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1. INTRODUCTION

A large volume of literature exists on the spherical near field to far
field transformation [1-3]. In this paper, the approach similar to [4]
is taken to expand the fields in terms of TM and TE modes to r as
described by [5—7]. The final expressions of this paper are somewhat
different and simpler than the expressions of [1,4] and [6].

2. SPHERICAL NEAR-FIELD TO FAR-FIELD TRANS-
FORMATION

Consider a sphere of radius a over which the tangential components
of the electric field, Ey and E,, are known. So

E@(av 0, (Z)) = fl(ea ¢) (1)
E¢(a7 0, ¢) = f2(9a ¢ (2)

From this near field given in equations (1) and (2) we determine the
far field. The complete expression for the field external to the sphere
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is given by [4, p. 269] using the following vector potentials

A, = jwe Z Z rh® (kr) P (cos 0) [cmn oS M + By sinme] (3)

n=0m=0

F. = jwu Z Z rh) (kr) P (cos 0) [Ymn €08 M + Gy sinme]  (4)

n=0m=0

where hg)(kr) is the spherical Bessel function of the second kind of
order n and argument kr, P*(cosf) is the associated Legendre func-
tion of the first kind of argument cos€, and @mn, Bmn, Ymn, Omn
are the four constants to be determined from the boundary value prob-
lem specified by (1) and (2). Here, k is the free space wave number
and € and p are the permittivity and permeability of free space. The
0 and ¢ field components are then given by [4] as

-1 0F, | 1 24,
rsing d¢ jwer orof
= Z Z Jwﬂmh )Pm(cos O)[Yimn SIn MD — Oy, cOSMP]

sin 0

Ey =

n=0m=0

+ Z Z ror {rh@) )] w [Qnn cOS MO + B Sin M)

(5)
10F, 1 9% A,

r 00 + jwersinf 0rdg¢

- Z Z jw,uh,(f) (kr) W [Ymn COS MO + O, SIN MA]

Ey =

n=0 m=0

-y 10 [m@(m)} W[am Sin Mm@ — B cos me)
(6)

1 aA,,Jr 1 9%F,
~ rsin® 0o  jwur 0rod

= Z Z —jwph{? ﬂ [ SN MG — B cOS M)

sin @

n=0 m=0

+ i zn: 19 R AP(C0S0) s + Sy sinimdl

df
(7)
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g, o104 1 O*F,
) Jjwprsin§ Orde

=503 @ () O o cosmg -+ By sinmes

n=0m=0 df
_ Z Z 12 [rh%Q)(kr)} M[’Yﬂ”m sin me@ — dppn COS m¢]
e or sin @

(8)

By replacing the field components Ey and Ej in equations (1) and

(2) with their expressions described by equations (5) and (6), respec-

tively, and then using orthogonality relationships, the coefficients s, ,

Bmn s Ymn and dp, can be determined. Therefore, from equations (1)
and (5) we have

hH(0,¢) =
o\ jw,umh,(zz) (ka)
Z ——————— P/ (cos 8) [Ymn SinMd — Oy cOs M)
=0 m=0 kasin 0
+ HZ:; Z:Q %% [rh2) (ha)] W [t €08 b + B S0 M)

9)

and from equations (2) and (6) we have

f2 (97 ¢) =
oo n Pm
Z Z jwumhf)(k‘a)w [Ymn COS MO + Oy, SIN MP]
n=0m=0
- Z Z Lo [rhg) (k:a)} P"(C,M [ SIN MO — B cOS M)
nzomzorﬁr sin 6
(10)
From equations (9) and (10) we have,
=<~ Dm m )
f1(0,¢) = Z Z - QP” (cos 0) [Ymn SIn M@ — pyy cOS QY]
+ Z Z %%gos) [Qmn COSMP + By sSIn M)
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and
f2(97 <f>) = Z Z Dd9 Pn (COS 9) ['Ymn Ccos m¢ + Oy Sin m¢]
n=0m=0
. . (12)
-y Z NV By (cos B)m [ SINMP — B cOs M)
= a sin 0
where
D = jwuh?) (ka) (13)
and
N = kah?’ (ka) + b (ka) (14)

At this point we attempt to use orthogonality to determine the un-
known coefficients. From (11) we have

2T
/ / £1(6 (COS 9) <in 6 cosm’ dode

P
—ZZDm/ P (cos0) d d(gcos@)dg

n=0m=0

2m
/ cos M’ @[ Ymn Sin M — Sy, cos meldg (15)
0

N de 0089 dP™ (cosf) .
+ZZ / g sin6do

n=0m=0

2w
/ cos M’ ¢[Qmn cOS MG + By sin me)de
0

Since )
i 0 form#m'
cos m'¢ cosmepdep = { o _ (16)
/0 st form = m’
where
1 form=0
6m_{2 for m #£0 (17)
and

