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1. Introduction

Printed circuit technology has revolutionalized circuit design. It
has replaced a myriad of interconnecting posts and wires with a sim-
ple planar structure - a metal-laminated dielectric board that houses
electronic elements on one of its sides and connects the same elements
through a printed conducting foil on the other. This “printed circuit”
board has good mechanical and insulating properties, is inexpensive,
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and the printed interconnection pattern is easily reproduced by pho-
tolithography.

Printed circuit technology culminates in integrated circuits. The
dielectric substrate is the semiconductor material itself (e.g., silicon,
GaAs) in which all needed active and passive elements such as transis-
tors, diodes, capacitors and resistors are fabricated.

In the low frequency range ( f < 100 MHz), the interconnecting
foils are very short in terms of the wavelength. However, for f > 100
MHz, and in particular in the microwave frequency range ( f > 300
MHz), it becomes necessary to consider these interconnecting foils as
transmission line sections. The printed circuit structure in which the
bottom side of the laminated board is grounded and the top side is
a signal-carrying printed strip is known as a microstrip. A sample
cross-section and associated parameters are shown in Figure 1. The
term “microstrip” and its use in microwaves was first introduced by
Grieg and Engelmann of ITT laboratories [1], in 1952.

Figure 1. Parameters of a microstrip transmission line.

The main purpose of the microstrip is to be a transmission line.
Due to its inhomogeneous cross-section, it can not support a simple
transverse electromagnetic (TEM) wave. In general, the modes off the
microstrip are hybrid, and contain longitudinal components of both
the electric and the magnetic fields. However, the dielectric substrate
is usually electrically very thin, yielding longitudinal components much
smaller than transverse components, allowing for a quasi-TEM approx-
imation [1]. Figure 2 shows a transversal field distribution on the mi-
crostrip.
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Figure 2. Cross-sectional field distribution of a microstrip transmission

line.

The quasi-TEM approximation equates the transverse pattern of
the electric and the magnetic fields on the microstrip with those of
static case, i.e., at frequency f = 0 Hz, and is also known as a quasi-
static approximation.

Good approximations for the characteristic impedance, phase ve-
locity and propagation constant are obtained from values of capaci-
tance per unit length and inductance per unit length for the static
case [2]. The quasi-static approximation is valid below higher-order
mode cutoff frequencies and the introduction of the radiation.

Many mathematical tools are used in obtaining the quasi-static
parameters of a microstrip line: conformal mapping for the case of a
zero-thickness upper conductor by Schneider [3] and Wheeler [4], fi-
nite difference method by Stinehelfer [5], integral equation (Green’s
function) method by Silvester [6] and Farrar and Adams [7] and the
variational method in Fourier transform domain by Yamashita and
Mittra [8]. The detailed description of these approaches is also given
in [9] by Gupta, Garg and Bahl. The dispersion (change of microstrip
properties with frequency) is not taken into account by the quasi-static
approach. Both characteristic impedance (Z0 ) and effective dielectric
constant ( εre ) of microstrip transmission line are frequency-dependent,
the dependence of the εre being more significant [9]. Dispersion mod-
els consider coupling between the TEM and TM (surface wave) modes
[10], give an empirical relation for phase velocity versus frequency
[11] or consider some waveguide structures similar to the microstrip:
dielectric-loaded ridged waveguide [12] or planar waveguide [9,13].

Another large group of methods, that takes into account the hy-
brid nature of propagating waves, is called full-wave analysis. This is
the first approach that attempts an exact description of the structure.
The real hybrid modes on the microstrip are treated as a superpo-
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sition of their TE and TM components, the main objective being to
find the propagation constants of these modes. Denlinger [14] and Itoh
and Mittra [15] pioneered this approach and it was used extensively
later, in particular, for characterization of discontinuities in microstrips
[16–18]. The full-wave analysis assumes only longitudinal propagation
along the microstrip, thus it is better suited for enclosed microstrip
problems than for the open microstrip problem.

The microstrip is an open structure. Theoretically, the electro-
magnetic field extends to infinity and decays as 1/r , amounting to
radiation. The radiation increases with frequency, thicker substrates
and lower permittivities, and originates mostly at discontinuities [19].
Figure 3 illustrates three dominant types of radiation on microstrip:
directly radiated waves, surface waves and leaky waves [20]. For a long
time, radiation on the microstrip was considered only as a nuisance.
Beside the losses, it introduces unwanted coupling effects on the struc-
ture. However, the radiation is the desired effect in antennas.

Figure 3. Three types of radiated waves on microstrip.

The microstrip antennas were introduced only in the seventies,
some twenty years after the introduction of the microstrip line, and
became a very popular type of antenna, due to their low profile, small
size, light weight, low price and inherent microstrip suitability for large-
scale production.

All the radiation effects are taken into account in a dynamic
analysis of the microstrip. This method uses the theory of wave prop-
agation in layered (stratified) media, first introduced by Sommerfeld
in 1909. He investigated radio wave propagation above a lossy ground.
His approach was extended to arbitrary stratified media much later,
in 1966 by Wait [21,22] and applied to microstrip by Uzunoglu et al.
[23], Mosig and Gardiol [24], Kong [25,26] and Mosig and Sarkar [27].
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In this manuscript, we use the dynamic approach. In section 2, the
formulation of the open microstrip problem is presented. We solve the
Sommerfeld-type integral equation by the method of moments (MoM)
[28,29]. In order to treat arbitrarily shaped microstrip patches, we
consider triangular basis functions, first introduced by Rao [30,31].
We modify the MoM matrix in order to include the case of a match-
terminated port of a microstrip device. We solve for the current dis-
tribution on the structure, and find forward and backward traveling
waves on the feed lines by use of the Matrix Pencil method [32–34].

The Matrix Pencil method decomposes the current along the mi-
crostrip into a sum of complex exponentials which correspond to the
modes propagating along the microstrip line. Section 3 briefly describes
this method.

Section 4 presents an example of an antenna. We compare our
results for Menzel’s leaky-wave antenna [35] with those of Menzel and
Oliner [36,37] and demonstrate how deep insights into this problem
can be obtained from use of our method.

In section 5 we present an extensive experimental verification of
our method. We compare our results for scattering parameters over
a wide frequency range for several two-port and four-port microstrip
devices with experimental measurements, and, when possible, with re-
sults obtained by the commercial software package “Super-Compact”.
All the microstrip devices shown in this section were manufactured
and tested in the microwave laboratory of the Department of Electrical
and Computer Engineering at Syracuse University. We also introduce
an accurate de-embedding technique for elimination of test cable to
microstrip connector contribution, that uses the time-domain gating
option.

Section 6 summarizes the contributions of this work and presents
some conclusions.

