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1. INTRODUCTION

Surface roughness is usually described with the two classical constant
parameters, rms height and correlation length, which is determined
using the autocorrelation function. Unfortunately, the rms height and
correlation length of natural surfaces, such as sea ice, depend on the
measured distance [1,2]. This is understandable since the shape of
natural solid surfaces is often a result of a number of random changes
superposed on an initial surface. Spectral analysis would permit mul-
tiscale roughness, but the spectrum of a sparse data set does not repre-
sent the real target spectrum well. A description for a surface with mul-
tiscale roughness was developed using autocorrelation functions and is
presented in this paper.
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The recent development of the Integral Equation Method for calcu-
lating surface backscattering coefficients has removed the limitation of
older surface backscattering models, that the surface roughness should
be either small or large compared to the wavelength used [3–5,7]. How-
ever, even this method is usually applied assuming that the surface
roughness can be described with the two classical constant parame-
ters, rms height and correlation length. The problem of surfaces having
both small and large scale roughness characteristics has been studied in
several cases [1,3,6,8], but the use of the IEM equations for calculating
the surface backscattering coefficients for surfaces having multiscale
roughness requires further consideration. This problem is also studied
in this paper for cases having small dielectric constant values, such as
sea ice [3].

2. SURFACE CORRELATION FOR A CONTINUOUS
ROUGHNESS SPECTRUM

Natural surfaces are typically results of a sequence of random changes
affecting an initial surface. Such surfaces can be treated in the same
way as multilayer stacks [8]. The initial surface is described with a
profile z1(x). A random process h2(x) then changes the surface profile
with an additive roughness so that the new surface profile is z2(x) =
z1(x) + h2(x) . The additive roughness can also be negative so that
the superposition produces a smoother surface than the original. It
is natural to assume that the initial and final surfaces are partially
correlated. As more changes take place, more additive components
appear and the final surface profile is [8]

zn(x) = z1(x) +
n∑
i=2

hi(x) (1)

The final surface correlation function is then obtained as a sum of
the original surface correlation and the autocorrelation of the random
changes [8]. Conventional finish analysis uses a sum of exponentials
and Gaussians to describe the final surface autocorrelation function [1]

ρ(ξ) =
∑
i

σ2
i exp(−|ξ|/Li) +

∑
j

σ2
j exp(−(ξ/Lj)2) (2)

where σi is the rms height and Li the correlation length of the i th
roughness component.
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When a surface undergoes changes perpetually due to changing
weather conditions (like a sea ice surface), it is natural to replace the
summations of Eq. 2 with an integral. Likewise the resulting rough-
ness spectrum is considered to contain a continuous range of spatial
frequencies instead of only discrete values.

The estimation of surface correlation parameters is always affected
by the inner and outer scales [9], which give the limits for the minimum
and maximum spatial frequencies possible to detect using a certain
measurement trace length. Thus, the verification of the continuous
roughness spectrum is not trivial. The autocorrelation function and
the power spectrum of a surface carry the same information since they
are a Fourier transform pair, but the power spectrum is less sensitive
to the finite measurement trace length of a profile [1]. However, the
power spectrum of a data set does not approach the real target spec-
trum when the number of points in the profile increases [10]. Only the
expectation value of the spectrum approaches the true target value.
The spectrum is also very sensitive to individual grooves or peaks in a
profile [Fig. 1]. Moreover in practice the number of measured heights
is often rather small, which makes the use of the power spectrum even
more unreliable. In addition, the surface backscattering coefficient
can not be obtained analytically for a general power spectrum. The
existing analytical methods for calculating the surface backscattering
coefficient for dielectric materials are developed using the autocorrela-
tion function. Therefore an attempt has been made in this paper to
develop an autocorrelation function that takes into account multiscale
surface roughness.