2w
/ cosm/¢sinmedp =0 for all m and m’ (18)
0
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Equation (15) may be written as

2m
/ / f1(0 (COS %) sin 6 cos m' pdfde

= Z 2n D’ / Smin) (cosf) (19)

2N dP "(cos @) APV (cos b)) .
+ Z ea / Gmm') " ag g Smod?

from equation (12) we have

/ZW/ m' fo(0 (cos 0) sinm’ ¢pdfde
" (cos )
= Dm/ 7Pm (cos 0)db
ZZ / i

27
/ sin m/ ¢[Ymn cos M@ + Sy sin me|de (20)
0

2 m
_Zz_m/ / (cos6) P (cos0)m
sin @
n=0m=0

[ SIN TG — By cos m) sinm’ pdOde

where D and N are described by equations (13) and (14), respectively.
By using equation (18) and

2 0 form#m
sinm/¢ sin modp = { o = (21)

/0 & for m =m/

we can rewrite equation (20) as
2m
/ / m’ fo(0 (cos 0) sin m’ pdode
0

_Z 2Dm'm / 5, ndP cos ) ' (cos 0)d6 (22)

—Zﬂmaﬂ/ amn P} (cos&)
0

Em/a
n=0 "

P™ (cos )

sin 0

do
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Now by subtracting equation (22) from (19) we have

—2D7m/ > / dP™ (cos ) / dP" (cos6)
LI S pm G \CBY) | pm 4in \COSY)
- ) ,;0[ " (cos B) 70 + P’V (cosf) 7 de
2N T dPT (cos0) P (cos 6)
+ Emaamn/o sin @ 70 70
m'2
+ =P "(cos 0) P (cos 0) | df
sin
2r  pm m’
:/ / £1(0,0) 2 (€0) g cosmes
o Jo de
—mfa(0, ¢) P (cos 0) sin mcj)] dode (23)

using the following orthogonality relationships [6]

™ [dP™ (cosf) dPT™ (cos®)  m' / ) )
n n Py P
/0 [ 20 20 + Zgin (cos@)P" (cos @) | sin 6db
{ 0 for n #£ n’
= 2n(n+ 1)(n +m)! _/ (24)
@ntD(n_m) orn=n
and
/ P™ (cos H)M + P (cos H)M dd =0 (25)
0 db do
equation (23) can be rewritten as
ﬂ 2n(n +1)(n+m)!
(2n+1)(n —m)!
27 Pm
/ / [fl d (COS %) sin f cos m¢ (26)

—mfa(6, ¢) P (cos 6) sin quS] dode
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Therefore,
dP,"(cosf)

2
dG sin 6 cos mao
Gmn =N / / { —mf2 (0, 9) P (cos 0) sinmao dbdg (27)

where
_ 1 2n+D)(n—m)! em

m2n(n+1)(n+m)! 2

(28)

To determine f,,, we can rewrite equations (11) and (12) in the fol-
lowing ways:

2
/ / £1(60 (COS 9) cinm'ésin 0d0d
P
—ZZDm/ P (cos0) d (cos@)de
o
n=0m=0
2m
/ sin m’ @[ Ymn sin me — 8, cos ma|de (29)
o
—Z Z N/ de cosH) dpPm (cosﬁ)de
n=0m=0 df

2w
/ sin m’ ¢[amn cos M + Ly sin me|de
0
and

2w ™
/ / f2(0, gb)m'Pfﬁl (cos 0) cos m'pdOdep
0

2Dm m
/%’mdﬂpn (cos 0) P (cos 0)d6 (30)

2
—i—ZzNTZ /0 B P (cos ) P (cos 0)do

€

and via a similar approach the unknown coefficient (,,, is determined
as

dP)"(cos )

2m :
_ za d9 sinme sin 6
fn = / |: —i—mfg , ®)Pm(cos 0) cosme ] dbdg (31)
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Similarly v, and d,,, may be determined:

z (¥ [T mf1(0, )P} (cos ) sinme
! D / / +f2(0, ¢)W cos mesin 6 ¢ (32)

5 [27 [ —mf1(0, ¢)Pm(cos ) cosme

sin me sin 0
We now focus our attention to determlmng the far field components of
E@ and E¢

Ey = —ZoHy (34)
Eg = ZyHy (35)

where Zj is the characteristic impedance of free space. The electric
fields are related to the magnetic fields Hp and Hy through Zj.
By taking the large argument approximations of the spherical Hankel
functions, we obtain