2. Formulation of the Problem

Consider an arbitrarily shaped microstrip structure as shown in
Figure 4. In order to develop a compact theoretical model, we make a
set of simplifying assumptions:

• the substate is a non-magnetic ( µ = µ0 ), homogeneous and
isotropic dielectric
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• both substrate and ground plane extend to infinity in ( x, y )
directions

• all conductors are perfect electric conductors (PEC), and have
zero-thickness.

Figure 4. An arbitrarily shaped microstrip excited by im-
pressed field (Ei,Hi).

2.1 Electric field integral equation

The total tangential electric field on the microstrip conductor sur-
face Sp is zero, i.e.,

Etan = ẑ×E = 0 on Sp (1)

If an equivalent surface current Js on the conducting patches is as-
sumed to exist then

ẑ× [L(Js) + Ei] = 0 on Sp (2)

where Ei represents the excitation. (The superscript i stands for “in-
cident” or “impressed” field). The linear operator L(Js) represents
the electric field produced by Js , and can be expressed as

L(Js) =
∫ ∫

Sp

GE|JJsds (3)
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The term GE|J stands for the electric field modified dyadic Green’s
function, that includes the effects of the dielectric layer and the ground
plane through the use of Sommerfeld integrals. Green’s function is
derived by finding the fields due to a point source, i.e., a Hertzian dipole
located in the air-dielectric interface of the microstrip, as presented in
the next section.

The integral equation (2) is later transformed to a matrix equation
by use of Method of Moments (MoM). The solution of the matrix
equation yields the surface current distribution on the microstrip.

2.2 Horizontal current element in microstrip

Consider an x̂ -directed horizontal electric dipole (HED) of mo-
ment Idx located in the air-dielectric interface of a microstrip struc-
ture with infinite transverse directions, as shown in Figure 5. The sub-
strate is a lossy dielectric of thickness h and complex permittivity

ε = ε0εr = ε0ε′r(1− j tan δ). (4)

Here tan δ is the loss tangent and εr is the complex relative
dielectric constant of the medium. The origin of the coordinate system
is chosen to be at the location of the HED. The perfectly conducting
ground plane is located at z = −h .

Figure 5. Horizontal electric dipole (HED) in microstrip.
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We start from Maxwell’s equations that, together with proper
boundary conditions, completely define the fields around the micro-
strip. Assuming time-harmonic fields, with complex time dependence
ejωt , these equations in the source-free region are

∇×E = − jωµ0H (5)
∇×H = jωεE (6)
∇ ·E = 0 (7)
∇ ·H = 0. (8)

The tangential field boundary conditions are given by

ẑ× (E1 −E2) = 0 at z = 0 (9)
ẑ× (H1 −H2) = Js at z = 0 (10)

ẑ×E2 = 0 at z = −h (11)
ẑ×H2 = Jsg at z = −h (12)

where subscripts I and 2 refer to media 1 and 2, as shown in Figure 4.
The normal components of magnetic field H are continuous at both
the z = −h and z = 0 boundaries. We take the effect of the source
element Idx into account in the boundary conditions, since it is lo-
cated at the z = 0 boundary. This surface current is given by Dirac’s
delta-function

Js = x̂δ(r)Idx. (13)

It is convenient to express fields in terms of the magnetic vector
potential A and the scalar potential V:

E = − jωA−∇V (14)

H =
1
µ0
∇×A (15)

The vector potential A is not completely specified by its curl only (15).
Its divergence is conveniently given in terms of scalar potential V by
the Lorentz gauge [38]

∇ ·A = −jωεµ0V. (16)

It is then easy to show that potentials A and V satisfy Helmholtz’s
equations [38]

∇2A + k2A = 0 (17)
∇2V + k2V = 0 (18)
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and that rectangular components of A also satisfy the scalar
Helmholtz equation. k is the medium wave number and k2 = ω2εµ0 .

In order to satisfy boundary conditions (9) – (12), two components
of magnetic vector potential, Ax and Az , are needed. The boundary
conditions (9) – (12) are transformed to

V1 = V2 at z = 0 (19)
A1 = A2 at z = 0 (20)

∂Ax1

∂z
− ∂Ax2

∂z
= − µ0Jx at z = 0 (21)

V2 = 0 at z = −h (22)
Ax2 = 0 at z = −h (23)
∂Az2

∂z
= 0 at z = −h (24)

It is, however, necessary to take into account one more boundary con-
dition, namely Sommerfeld’s radiation condition

lim
r→∞

r

(
∂Ψ
∂r

+ jkΨ
)

= 0 (25)

where Ψ is any scalar solution to Helmholtz’s equation. The physical
meaning of this condition is that all solutions to the scalar Helmholtz
equation represent waves traveling away from the source and decreasing
in amplitude with the distance.

Since all boundary conditions appear for z = constant, it is ap-
propriate to choose the cylindrical coordinate system for the microstrip
problem [38,39]. In this system, Helmholtz’s equation can be solved
through separation of variables. The Laplacian in equation (18) has
to be written in cylindrical coordinates, yielding the scalar Helmholtz
equation in cylindrical coordinates

1
ρ

∂

∂ρ

(
ρ
∂Ψ
∂ρ

)
+

1
ρ2
∂2Ψ
∂φ2

+
∂2Ψ
∂z2

+ k2Ψ = 0. (26)

A solution has the form

Ψ(ρ, φ, z) =
∞∑
n=0

H(2)
n (kρρ)(Ane

jkzz +Bne
−jkzz)×

(Cn sin(nφ) +Dn cos(nφ))

(27)
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where H(2)
n is the nth order Hankel function of the second kind that

also satisfies the condition (25). The constants An, Bn, Cn and Dn are
to be determined from the other boundary conditions, and the ρ and
z -directed complex “propagation constants” kρ and kz are related by

k2
ρ + k2

z = k2 = ω2εµ0. (28)

The general solution is the integration of Ψ over either spectral vari-
able kρ or kz . Taking into account the nature of Ψ , the integration
over kρ leads to Hankel transforms and is better suited for this axi-
ally symmetrical problem than integration over kz that yields Fourier
Transforms [39]. Therefore, the general solution for, say Az , is given
by

Az =
∫
Ckρ

F (kρ)Ψ(kρ, kz)dkρ (29)

where Ckρ is the integration path in complex kρ = λ + jν plane,
[39,27,40]. F (kρ) is a function that remains to be determined from
the boundary conditions.