In practice, it is impossible to measure all the random changes that
have affected the surface. The only possible roughness to be mea-
sured is the final result, but one would also need measured values of
all the intermediate surfaces to apply Eq. 2 directly. A practical so-
lution is to measure the final surface using various measurement trace
lengths from small to large distances so that various final roughness
scales are characterized. Since it is not possible to detect the largest
roughness components from the smallest distances, it can be thought
that the smallest measurement trace lengths give results that would
be obtained, if the largest roughness components of Eq. 2 were miss-
ing. In addition, the roughness parameters corresponding to a certain
distance are dominated by the largest roughness scale that is distin-
guishable with that measurement trace length. Thus, it is reasonable
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Figure 1. The surface profile of a Baltic sea ice sample having a crack.
The spectrum of the ensemble of profiles measured in the same area is
shown when the ensemble includes the profile with a crack and when
it excludes it.

to think that the roughness components of the summation in Eq. 2 can
be estimated with the roughness components obtained from the final
surface using various measurement trace lengths.

For natural surfaces the rms height and the correlation length typ-
ically depend on the measured length [1,2]. When the dependence is
assumed to be of the same form for all roughness components from
small to large distances the rms height and correlation length of in-
creasing intervals xi can be described with the following equations

σi = f(xi), i = 1, · · · , n (3)

ρ(ξ, ζ)i = g(ξ, ζ;xi), i = 1, · · · , n (4)

where f and g denote arbitrary functions. Generalizing the result to a
continuously increasing distance with a maximum value xo , we get an
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equation corresponding to Eq. 2

ρ(ξ, ζ) =

xo∫
0

f(x)2

fo
· g(ξ, ζ;x)dx (5)

where fo =
xo∫
0

f(x)2dx so that the value of the correlation function at

zero is unity.
If the form of the dependence of rms height and correlation length

on distance is not the same in the whole interval of interest, one can
divide the interval into sections where the form is invariant and then
combine these sections as in the two-scale roughness case.

The behaviour of natural surfaces is often close to that of Brownian
surfaces. Then the correlation length L is linearly dependent on the
measurement length x [1]

L = kox (6)

where ko is a constant. Also, the logarithm of the rms height σ is
usually linearly dependent on the logarithm of x , so that [2]

σ = c · xb (7)

where c is a constant.
Commonly used surface correlation functions are Gaussian, expo-

nential, isotropic exponential and transformed exponential given by
equations [3]

ρ(ξ, ζ) = exp[−(ξ2 + ζ2)/L2] (8)

ρ(ξ, ζ) = exp[−(|ξ|+ |ζ|)/L] (9)

ρ(ξ, ζ) = exp
[
−

√
(ξ2 + ζ2)/L2

]
(10)

ρ(ξ, ζ) = 1/[1 + (ξ2 + ζ2)/L2]
3
2 (11)

respectively.
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The corresponding surface correlation functions corresponding to
multiscale roughness described by Eqs. 6 and 7 are now according to
Eqs. 3–11 [11,12]

ρ(ξ, ζ) =
1
2
(1 + 2b)

(
ξ2 + ζ2

k2
ox

2
o

)1/2+b

Γ
(
−1

2
− b,

ξ2 + ζ2

k2
ox

2
o

)
(12)

ρ(ξ, ζ) = (1 + 2b)
( |ξ|+ |ζ|

koxo

)1+2b

Γ
(
−1− 2b,

|ξ|+ |ζ|
koxo

)
(13)

ρ(ξ, ζ) = (1 + 2b)

(√
ξ2 + ζ2

koxo

)1+2b

Γ

(
−1− 2b,

√
ξ2 + ζ2

koxo

)
(14)

ρ(ξ, ζ) =
(1 + 2b)
2(2 + b)

(
ξ2 + ζ2

k2
ox

2
o

)−3/2

2F1

(
3
2
, 2 + b; 3 + b;− k2

ox
2
o

ξ2 + ζ2

)
(15)

for Gaussian, exponential, isotropic exponential and transformed expo-
nential type of surface correlation respectively. Here Γ denotes the in-
complete gamma function and 2F1 the hypergeometric function. The
rms height σ for the whole surface, is obtained from the rms height
σo , corresponding to the maximum distance xo , using the following
relationship

σ = σo/
√

2b + 1 (16)

The surface correlation functions representing surfaces of single scale
roughness and multiscale roughness are shown in Figure 2 for exponen-
tial, transformed exponential and Gaussian cases of equal correlation
lengths. The shapes of the multiscale curves require that they be calcu-
lated using a longer distance than that of the single scale case to obtain
an equally large correlation length (Fig. 3). This is understandable,
since the inclusion of smaller roughness scales naturally decreases cor-
relation. Still, the net effect of the inclusion of the smaller roughness
scales is slightly destructive at short distances, whereas the correlation
falls off more slowly with increasing distance than in the case of the
one roughness scale.
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Figure 2. The surface correlation functions corresponding to
Eqs. 8–11 (one scale surface roughness) and Eqs. 12–15 (continuous sur-
face roughness spectrum) calculated for a measured slightly deformed
Baltic sea ice surface. The maximum distance used in the calculations
is 1 m to correspond to the measured autocorrelation function curve,
which was closest to the multiscale exponential case.