‘n+1_—jkr
W2 (kr) ~ T €7 for > A (36)
kr
From (36) we obtain

‘n+1

L [ 0] = L (ke (37)

rdr

After simplifying equation (37) we have

1d

o [ h(Q)(k:r)} =L e=F for > A (38)

r

Substituting from equations (34) and (37) into (7) we have

H@(T 0, <Z5) =
—jkr pm
Z Z —]we e Py (cos )m [Qnn SINMP — By, cOS M)
== kr sin 6
+ i z”: jre iPm(cos 0) [Ymn cOS NP + Iy Sin M) (39)
r a0 " Ymn mn
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After simplifying we have

LY 1) —jkr pm
Hy(r,0,0) = nzzo 2 J w;i L (Scizsemm [ sSiInMP — By cOS MP]
+ i z”: et iPm(cos 0) [Ymn cOs M@ + Sy SIn M) (40)
L r a9 " Ymn mn

Substituting from equations (27), (31), (32) and (33) in terms of v, ,
Bmn s Ymn , Omn , respectively, into equation (40) yields:

e I S (2n 4 1)
Hy(r,0 = "
9(T7 )¢) 471'7‘77 gn(n+1)j

. 9 )
4// [f1(9’,¢’)d Pn(§) + h(@, ¢)sin0'd Pn(é)] 0 dg’
n 0 0

dfd¢ dede’

2T
ka ) Sint PPy(€) | fo(0'. ) PPu(E)] L
+F//[f1(e’¢)sme d6d0 T sin0  dodd’ }dadd’
00
) (41)
where from [7]
" —m)!
Pn(é):Zem%P (cos0) P (cos@')cosm(p — ¢')  (42)

and via a similar approach

e I L (2n 4 1)
Hy = i
¢ dmrn Z ‘< n(n+ 1)]

o g2 ind 2
k )// [fl 9 @b d (f) +f2(0/,¢/)5. 0 d Pn(f):| d0/d¢/
a

sinf  dod¢’ sinf df'd¢’
2r W
a IO /dQPn(f) / /dzP (£)
+N//[f1(9,¢)sm9 i+ 0. aa
0 0

) (43)
It is interesting to note that both (41) and (43) do not contain any sum-
mation over m , which has been eliminated in the present formulation
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by utilizing the addition theorem for Legendre polynomials introduced
through (42). Also observe that the second derivatives of the Legendre
polynomials can be evaluated, for example, as

OPPo(§) _ O*Pu(§) €05 | OPy(§) 0% (44)
000¢ 0L 0600 O 009
where 0P (¢) 1
n n
5o = T glePn(©) = Pua(€) (45)
and
0%p, 1
8$@:(f+ {12+ n)E = )Py (€) — 26Puii (6)}  (46)

Furthermore, for a given prespecified ka, one could precompute the
summation over n, in terms of the four “pseudo” Green’s functions
and store them. Under these conditions, one then needs to perform
only an integral over 6 and ¢ as

e—dkr 2w A0, 0)G(8, 6,6, ¢) ]
~ d df
o= [ [ ey
and
edhr om0, 0)Gs(0, 6,67, ¢) ]
H, = d d
¢ 47rrn/0 ¢ /0 | +f2(0,¢')G4(0, 0,0, ¢) ] (48)
where
S Cnt1) [ 92P,(0)  kasing 92P,(¢)
G1(0,4,0,4) = — n(n + 1) _hg)(k}a) 000¢ + N siné 0900’
(49)
s = @n+1) [ Gsin® 2P.(C) . ka  92P,(C)
G2(0,9,6,4) ~ Zn(n+ 1)’ 1P (ka) 0000 " Nsing 0604/
(50)
S = @2n+1) jsine 2P, (¢)  kasin®’ 92P,(C)
G3(9, ¢, 0,0 ) - n:1 n(n 4 1)‘7 h (k;a) 000’ N 0000’
(51)
S = @n+1) [ gsing 82P.Q)  ka92P.(Q)
G4(0,0,0',¢") = 2 n(n + 1)] _h,(f)(ka) sing 00'0¢/ N 9004’

(52)
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The integrals in (47) and (48) can efficiently and accurately be done
by the conventional Fast Fourier Transformation technique. The func-
tions G1— G4 are called “pseudo” Green’s functions because for a true
Green’s functions, f; and fo would be convolved with the Green’s
functions, but here it is an integral. These equations indicate that
if for a fixed ka, the Green’s functions are precomputed and stored,
then the actual computations of (47) and (48) can be done even on a
note-book PC. If the quality of the measured data, i.e., f1(,¢) and
f2(0,¢) are good (which implies that quite a few significant bits are
accurate), the derivatives in (41) and (43) can be transferred from
P, to fi and fs. This may enhance the rate of convergence of the
summation over n .