Consider the x -component of the magnetic vector potential in
medium one, Ax1 . Due to the radiation condition and the circular
symmetry of the problem, constants An = Bn = Cn = Dn = 0 for
n ≥ 1 ; A0 = C0 = 0, B0 = D0 = 1 , then

Ax1 =
∫
kρ

Fx(kρ)H
(2)
0 (kρρ)e−u1zdkρ (30)

where
u1 = jkz1 = (k2

ρ − k2
0)

1/2 (31)

and k2
0 = ω2ε0µ0 is the wave number in free space. Similarly, for

medium two [39]

Ax2 =
∫
kρ

Fx(kρ)H
(2)
0 (kρρ)

sinhu2(z + h)
sinh(u2h)

dkρ (32)

where
u2 = jkz2 = (k2

ρ − εrk2
0)

1/2. (33)

In the cylindrical coordinate system, the expression (13) for HED sur-
face current distribution changes into

Js = x̂
δ(ρ)
2πρ

Idx. (34)
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Then function Fkρ is determined from the boundary condition on the
normal derivative on Ax with the equation (34) substituted into (21)(

∂Ax2

∂z
− ∂Ax1

∂z

)
z=0

= µ0
δ(ρ)
2πρ

Idx. (35)

Taking the HED moment Idx = 1 , the expressions for x -components
of magnetic vector potential in media one and two are [39]

{
Ax1

Ax2

}
=
µ0

4π

∫
kρ

H
(2)
0 (kρρ)

kρ
DTE

{
e−u1z

sinhu2(z+h)
sinh(u2h)

}
dkρ (36)

with
DTE = u1 + u2 coth(u2h). (37)

Boundary condition for z -directed component of magnetic vector po-
tential at z = 0 is obtained from the relation (19), i.e., continuity of
V across z = 0 . This relation is written in terms of A by applying
the Lorentz gauge

1
ε0

∂Az1

∂z
− 1
εrε0

∂Az2

∂z
= − cosφ

(
1
ε0
− 1
εrε0

)
∂Ax1

∂ρ
. (38)

This condition requires Az1, Az2 to have cosφ dependence. The final
expression for z components of the magnetic vector potential A is
[39] {

Az1

Az2

}
=− µ0

4π
(εr − 1) cosφ×

∫
kρ

H
(2)
1 (kρρ)

k2
ρ

DTEDTM

{
e−u1z

coshu2(z+h)
cosh(u2h)

}
dkρ

(39)

with
DTM = εru1 + u2 tanh(u2h). (40)

Application of the Lorentz gauge (16) yields the expressions for scalar
potentials V1, V2

{
V1

V2

}
= − cosφ

4πjωε0

∫
kρ

H
(2)
1 (kρρ)

k2
ρN

DTEDTM

{
e−u1z

sinhu2(z+h)
sinh(u2h)

}
dkρ (41)
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with
N = u1 + u2 tanh(u2h). (42)

Note that Az vanishes for the case of εr = 1 , and Ax is the same
as for the case of HED above the ground plane. This completes the
derivation of the potentials due to an x -directed HED. For the case of
a y -directed HED, the derivation for potentials is the same, with y re-
placing x everywhere. Instead of φ we deal with (φ−π/2) , therefore
cosφ is replaced by sinφ . (Any current on the z = 0 microstrip sur-
face Sp can be decomposed into its x - and y -directed components).

Once the potentials are known, the electric and magnetic fields
are easily obtained by (14), (15).

2.3 Utilization of triangular basis functions

In order to solve for the surface current density, Js , the method
of moments (MoM) [28] is applied. The triangular patches developed
by Rao [30,31] are considered. The surface is triangulated, i.e., defined
by an appropriate set of faces, edges, vertices and boundary edges.
The salient features of triangular basis functions are summarized here
[29]. Associated with each edge are two triangles defined by T+

n and
T−n . The points on the triangle T+

n are defined by the position vector
ρ+n defined with respect to the free vertex of T+

n as shown in Figure
6. Similar remarks apply to the position vector ρ−n except that it is
directed towards the free vertex of T−n . The plus or minus designation
of the triangles are determined by the choice of a positive current
reference direction for the nth edge, which is assumed to be from T+

n

to T−n . The vector basis functions, shown approximately in Figure 7,
associated with the nth edge are

fn(r) =




�n
2A+

n
ρ+n ; r in T+

n

�n
2A−n

ρ−n ; r in T−n
0; otherwise

(43)

where ,n is the length of the edge, and A±n is the area of the triangle
T±n . For this basis function, the current has no component normal
to the boundary and hence no line charges exist along the boundary.
The component of the current normal to the nth edge is constant and
continuous across the edge.
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Figure 6. Global versus local coordinates associated with an edge in

triangular patching.

Figure 7. Vector basis function associated with an edge.

The surface divergence of the current basis function, which is
proportional to the surface density associated with the basis element,
is

∇s · fn(r) =




�n
A+
n

; r in T+
n

�n
A−n

; r in T−n
0; otherwise

(44)

The charge density is thus constant in each triangle, and the total
charge associated with the triangle pair T+

n and T−n is zero.
The basis function fn is associated with each non-boundary edge

of the triangulated structure. The current on the conducting patch is
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approximated in terms of the fn as

Js �
N∑
n=1

Infn(r) =
N∑
n=1

In[x̂fnx(r) + ŷfny(r)] (45)

where N is the number of nonboundary edges. In this expansion the
functions fnx and fny are the components of the basis functions in the
x and y directions. Due to their association with each non-boundary
edge, up to three non-zero basis functions may exist within each tri-
angular face. At the edge, however, only the basis function associated
with that edge has a component of current normal to the edge. Fur-
thermore, since the normal component of fn at the nth edge is unity,
each coefficient In may be interpreted as the normal component of the
current density flowing past the nth edge.

To solve the integro-differential equation with the triangular basis
functions, one has

L(Js)tan = −Ei
tan = 0 (46)

L(Js)tan =
jωµ0In

4π

N∑
n=1

{
x̂

∫
T±n

fnx(r′)Πxxdr
′ + ŷ

∫
T±n

fny(r′)Πyydr
′

+
[
x̂
∂

∂x
+ ŷ

∂

∂y

]
·
∫
T±n

∇′s · f(r′)Πvdr
′
}

(47)

where Πxx,Πyy , and Πv are defined in the previous section and k0
is the free space wave number.

The next step in applying the method of moments is to select the
testing procedure. As testing functions, one chooses the same expan-
sion functions fn for computational simplicity. The usual Hilbert inner
product is used and since the weighting functions are real, it reduces
to the conventional symmetric product. Therefore

Vm = 〈Ei
tan, fm〉 � ,m

[
Ei(rcm+)

ρcm+

2
+ Ei(rcm−)

ρcm−

2

]
(48)

where rcm± is the vector from the origin to the centroid of the triangles
T±m and ρcm± is the vector from the free vertex to the centroid of the
triangle T±m . The inner product is approximated over the triangles T+

m

and T−m by the corresponding values of Ei
tan at the centroids of the
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triangle. A similar procedure is followed for 〈L(J), fm〉 resulting in the
matrix equation

[Zmn][In] = [Vm] (49)

An element of [Zmn] is then given by

[Zmn] = 〈L(Jn), fm〉 =
jωµ0,m

4π

∑
m=m+,m−

∑
n=n+,n−{∫

T±n

x̂fnx(r′n±)Πxx〈r′n± , rcm±〉dr′n± +
∫
T±n

ŷfny(r′n±)Πyy〈r′n± , rcm±〉dr′n±

+
∫
T±n

∇′s · fn(r′n±)Πv〈r′n± , rcm±〉dr′n±
}

(50)

The infinite integrals in the Hertzian potentials Πxx,Πyy , and Πv are
evaluated numerically by the procedure outlined in [39] and [27].

