric Procedures.

5.4 Conclusion

The results show that a reasonable large range gate size combined
with a security ring of dimensions at least equal to the target size gives
the best results for detection purposes.

The best detection methods are MLR tests and the Whitening Fil-
ter. Lastly, the Signal Span method is the least effective polarimetric
detector in that critical polarimetric phase differences are not being
incorporated into the algorithm.

Taking two orthogonal channels into account significantly improves
detector performances compared to a one-channel processing (between
2 dB and 7 dB according to which detector is used, for a given proba-
bility of detection : 0.9).

6. RESULTS FOR THE PARAMETRIC METHODS

5.1 Auto-Regressive Methods

For the AR algorithm, a threshold is determined to achieve a prob-
ability of false alarm equal to 5 × 10−2 . This threshold is estimated
with only one clutter file. A target is then artificially added to the
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clutter. The probability of detection is estimated for the most repre-
sentative target scatterer. To obtain sufficient data for the calculation
of the Pd, different positions of the target in the 6 clutter files are
considered (there is a 10 second time separation between 2 files). The
probability of detection is drawn as a function of the signal-to-clutter
ratio for one pulse in the polarization channel A. The AR order p is
equal to 2 . The two following curves, on Figures 14 and 15, represent
the power spectral densities (PSD) before and after the AR treatment
for one burst of pulses. The clutter spectrum whitening can then be
observed. The detection is realized in each Doppler filter (passing from
one Doppler filter to the other corresponds to a radial velocity shift of
0.04 m/s).

A Doppler analysis, applied on the PSD of the innovation signal,
provides the visibility factor information, fixed for a Pd of 0.9 and a
Pfa equal to 5 × 10−2 . The visibility factor is the minimal signal-to-
clutter ratio required to obtain a probability of detection with a fixed
probability of false alarm. It is given for one pulse, and the detection
is made after a coherent integration of 13 pulses which results in a gain
of 11 dB on the signal-to-clutter ratio.

Figure 14. Power Spectral Density/One channel AR/Channel A (only
clutter).



Polarimetric detection of slowly moving targets 27

Figure 15. Power Spectral Density/Two channel AR (after filtering).
The target to clutter ratio is equal to -7 dB/pulse and the radial ve-
locity is equal to 0.09 m/s.

For these Doppler velocities, the polarimetric one-channel and the
polarimetric two-channel algorithms give comparable results. With a
two-channel polarimetric radar, the gain obtained for these types of
target and clutter is about 2 dB greater than those obtained using
only a one channel non-polarimetric radar.

Figure 16. Visibility factor, given for the three algorithms (Pfa=0.05
and Pd=0.9).
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6.2 VPA

Results are shown for a single ring of notches. When this method is
not applied in a selective manner, results are slightly faint. The reason
is that for weak power scatterers, reference polarization variations are
very strong. The output power is then minimized, but high. Such
a background environment is not likely to serve well for a detection
scheme, since it is much too scattered. A solution has been found to
solve this problem. Entropy, as presented in the third paragraph, is an
indicator of the degree of disorder of a cell, as a function of time. The
closer to zero entropy is, the more localized is the cloud of vectors on
the Poincaré sphere.

The first step of the process is the calculation of the entropy. Only
the resolution cells for which entropy is inferior to an arbitrary cho-
sen threshold (0.5 for this application) are selected. Then, the VPA
procedure is applied.

To obtain a probability of detection equal to 0.9, the target-to-
clutter ratio must be equal to 2 dB, thus 1.2 dB less compared to the
result obtained by using the two-channel Whitening filter. It has to
be noted that these results have been obtained only for cells where the
clutter is considered as stationary (entropy < 0.5). Furthermore, in
the case where a target is located in a very high entropy clutter area,
the VPA procedure would be impossible to use in its current state,
since it would not lead to good results.

7. CONCLUSION

This paper is about the detection of slowly moving targets embedded
in stationary ground clutter. Different detection schemes have been
considered and compared with one another. The possible contribution
of polarimetry to detection has been figured out.

Some polarimetric parameters have been presented. These variables
take different values when they are calculated on clutter and on targets
in clutter. Using these parameters to improve detection procedures can
be foreseen.

Then, different polarimetric detection schemes have been presented
and applied to real data measurements. Whenever possible, the ob-
tained performances have been compared to only-one channel detection
results. Well-known detectors have been used: Signal Span, Whiten-
ing Filter, Gaussian modelized Maximum Likelihood Ratio and the
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A.J. Poelman Vector Polarization Adaptation. We have developed a
new derivation of the Neyman-Pearson test for a K-law distribution
assumption. Also, we have proposed a new detection algorithm based
on auto-regressive clutter modelling.

Figure 17. Result of Poelman’s VPA procedure.

The one-dimensional K-law assumption achieves better results than
Gaussian law modelling for almost any type of clutter and should be
used more systematically. However, the derivation of the α parameter
is not yet optimal in the case of a polarimetric detector. For the AR
modelling scheme, results have been shown in the form of a visibility
factor, which is the minimal signal-to-clutter ratio required to get a
probability of detection with a fixed probability of false alarm. Using
a two-channel polarimetric signal Sinclair vector, instead of a one-
channel complex signal AR modelling approach, improves the detection
by a factor of 2 dB. More generally, we have shown that polarimetry
always improves detector performance, and the improvement can reach
up to 7 dB.

Merging the two main detection approaches into one, in order to
use their respective advantages makes up the next step of this study.
Also, deriving the Neyman-Pearson test for other assumptions (Multi-
dimensional complex Weibull or Gamma distributions, etc.) may seem
very interesting, although difficult.
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As this feasibility approach provides good and promising results, all
of these different polarimetric procedures have to be applied now and
to be retested against many more meaningful measured data sets, in
order to obtain realistic probabilities of false alarm.
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polarimétrie et son application au domaine du radar,” Annales
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Le Toan, and H. Öttl, “K-distribution and polarimetric terrain
radar clutter,” Progress In Electromagnetics Research, PIER 3,
edited by J. A. Kong, Elsevier Science Publishing Co., Inc, 1990.