If the surface in question contains only separate frequency bands,
Eq. 5 can be replaced by the following equation

ρ(ξ, ς) =
n∑
i=1

xmaxi∫
0

f(x)2

fo
· g(ξ, ς;x)dx−

n∑
i=1

xmini∫
0

f(x)2

fo
· g(ξ, ς;x)dx

(17)
where xmaxi is the maximum distance and xmini the minimum
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Figure 3. The ratio of the maximum distance xo to be used in mul-
stiscale calculations and the measurement distance xm that produces
the same correlation length value, is shown for various values of pa-
rameter b of Eq. 7 and various types of isotropic surface correlation.

distance taken into account in band i and

fo =
n∑
i=1

xmaxi∫
0

f(x)2dx−
n∑
i=1

xmini∫
0

f(x)2dx (18)

so that the correlation function at zero distance is still unity. Then the
surface correlation functions corresponding to Eqs. 12–15 are

ρ(ξ, ζ) =
(1 + 2b)

2
n∑
j=1

(
x1+2b
maxj − x1+2b

minj

) n∑
i=1

[(
ξ2 + ζ2

k2
ox

2
maxi

)1/2+b

·Γ
(
−1

2
− b,

ξ2 + ζ2

k2
ox

2
maxi

)
x1+2b
maxi −

(
ξ2 + ζ2

k2
ox

2
mini

)1/2+b

·Γ
(
−1

2
− b,

ξ2 + ζ2

k2
ox

2
mini

)
x1+2b
mini

]
(19)
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ρ(ξ, ζ) =
(1 + 2b)

n∑
j=1

x1+2b
maxj − x1+2b

minj

n∑
i=1

[( |ξ|+ |ζ|
koxmaxi

)1+2b

·Γ
(
−1− 2b,

|ξ|+ |ζ|
koxmaxi

)
x1+2b
maxi

−
( |ξ|+ |ζ|

koxmini

)1+2b

Γ
(
−1− 2b,

|ξ|+ |ζ|
koxmini

)
x1+2b
mini

]
(20)

ρ(ξ, ζ) =
(1 + 2b)

n∑
j=1

x1+2b
maxj − x1+2b

minj

n∑
i=1

[(√
ξ2 + ζ2

koxmaxi

)1+2b

·Γ
(
−1− 2b,

√
ξ2 + ζ2

koxmaxi

)
x1+2b
maxi −

(√
ξ2 + ζ2

koxmini

)1+2b

·Γ
(
−1− 2b,

√
ξ2 + ζ2

koxmini

)
x1+2b
mini

]
(21)

ρ(ξ, ζ) =
(1 + 2b)

2(2 + b)

(
n∑
j=1

x1+2b
maxj − x1+2b

minj

) n∑
i=1

[(
ξ2 + ζ2

k2
ox

2
maxi

)−3
2

·2F1

(
3
2
, 2 + b; 3 + b;−k2

ox
2
maxi

ξ2 + ζ2

)
x1+2b
maxi −

(
ξ2 + ζ2

k2
ox

2
mini

)−3
2

·2F1

(
3
2
, 2 + b; 3 + b;−

k2
ox

2
mini

ξ2 + ζ2

)
x1+2b
mini

]
(22)

The shape of the autocorrelation curves obtained using Eqs. 19–22 is
between those of the multiscale and single scale roughness cases. If the
surface in question is characterized by different autocorrelation types
in different scales, the total autocorrelation function can naturally be
obtained as a combination of two or more of Eqs. 19–22 so that the
values of xmaxi and xmini used in each equation correspond to the
relevant scales.
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3. CALCULATION OF THE SURFACE BACKSCATTER-
ING COEFFICIENT

The surface backscattering coefficient derived using the integral equa-
tion method (IEM) is given by [3 - 5, 13]

σ0
pp =

k2

2
exp(−2k2

zσ
2)
∞∑
n=1

∣∣Inpp∣∣2 W (n)(−2kx, 0)
n!