Each element of [Zmn] consists of four terms. The superscripts
of + and − on m and n represent the two triangles associated
with both the expansion and the testing triangle functions, m and n
respectively. Therefore the integration has to be performed carefully on
the proper triangle. So each element of [Zmn] is associated with the
pair of nonboundary edges m and n . However, the domains of the
integrals and locations of the observation points are associated with
the faces attached to these edges.

Once [Zmn] and [Vm] are known, the current amplitudes [In] are
easily obtained by solving complex matrix equation (49) by Gaussian
elimination. However, before solving for current distribution, in order
to find S- parameters of the circuit, we modify the MoM matrix by
enforcing a match-terminating condition on transmission line currents,
as presented in the next section.

2.4 Numerical simulation of a match-termination

Microwave circuits are usually described by scattering parameters,
defined here for a two-port network

b1 =S11a1 + S12a2

b2 =S21a1 + S22a2 (51)
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where ak = I+
k

√
Z0 and bk = −I−k

√
Z0, k = 1, 2 , are incident and

reflected waves, respectively, and Ik = I+
k + I−k .

Figure 8. A two-port, microstrip device-under-test (DUT), inserted be-

tween a feed line and a terminating line. Triangular patching is also

shown.

The simplest way to determine S11 and S21 is to match-
terminate port # 2, i.e., to make a2 = 0 , and to apply the excita-
tion a1 at port # l, as shown in Figure 8, the end result being

S11 =
b1

a1
& S21 =

b2

a1
(52)

The parameters S22 and S12 are obtained similarly by exciting port
# 2 and match-terminating port # 1. This procedure is also used in
vector network measurements. Our goal is to incorporate the same
procedure in our numerical analysis.

The current I(x) along a lossless, 2-directed transmission line is
given by

I(x) = I+0 e
−jβx + I−0 e

+jβx (53)

as a sum of a forward traveling and a backward traveling current wave.
On a match-terminated line, there is no reflection from the load, there-
fore

I(x) = I+0 e
−jβx (54)

where

β =
2π
λg

=
2πf√εreff

c0
,
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f being the frequency, c0 speed of light in the free space, and εreff
effective dielectric constant of the microstrip. We find the εreff from
a frequency-dependent empirical formula given in [41].

Figure 9. Terminating line at port # 2. Three sections across the line

width are used.

If the reference is shifted from zero to a point x on the line, then
complex current at the point: x+ ∆x , shown in Figure 9, becomes

I(x+ ∆x) = Ixe−jβ∆x (55)

Quantities Ik, k = N,N − 3, N − 6, . . . stand for currents across
vertical internal edges that are located ∆x apart, for the case of ter-
minating line in Figure 9 with three sections across. The condition (55)
then becomes

−e−jβ∆xIk−3 + Ik = 0, k = N,N − 1, N − 2, . . . , N − Iterm (56)

where Iterm determines how far from the end of the line the match-
terminating condition is to be enforced (typically 10 ·h away from the
end, h being the substrate thickness).

These relations (56) are in addition to the N equations (49), for
a total of (N + Iterm) equations with N unknowns. This yields an
over-determined linear system of equations that can be handled by a
least-squares approach. However, we chose to eliminate Iterm rows of
the original MoM equation (49) and replace them with Iterm match-
terminating conditions (55), resulting in an N × N linear system.
This newly obtained linear system, i.e., matrix equation, has Iterm
rows with only two non-zero elements. We show the N th one here
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


Z11 . . . Z1N−3 Z1N−2 Z1N−1 Z1N

Z21 . . . Z2N−3 Z2N−2 Z2N−1 Z2N
...
Zk1 . . . ZkN−3 ZkN−2 ZkN−1 ZkN
...
ZN11 . . . ZN−1N−3 ZN−1N−2 ZN−1N−1 ZN−1N

0 . . . −e−jβ∆x 0 0 1







I1
I2
...
Ik
...
IN−1

IN




=




V1

V2
...
Vk
...
VN−1

0




(57)

In order to eliminate these zeroes and reduce the size of the modi-
fied MoM matrix, we replace the variable IN with e−jβ∆xIN−3 , which
results in



Z11 . . . Z1N−3 + e−jβ∆xZ1N Z1N−2 Z1N−1

Z21 . . . Z2N−3 + e−jβ∆xZ2N Z2N−2 Z2N−1
...
Zk1 . . . ZkN−3 + e−jβ∆xZkN ZkN−2 ZkN−1
...
ZN11 . . . ZN−1N−3 + e−jβ∆xZN−1N ZN−1N−2 ZN−1N−1







I1
I2
...
Ik
...
IN−1




=




V1

V2
...
Vk
...
VN−1




(58)

This procedure is repeated Iterm times, yielding an (N − Iterm)
by (N − Iterm) linear system. We use Gaussian elimination to solve
this system for the unknown current coefficients.
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Triangle faces F ′, F ′′, F ′′′ , shown in Figure 9 are added to the end
of the terminating line in order to make boundary edges n, n− 1 and
n − 2 into internal edges. However, we do not take faces F ′, F ′′, F ′′′

into account when evaluating elements of the Z matrix, the end result
being that unknown charges accumulate on these triangles. A simple
physical explanation of our match-termination is that the forward-
traveling current wave on the terminating line carries all the charges
onto the faces F ′, F ′′, F ′′′ , where the charge distribution is singular.
This, however, has no effect on the current distribution in the device-
under-test region; as an observer located in the reference plane # 2,
(Figure 9), sees no reflection from the end of the terminating line,
therefore the terminating line appears to be matched.

Once the current distribution on the microstrip structure is solved
for, we employ the “Matrix Pencil” method to decompose currents on
the feed line into forward and backward traveling waves, I+1 and I−1 .
Similarly, the forward traveling wave I+2 on the terminating line is
determined. Then, in accordance with (52)

S11 = −I
−
1

I+1
& S21 =

I+2
I+1

(59)

Parameters S12 and S22 are determined in a similar fashion, by ex-
citing the port # 2 and match-terminating the port # 1.

Knowing the current distribution on the microstrip, we easily ob-
tain the far-field radiation pattern, as presented in [39,29]. This feature
is of the greatest importance for the case of microstrip patch antennas.