In summary, the present approach offers the following features:

(1) The transformation is expressed in an analytic form.

(2) There is only one summation, i.e. over n. To obtain a relative
numerical accuracy of 1077 in the computation of the fields,
the limit of the summation over n should be n = 1.27ka for
ka > 60.

(3) The derivatives can be transferred to the data (if the quality is
good) to further enhance the rate of convergence. Or equivalently
the data can be expanded in a Fourier series as is conventionally
done (at least in the first step) and the derivatives can be carried
out in an analytic fashion utilizing the FFT.

(4) For a fixed ka, all the summations over n can be precomputed
and stored on a diskette. This NF/FF transformation procedure
is equivalent to synthesizing a plane wave region using an infinite
number of point sources on a sphere having radius a and each
individual point source having a complex amplitude is given by
the “Pseudo” Green’s functions G1-Gy.

3. NUMERICAL EXAMPLES

As a first example consider a four dipole array. The dipoles are located
at the corners of a 4\ x 4\ planar surface which is in the x-y plane.
The center of the 4X x 4\ square surface is located at x = 0.22\ and
y = 0.22\. The plane of the array is the z-y plane. So the four
dipoles are not located symmetrically about the origin. A spherical
surface is drawn with the center defined above and a radius of 10 \.
On that spherical surface of 20 A diameter encapsulating the four offset
dipoles located on the z-y plane both the electric field components
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Figure 1. Comparison of exact and computed far field for ¢ = 0° cut
for a 4 dipole array at the corners of a 4\ x 4\ surface.

Ey and Ey4 are computed analytically. Next, the two field components
are used in conjunction with (41) and (43) to evaluate the far fields.
Figure 1 presents Ey4 in dB for ¢ = 0° as a function of 6. Both the
exact analytical far field and the far field computed by using the present
theory are presented in Figure 1. They are visually indistinguishable.
In Figure 2, FEjy is presented in dB for ¢ = 90° as a function of 6.
Again, the analytical far fields from the four off centered dipoles and
the computed far fields are visually indistinguishable. The cross polar
components in both the figures are negligible.

Next, measured data is utilized. Consider a microstrip array consist-
ing of 32 x 32 uniformly distributed patches on a 1.5m x 1.5m surface.
The near fields are measured on a spherical surface at a distance 1.23m
away from the antenna at a frequency of 3.3GHz. The data is taken
every 2° in ¢ and every 1° in 6. Measurements have been performed
using an open ended cylindrical WR284 waveguide fed with the TEq;
mode. The measured data was provided by Dr. Carl Stubenrauch of
NIST [8]. Figure 3—6 compare the far field patterns obtained by the
present analytical method with the far field patterns obtained by the
numerical technique described in [8]. These numerically computed far
field patterns employ the same measured data utilizing an equivalent
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Figure 2. Comparison of exact and computed far field for ¢ = 90°
cut for a 4 dipole array at the corners of a 4\ x 4\ surface.

magnetic current approach for near field to far field transformation [8].
Figure 3 describes 20logq|Ey| for ¢ = 0° and various angles of 6.
Figure 4 represents 20log, |Ep| for ¢ = 90° and for —90° < § < 90° .
These are the principal plane patterns. As observed, the agreement is
good. Figures 5 and 6 show the cross polar pattern. Figure 5 de-
picts 20log;o|Fg| ¢ = 0° for different values of 6. Figure 6 presents
20logyq |Ey| for ¢ = 90° and for —90° < § < 90. The agreement
between the approach presented in this paper and the nllmerical ap-
proach for the cross polar pattern is reasonable for pattern levels above
—70dB.

4. CONCLUSION

An alternate method is described for spherical near field to near/far
field transformation without probe correction. The advantage of this
approach is that one of the summations over m has been eliminated
by utilizing the addition theorem for Legendre polynomials. Hence the
expressions are more concise and easier to visualize. This method is
accurate, as illustrated by the performance of this method on both
synthetic and real experimental data.
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Figure 3. Co-polarization characteristic for ¢ = 0° cut for a 32 x 32
patch microstrip array using analytical and numerical results.
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Figure 4. Co-polarization characteristic for ¢ = 90° cut for a 32 x 32
patch microstrip array using analytical and numerical results.
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Figure 5. Cross-polarization characteristic for ¢ = 0° cut for a 32x32
patch microstrip array using analytical and numerical results.
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Figure 6. Cross-polarization characteristic for ¢ = 90° cut for a
32 x 32 patch microstrip array using analytical and numerical results.
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