(23)

where k is the wave number, σ is the rms height, kz = k cos θ,
kx = k sin θ, pp = vv or hh , θ is the incidence angle,

Inpp = (2kzσ)nfpp exp(−k2
zσ

2)

+
(kzσ)n [Fpp(−kx, 0) + Fpp(kx, 0)]

2

(24)

and the spectrum for the correlation function to the nth power is

W (n)(u, v) =
1
2π

∞∫
−∞

∞∫
−∞

ρ(ξ, ζ)n exp(−juξ − jvζ)dξdζ,

n = 1, 2, · · · (25)

Other symbols are given in Appendix 2A of [3]. Actually Eq. 25
contains the surface shape description although the rms height ap-
pears in other parts of the surface backscattering coefficient formula.
The dielectric constant is involved only in the field coefficients. Typi-
cally one of these is significantly larger than the other two. Then the
dielectric behaviour and the surface properties of the target affect the
scattering separately.

For backscattering u = 2ko sin θ and v = 0 . Moreover, the correla-
tions of Eqs. 12–15 are symmetrical with respect to origin. Thus, the
imaginary part of Eq. 25 is cancelled out and it suffices to integrate
only the following equation

W (n)(u, 0) =
4
2π

∞∫
0

∞∫
0

ρ(ξ, ζ)n cos(uξ)dξdζ, n = 1, 2, · · · (26)

This integral can not be solved analytically for the four cases of
Eqs. 12–15. Direct numerical integration using standard methods is not
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possible either, since the integrand can be highly oscillating depending
on the value of u . However, the integral can be simplified with a
change of variables. Hence, the integrals to be solved numerically are

W (n)(u, 0) =
2
π
k2
ox

2
o

∞∫
0

[
1
2
(1 + 2b)x1+2bΓ

(
−1

2
− b, x2

)]n

·


 1∫

0

cos(ukoxoxt)
√

1− t2xdt


 dx (27)

W (n)(u, 0) =
2
π
k2
ox

2
o

∞∫
0

[(1 + 2b)x(1+2b)Γ(−1− 2b, x)]n

·


 x∫

0

cos(ukoxoz)dz


 dx (28)

W (n)(u, 0) =
2
π
k2
ox

2
o

∞∫
0

[(1 + 2b)x(1+2b)Γ(−1− 2b, x)]n

·


 1∫
o

cos(ukoxoxt)
√

1− t2xdt


 dx (29)

W (n)(u, 0) =
2
π
k2
ox

2
o

∞∫
0

[
(1 + 2b)
2(2 + b)

x−3
2F1

(
3
2
, 2 + b; 3 + b;− 1

x2

)]n

·


 1∫

0

cos(ukoxoxt)
√

1− t2xdt


 dx (30)

for Gaussian, exponential, isotropic exponential and transformed expo-
nential type of surface correlation respectively, for a continuous rough-
ness spectrum. These four expressions can then be integrated analyti-
cally for one variable, the result being

W (n)(u, 0) =
koxo
u

∞∫
0

[
1
2
(1 + 2b)x1+2bΓ

(
−1

2
− b, x2

)]n

·(J1(ukoxox))dx (31)
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W (n)(u, 0) =
2
π

koxo
u

∞∫
0

[(1 + 2b)x1+2bΓ(−1− 2b, x)]n sin(ukoxox)dx

(32)

W (n)(u, 0) =
koxo
u

∞∫
0

[(1 + 2b)x1+2bΓ(−1− 2b, x)]nJ1(ukoxox)dx

(33)

W (n)(u, 0) =
koxo
u

∞∫
0

[
(1 + 2b)
2(2 + b)

x−3
2F1

(
3
2
, 2 + b; 3 + b;− 1

x2

)]n

·(J1(ukoxox))dx (34)

Still, the oscillating behaviour of the integrand does not always
permit direct conventional numerical integration. The use of Euler’s
method [14] turned out to be successful in the numerical integration
of Eqs. 31–34. This method is based on a summation of differences
of integrals between some ten first consecutive zeros. This summation
converges more quickly than the direct sum of the alternating series of
integral values between the consecutive zeros.