This whole procedure is done for characterization of the structure
at one single frequency only. We have implemented a computer code
that sweeps over a desired range of frequencies, and gives current and
voltage distributions on the structure, S-parameters and the far-field
pattern.

The Matrix Pencil approach is outlined in the next section.

3. Matrix Pencil

In the matrix pencil [32], the objective is to fit a complex function
by a sum of complex exponentials

I(x) ∼=
M∑
i=1

Aie
γix, (60)
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where γi are the complex exponents and Ai are complex amplitudes.
Here M (the number of complex exponentials) is unknown and so are
the complex propagation constants γi and the amplitudes Ai of the
various components. One of the objectives of using the matrix pencil
approach is to also solve for M .

The method has been described in detail in [32] and [33], and has
been demonstrated to be very robust to statistical noise [33].

The complex function that we are interested in decomposing is the
current along the microstrip transmission line. Complex exponentials
then acquire a physical meaning, for they are propagating modes — for-
ward and backward dominant modes, and higher order modes (complex
or leaky waves) along the transmission line. Our numerical method, de-
scribed in the previous section, solves for the current distribution on the
microstrip structure, from which the current along the feed or terminat-
ing transmission line is easily determined. Let us label these equidistant
currents across the line by y0, y1, . . . , yk, . . . , yn−1, yn , starting from
the reference plane, as shown in Figure 10.

Figure 10. Current distribution along the feed/terminating micro-

strip line.

Following generalized pencil-of-function (GPOF) method [32], we
define matrices Y1 and Y2 as

Y1 =



y0 y1 . . . yL−2 yL−1

y1 y2 . . . yL−1 yL
...
yN−L−1 yN−L . . . yN−3 yN−2


 , (61)

and

Y1 =



y1 y2 . . . yL−1 yL
y2 y3 . . . yL yL+1
...
yN−L yN−L+1 . . . yN−2 yN−1


 , (62)
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provided N,L ≤ n .
Then we create matrix pencil Y2 − zY1 that can be represented

as a generalized eigenvalue problem

Y2 − zY1 = Z1A(Z0 − Iλ)Z2 (63)

Namely, when M ≤ L ≤ N − M then the poles zi = eγi∆x, i =
1, . . . ,M are the generalized eigenvalues of the matrix pencil Y2−zY1 .
Also, the rank of matrix pencil is equal to the number of signal poles
M , unless z = zi . Generalized eigenvalues of the matrix pencil, i.e.,
signal poles, are obtained by using singular value decomposition (SVD)
algorithm.

Complex magnitudes, Ai, i = 1, . . . ,M are solved by least squares
from 


y0
y1
...
yN−1


 =




1 1 . . . 1
z1 z2 . . . zM
...
zN−1
1 zN−1

2 . . . zN−1
M






A1

A2
...
AM


 (64)

If the number of poles, M , is not known, it can be estimated
from the singular values

σ1 ≥ σ2 ≥ . . . ≥ σM ≥ . . . ≥ σmin(N−L,L) (65)

since σM+1 = . . . = σmin(N−L,L) = 0 for noiseless data. In case of noisy
data yk , the largest M singular values of Y1, σ1, . . . , σM should be
chosen.

4. Menzel’s leaky-wave antenna

In his 1979 paper [35], Menzel presented a new traveling-wave
antenna in microstrip, fed in its first higher order mode and operated
near the cutoff frequency of that mode. He approximated the edges of
radiating patches by slot antennas and neglected dielectric-air bound-
ary. (The exact characterization of the microstrip had not been done
at that time.) He assumed the existence of the first higher order mode
on the microstrip with a real propagating constant. However, in 1976,
Ermert [42] showed that such a mode could not exist in the given fre-
quency range. The main significance of his antenna was a high gain
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for its short physical length — only 2.23 λ0 . He obtained favorable
agreement between his and experimental results; however, he failed to
explain why this “traveling-wave” antenna radiated so well with its
short length, and why propagation constant of the first higher mode is
real.

In a technical report [37] and in his 1987 paper [36], Oliner shows
that the first higher order mode has complex propagation wavenum-
ber (leaky mode) and that this “traveling-wave” antenna is actually a
leaky-wave antenna, therefore resolving the contradiction between [35]
and [42]. We analyze the Menzel’s antenna by our numerical method
and compare it with Oliner’s theoretical and Menzel’s experimental
results.

The geometry of Menzel’s antenna is shown in Figure 11. It is a
100 mm long, 15 mm wide section of open-ended microstrip line, on
h = 0.794 , εr = 2.32 dielectric substrate, fed unsymmetrically with
a 50 Ω , 2.3 mm wide line. We triangularize the structure and solve
for the current distribution on it. We consider 10 sections across, 60
sections along the antenna, and two sections across, 50 sections along
the feed line. Figure 12 shows the comparison between our results (solid
line for εr = 2.42, circles for εr = 2.32) and experimental results from
Menzel’s paper [35] (dashed line) at an operating frequency of 6.7 GHz.
Our result, obtained for εr = 2.42, coincides with the experimental
one, supposedly measured for substrate of εr = 2.32. The value for εr
of 2.42 is only 4.3% away from prescribed εr = 2.32, therefore within
the 5% tolerance range for the dielectric constant.

Figure 11. Geometry of Menzel’s antenna.
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Figure 12. Normalized far field pattern of Menzel’s antenna at 6.7 GHz:

Menzel’s experimental result (dashed line) versus our results for εr = 2.42
(solid line) and for εr = 2.32 (o o o).

Furthermore, Oliner [37,36], shows that the current along the
Menzel’s antenna at frequency of 6.7 GHz can be described by a sin-
gle complex mode. The normalized real ( β/k0 ) and imaginary part
(α/k0 ) of the propagation wavenumber are given in Table 1, alongside
the Menzel’s and our results. Menzel assumed a real propagation con-
stant, therefore his α/k0 = 0. Oliner arrives at his value for complex
propagation wavenumber through a rigorous Wiener-Hopf approach
[43] and steepest-descent analysis [37]. We obtain our values for prop-
agation wavenumber by decomposing current along one edge of the
antenna into complex exponentials by our Matrix Pencil method. Men-
zel’s, Oliner’s and our value for β/k0 are within 2.5% from each other,
while our value for α/k0 is of the same order as Oliner’s. The relatively
large value of α/k0 (= 0.05) explains why Menzel’s antenna radiates
so well despite its short length (2.23 λ0 ), approximately 65% of in-
coming power is actually radiated. Leaky-wave antennas are typically
designed to radiate at least 90% of the power. Menzel’s antenna would
do so if its length is increased from 100 mm (2.23 λ0 ) to 217 mm (4.85
λ0 ). The main beam-width then reduces from 26◦ to more practical
14◦ [37,36].
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Table 1. Normalized real (β/k0) and imaginary (α/k0) of the propagation

wavenumber for the first higher order mode on Menzel’s antenna.

Another useful property of this antenna is that the position of its
main beam can be swept by a change of the operating frequency, as
demonstrated in Figure 13. Oliner’s results [37] for the normalized far
field pattern of a 217 mm long version of Menzel’s antenna is shown for
frequencies of 6.7 GHz (o o o), 7.5 GHz (x x x) and 8.5 GHz (+ + +)
in comparison with results obtained by our method (solid line). Oliner
uses εr of 2.32, but we consider εr = 2.42. The agreement between
Oliner’s and our results is excellent for frequencies of 7.5 GHz and 8.0
GHz, and very good for f = 6.7 GHz. If we cosider εr = 2.32, then
the far field pattern for all three frequencies rotates for approximately
8◦ counterclockwise, with no other changes.

Figure 13. Normalized far field pattern of of 217 mm long Menzel’s an-

tenna at 6.7 GHz, 7.5 GHz, and 8.0 GHz. Oliner’s results for frequencies

of 6.7 GHz (o o o), 7.5 GHz (x x x) and 8.5 GHz (+ + +) are compared

with results obtained by our method (solid line). Olinear uses εr = 2.32,
while we consider εr = 2.42.
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5. Experimental verification

In this section we compare our numerical results with experi-
ments, and, when available, analysis by “Super-Compact”, a commer-
cial software package. We obtain experimental results on the HP 8510B
vector network analyzer using a microstrip test fixture as sketched in
Figure 14. The HP 8510B is calibrated using a set of precise coax-
ial standards for short, open, matched load and sliding load, in the
full two-port procedure. The calibration effectively establishes the an-
alyzer’s measurement reference planes at the ends of the test cables. If
we measure scattering (S) parameters of our microstrip device mounted
on the test fixture, we obtain characteristics of microstrip device em-
bedded between connectors A and B (Figure 15). It is our goal to
extract

SDUT =
[
S11 S12

S21 S22

]
(66)

the scattering parameters matrix of the device under test (DUT) only.
In order to do so, we perform a de-embedding procedure, in which the
effects of the connectors are determined and accounted for.

Figure 14. A microstrip test fixture.
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Figure 15. Signal flow-chart of the test fixture with microstrip device

under test.

5.1 Microstrip device under test de-embedding

Our approach is based on a broad-band device de-embedding
method using the automatic network analyzer time-domain option
as described by Gronau and Wolff [44, 45]. The signal flow chart
of the (DUT) is characterized by S11, S21, S12 ,and S22 . Parameters
Aij , Bij , i, j = 1, 2 , represent connectors A and B respectively (Figure
15). To assemble our test fixture, we use “M/A COM Omni Spec-
tra” coaxial connectors, serial number 2052-5416-00. The connectors
cost less than $30.00 each — very affordable if compared to “Inter-
Continental Microwave” microstrip test fixture that costs $5,000.00
and does not provide as good of a connection for our purposes, at
least with devices manufactured on εr = 2.33, h = 0.508 mm di-
electric substrate. Connectors are reciprocal passive devices, therefore
A21 = A12 = A and B21 = B12 = B . Based on identical physical (and
electrical) length of connectors A and B, we make another simplifying
assumption, A = B . Furthermore, from the physical characteristics
of the “M/A COM Omni Spectra” connectors, namely physical length
lconn ≈ 9.75 mm and dielectric core εrconn = 2.25 (polyethylene), it
follows that

ϕA = � A ≈ e−j2πf
1
c0

√
εrconn lconn , (67)

where f is the operating frequency and c0 is the speed of light in free
space.

In order to determine |A|, A11, A22, B11 and B22 , a simple device
of known characteristics is inserted in the test fixture and measured.
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We use a section of microstrip transmission line of known length l1
(Figure 16).

Figure 16. Signal flow-chart of the text fixture with a transmission line

of length l1.

Using the impulse band-pass time-domain option on the HP
8510B, we obtain the reflection time-domain response on test port #
1 of the test fixture with a line of length l1 as shown in Figure 17. Re-
flections from connectors A and B are clearly separated in time. (The
test line has to be long enough so that there is no interaction between
connectors in the time-domain). On the HP 8510B, the time-domain
response of the DUT is obtained by applying an inverse Fourier trans-
form to the frequency-domain measurements [46]. The time-domain
resolution is directly proportional to the measurement frequency span
( fstop - fstart ). A wider frequency span provides for better resolution
in time-domain. Here, we chose the frequency range to be 0.1 - 20.1
GHz. A choice of l1 = 101.6 mm proves to be sufficiently long.

Figure 17. Impulse time-domain response of a 4-inch microstrip line with

connectors; εr = 2.33, substrate thickness h=0.508 mm, Z0 = 50Ω.
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Figure 18. Gated impulse time-domain response of a 4-inch microstrip

line with connectors; reflection from the connector B removed.

In the time-domain response, it is possible to remove the effects
of unwanted mismatches, or to isolate the response of an individual
mismatch, by using the gating feature. Figure 18 shows the isolated
response of the connector A only, obtained by application of a “gate”
centered on connector A response, with a span of 500 ps. For a given
measurement frequency span, there is a prescribed minimum gate span
that has to be used in order to get meaningful results [46]. For a “wide”
gate shape, minimum gate span equals 8.0/ fspan = 400 ps given fspan
= 20 GHz. However, there is also an upper limit on the gate span - in
order to be able to effectively separate effects of individual connector,
it has to be smaller than the time distance between connectors A and
B. A gate span of 500 ps satisfies both of these conditions. The gated
time-domain response of the connector A is then transformed back to
the frequency-domain, yielding A11 directly. Figure 19 shows compar-
ison of S11 response of the test fixture with 101.6 mm long line, and
S11 response from connector A only. Similar procedure yields B11 , by
centering the gate on connector B in S22 time-domain response.

Figure 19. Parameters S11 of the test fixture with a line of length

l1=101.6 mm compared to S11 of the connector A.
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Figure 20. Parameter S21 of the test fixture with a line of length l1=101.6

mm compared to gated direct-path of S21.

Next, the gate is placed on connector B in S11 time-domain re-
sponse. A Fourier transform back to frequency domain yields

C1 = A2B22e
−2γl1 (68)

where γ = α+ jβ is the complex propagation constant for the quasi-
TEM mode on microstrip line.

In a similar fashion, gating connector A in the S22 response pro-
duces

C2 = A2A22e
−2γl1 (69)

The transmission coefficient, SM21 , from port # 1 to port # 2 is
related to the connector and line parameters by

SM21 =
A2e−γl1

1−A22B22e−2γl1
. (70)

The denominator of the above expression is removed by setting the gate
on the direct path in time-domain response of SM21 and transforming
it back to the frequency domain as shown in Figure 20. When applied
to the transmission measurement, the gating procedure removes the
response of the multiple transmission paths between connectors A and
B. The resulting equation is

C3 = A2e−γl1 . (71)

So far, coefficients A11, B11 and � A were obtained directly. The re-
maining unknowns are A22, B22, |A| , and γ . Therefore, at least one
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more standard is needed: we choose another section of transmission
line of length l2 = l1/2 . Gating the direct path in SM21 yields

C4 = A2e−γl2 = A2e−
1
2γl1 . (72)

Let
K1 = e−γl1 (73)

Then, from (71), (72)

K1 =
(
C3

C4

) 1
2

(74)

A =

√∣∣∣∣C3

K1

∣∣∣∣ejϕA (75)

Substitution of A into equations (68) and (69) yields

A22 =
C2

A2K2
1

(76)

B22 =
C1

A2K2
1

. (77)

The scattering matrices SA and SB representing connectors A
and B are defined by

SA =
[
A11 A
A A22

]
and SB =

[
B22 A
A B11

]
. (78)

Since connector A, the DUT, and connector B are in a cascade, it is
convenient to transform the S parameters to the wave-transmission (T)
parameters, by using transform

T =
[ 1

S21
−S22

S21
S11
S21

S12S21−S11S22
S21

]
and S =

[ T21
T11

T11T22−T21T12
T11

1
T11

−T12
T11

]
.

(79)
Let TDUT corresponds to SDUT , TA to SA and TB to SB . Since

T = TATDUTTB,=⇒ TDUT = T−1
A TT−1

B . (80)

Finally, TDUT yields SDUT , the scattering parameters of the de-
embedded device under test. Figure 21 shows the difference between
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“raw” measured and de-embedded reflection characteristics of our 4-
inch section of microstrip transmission line.

Figure 21 also shows that the de-embedding reduces reflection
measurement error by approximately 20 dB, or by an order of mag-
nitude across the frequency span. This improvement is particularly
significant in reflection measurements of low-reflection devices. The
residual error is primarily due to less-than-excellent repeatability of
connector to microstrip line connections. Also, this de-embedding pro-
cedure assumes a good isolation between connectors, an assumption
that is not always true.

Figure 21. Magnitude of S11 (logarithmic scale) of l=101.6 mm line with

connectors, compared to de-embedded line.

5.2 Interdigital capacitor

An interdigital capacitor is treated here as a series two-port el-
ement. Its dimensions are shown in Figure 22. since Super-Compact
does not have capability to analyze this particular capacitor, Figures
23 – 26 show the comparison between our numerical results and mea-
surements only. These compare favorably, in particular for the resonant
behavior at frequency f = 6.1 GHz.

This type of capacitor is used in microwave integrated circuits
to realize small capacitances, provided that its overall dimensions are
much smaller than the wavelength λg . In order to determine the appli-
cable frequency range for this device, we shift S-parameters reference
planes 8 mm towards the capacitor, in order to “zoom” in on it. The
computed parameter S′11 is shown in Figure 27 in the Smith-chart for-
mat. Since the bottom-half of the impedance Smith-chart is capacitive,
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it follows that this capacitor acts as an inductor beyond f ≈ 5.65 GHz!
To find an approximate value of equivalent capacitance C, the imagi-
nary part of input impedance is obtained from S11 , i.e.,

�{Zin} ≈
−j

2πfC
= �

{
Z0

1 + S11

1− S11

}
.

At frequency f = 1.6 GHz, Zin = (2.2 − j100)Ω , yielding C =
1/2πf�{Zin} ≈ 1 pF. Similarly, at f = 3 GHz, C ≈ 1.3 pF. The
resonance at f = 6.1 GHz occurs when the capacitor acts as a bank
of quarter-wavelength ( λg/4 ) couplers. Indeed, at f = 6.1 GHz, the
wavelength on the microstrip line λg = λ0/

√
εreff ≈ 36 mm. The total

length of the capacitor is approximately 9mm, which is exactly λg/4
at f = 6.1 GHz. Therefore, this capacitor has practical use in the
frequency range up to f ≈ 2.5 GHz only.

Figure 22. Series interdigital capacitor; all dimensions in millimeters.

Figure 23. Magnitude of S11 of series interdigital capacitor.
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Figure 24. Phase of S11 of series interdigital capacitor.

Figure 25. Magnitude of S21 of series interdigital capacitor.

Figure 26. Phase of S21 of series interdigital capacitor.
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Figure 27. S11 of series interdigital capacitor; reference planes shifted

inwards by 8 mm.

5.3 Single loop inductor

Figure 28 shows layout of a single-loop inductor, its scattering pa-
rameters are presented in Figures 29–32. The solid-line trace represents
our numerical results, the dashed-line represents data measured on the
HP 8510B. Overall, there is a favorable agreement between numeri-
cal and experimental results. Super-Compact does not have a model
for this device. Again, as in the case of a capacitor, this inductor can
be used in microwave integrated circuits, provided that its overall di-
mensions are much smaller than wavelength λg . Figure 33 shows the
computed scattering parameter S′11 in Smith-chart format, reference
planes being shifted 10 mm towards the inductor. (This reference plane
shift is introduced in order to capture characteristics of the inductive
loop only). The inductor behaves as an inductor up to f ≈ 2 GHz,
while it is predominantly capacitive in the 2 – 4.4 GHz frequency range.
At f ≈ 4.4 GHz, the capacitive effect is canceled by the inductive ef-
fect, which explains the resonant behavior at this frequency in Figure
30. From

L =
�{Zin}

2πf
,
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it follows that L ≈ 9.6 nH, at f = 1.5 GHz. The physical length of
the inductive loop is ≈ 24 mm, which corresponds to ≈ λ0/8 at f
= 1.5 GHz. Hence, this device should not be intended for use as an
inductor beyond a frequency of 1.5 GHz.

Figure 28. Single loop inductor; all dimensions in millimeters.

Figure 29. Magnitude of S11 of series single loop inductor.
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Figure 30. Phase of S11 of series single loop inductor.

Figure 31. Magnitude of S21 of series single loop inductor.

Figure 32. Phase of S21 of series single loop inductor.
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Figure 33. S′11 of series single loop inductor in Smith-chart format; ref-

erence planes shifted inwards by 10 mm.

Figure 34. Two-section, coupled-line band-pass filter. Feed-line charac-

teristic impedance is 50 Ω.

5.4 Parallel-coupled-line band-pass filter

Consider a two-section coupled-line filter, its layout shown in Fig-
ure 34. On parallel coupled lines, critical coupling occurs when the
length of the coupler section becomes quarter-wavelength long. We
obtain the dimensions shown in Figure 34 from the Super-Compact
optimization routine, for a center frequency of 6 GHz and maximum
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|S21| in the pass-band. Figures 35–38 present a comparison of Super-
Compact (dotted line), experimental (dashed line) and our numerical
results (solid line) for magnitude and phase of S11 and S21 . There is
a good agreement among three traces, over the frequency range of 3 –
9 GHz.

Figure 35. Magnitude of S11 of two-section, coupled-line, band-pass filter.

Figure 36. Phase of S11 of two-section, coupled-line, band-pass filter.

Figure 37. Magnitude of S21 of two-section, coupled-line, band-pass filter.
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Figure 38. Phase of S21 of two-section, coupled-line, band-pass filter.

5.5 Two-port resonant structures

Our method can analyze arbitrarily shaped microstrip structures
that consist of one or a multiple number of conducting patches. For
the case of a multiple-patch structure, coupling among patches often
exhibits resonant behavior. This is illustrated in the following exam-
ples.

5.5.1 Gap-coupled, half-wave filter

It is well known [47] that an open-circuited transmission-line sec-
tion behaves as parallel resonant circuit in the frequency range where
it is one-half wavelength long, or a multiple of half-wavelength long.
Figure 39 shows such a section that is coupled to the input and output
microstrip line, by means of the capacitance of the gap. Dimensions
of the resonator are chosen to be one-half wavelength long at f = 4
GHz. Figures 40–43 show the S-parameters of this device. The solid-
line trace represents results obtained by our numerical procedure, the
dashed-line trace is measured on HP 8510B, dotted-line trace is ob-
tained from Super-Compact model. The agreement among these three
approaches is excellent.
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Figure 39. One-section, gap-coupled, half-wave filter. Feed-line charac-

teristic impedance is 50 Ω.

Figure 40. Magnitude of S11 of one-section, gap-coupled, half-wave filter.

Figure 41. Phase of S11 of one-section, gap-coupled, half-wave filter.
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Figure 42. Magnitude of S21 of one-section, gap-coupled, half-wave filter.

Figure 43. Phase of S21 of one-section, gap-coupled, half-wave filter.

5.5.2 Gap-coupled ring resonator disturbed by a notch

In case of the ring resonator, two degenerate modes occur at the
resonance frequency. If the ring resonator is excited by symmetrical
coupling lines, only one mode will be excited. Due to the orthogonal-
ity of degenerate modes, there will be no coupling between the two.
However, if ring is coupled asymmetrically, or if a discontinuity is in-
troduced in the ring, e.g., a notch, as illustrated in Figure 44, both
modes are excited. What follows is the splitting of the resonance fre-
quency [48]. As seen in Figures 45 and 46, our method clearly locates
all cases of split resonance that are captured in measurements. (The
vertical scale is linear).
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Figure 44. Gap-coupled ring resonator disturbed by a notch. Feed-line

characterisc impedance is 50 Ω.

Figure 45. Magnitude of S11 of gap-coupled ring resonator disturbed by

a notch.

Figure 46. Magnitude of S21 of gap-coupled ring resonator disturbed by

a notch.
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5.6 Hybrid ring coupler (rat-race)

Since our method treats arbitrarily-shaped microstrip circuits
with any number of ports, we also include a four-port example, a 180◦

hybrid ring coupler (rat-race).
Consider the hybrid ring shown in Figure 47. It acts as a 180◦

3-dB coupler, since two outputs (ports 2 and 4) are in phase if port 3
is the input port, and 180◦ out of phase if port 1 is the input port.
The hybrid ring coupler, or rat-race, is a narrow-band device. At the
frequency of interest, ports 1 and 2, 2 and 3, and 3 and 4 are quarter-
wavelength apart, while ports 1 and 4 separation is 3/4 wavelength.
Wave incident in port 3 splits equally into two waves on the ring travel-
ing in opposite directions. They arrive in-phase to ports 2 and 4, while
canceling each other at port 1. That decouples ports 1 and 3. The wave
incident in port 1 also splits equally between ports 2 and 4, but the
signals at ports 2 and 4 due to an excitation at port 1, are 180◦ out
of phase, thus forming a 180◦ hybrid coupler. Ports 2 and 4 are also
uncoupled, which follows from symmetry with respect to ports 1 and
3. The dimensions of the ring in Figure 47 are picked for a frequency
of operation of 8.0 GHz, therefore we carry our analysis in the 4 – 12
GHZ frequency range. Figures 48 to 50 show comparison between the
numerical, Super-Compact, and experimental results for S11, S21 and
S31 parameters. From Figures 48 and 50, it follows that the center
frequency is actually 7.8 GHz. As expected, ports 1 and 3 are uncou-
pled at this frequency (Figure 50), while ports 2 (as shown in Figure
49) and 4 are approximately 3 dB down with respect to port 1. From
these figures, it follows that this structure actually behaves as a hybrid
coupler in frequency range 7–9 GHz, which makes for ( 9 − 7 )/8 =
25% relative bandwidth. We obtain experimental results (dashed line)
by use of two-port de-embedding procedure described in section 5.1.
However, the other two ports, that are terminated into matched loads,
do reflect approximately − 20 dB (1/10) of incoming signal, due to
imperfections in the microstrip to coax connectors, versus − 40 dB or
less of desired reflected level. The main consequence is that the mea-
sured traces for four-port examples have an error term built-in, due to
the two-port de-embedding procedure used on four-port networks.
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Figure 47. Hybrid ring coupler (rat-race). Feed-line characteristic

impedance is 50 Ω.

Figure 48. Magnitude of S11 of hybrid ring.

Figure 49. Magnitude of S21 of hybrid ring.
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Figure 50. Magnitude of S31 of hybrid ring.

6. Conclusion

A dynamic approach for analysis of arbitrarily shaped, open mi-
crostrip structures was presented. With this, all types of radiation ex-
isting on the microstrip were taken into account. Use of the triangular
basis functions in conjunction with the method of moments allowed
for characterization of complex, arbitrarily shaped microstrip patches,
over a broad range of frequencies. The Matrix Pencil method was used
for decomposition of current along the microstrip lines into various
modes, in addition to the numerical match-terminating condition, to
solve for scattering parameters of the device under test.

We developed a powerful FORTRAN computer code, running on
Sun Sparcstations and on IBM RISC 6000, and tested our method on
a range of two-port and four-port microstrip devices. Our results were
extensively compared to experimental results and other available data,
and, for majority of examples, an overall very good agreement was
found between our results and other data. Novel contributions of this
work to the area of microstrip analysis and measurements are:

• application of the Matrix Pencil method to solving for the
modes along the microstrip line

• numerical simulation of a match-terminated line by modifi-
cations to the method of moments matrix

• implementation of an accurate de-embedding technique to
network analyzer measurements

• unique combination of theoretical, numerical and experimen-
tal work presented here.
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