Calculation of the surface backscattering coefficients using IEM also
requires the determination of the Kirchhoff coefficient fqp and the
complementary field coefficients Fqp , which depend on the Fresnel re-
flection coefficients R⊥ and R‖ . When the dielectric constant value is
small, these coefficients depend strongly on the value of the local angle.
In IEM equations the local angle has been approximated with the in-
cidence angle. Another alternative is usually a zero value for the local
angle [3]. Experimental measurements of Baltic sea ice show that in
practice, the variation of the local angle may cause considerable change
in the values of fqp and Fqp as will be shown in the next section [15].
However, the effect of surface parameter variation on backscattering
of one target material can be studied using only relative values of σo .
Then the field coefficient terms often have only a negligible effect in
practice.

4. APPLICATION TO BALTIC SEA ICE

In order to measure those properties of Baltic sea ice that are relevant
for SAR imagery interpretation research, the Finnish Institute of Ma-
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rine Research arranged field experiments in two ERS-1 Pilot Projects
in 1992 (PIPOR = A Programme for International Polar Oceans Re-
search), 1993 and 1994 (OSIC = Operational sea ice charting using
ERS-1 SAR images). Extensive measurements of small and medium
scale surface roughness in the Bay of Bothnia revealed a clear rela-
tionship between the rms height and the correlation length of sea ice
[15]. Moreover, the correlation length turned out to be linearly depen-
dent on the measured distance. Similarly, the logarithm of the rms
height showed a linear dependence on the logarithm of the measured
distance. The surface correlation function was mostly close to expo-
nential. This applied reasonably well also to ridged areas, although
they do not constitute a continuous surface. This is very practical,
since now deformed areas and level ice can be treated similarly when
calculating the backscattering.

Examples of multiscale surface roughness of Baltic sea ice are shown
in Figures 4–7. The spectra have been calculated as ensemble averages
of individual measured surface profile spectra and the autocorrelation
functions as ensemble averages of individual measured surface profile
autocorrelation functions [15,1]. All these profiles have been measured
in three areas of about 100 m × 100 m, except a few small scale
profiles in Figure 6, which were situated about 100 m from the rest of
the data. Figure 5 represents a many times deformed old ice field in
the Bay of Bothnia in 1993 [15]. The data of Figure 6 was gathered
in a huge newly formed net-like rubbled area in the Sea of Bothnia in
1994 [15]. Figure 7 corresponds to a very smooth old level ice field
that was situated in the Gulf of Finland in 1994 [15]. The spectra
of all the three studied ice surfaces are closer to those of fractal than
conventional surfaces in the whole studied range [1]. The multiscale
autocorrelation functions of Eqs. 12–15 do not have analytical Fourier
transforms, but numerical studies showed that these autocorrelation
functions produce power spectra resembling those of Fig. 4.

In order to compare how well one and multiscale autocorrelation
functions approximate the experimental curve, the deviation area be-
tween the experimental curve and the approximative functions from
origin to correlation length has been calculated. The smaller the ra-
tio of the multiscale area to the one scale area is, the superior the
multiscale autocorrelation function is. This deviation area ratio varies
from 0.48 to 2.14 for the exponential surface correlation cases of Figs.
5–7. When the multiscale surface correlation of the small scale case of
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Fig. 7 is changed into transformed exponential surface correlation, the
deviation area ratio of multiscale and one scale functions varies from
0.42 to 0.98. Thus, the shape of a multiscale autocorrelation func-
tion gives in every case a better alternative than an ordinary one scale
function for the studied small, medium and large scale cases. However,
it is much more important that the multiscale parameters b and k0

(Eqs. 6 and 7) obtained from the medium and large scale measure-
ments produce reasonable autocorrelation functions for the small scale
cases (Figs. 5–7). The slight difference is probably partly caused bythe
small number of profiles in the ensembles and also by the different
measurement techniques. The small scale profiles were continuous 1
m long curves digitized with an increment of 1 mm, but the medium
scale profiles consisted of 100 discrete points with an increment of 5 cm
and the large scale profiles of 100 discrete points with an increment of
50 cm. The multiscale autocorrelation curves proved to be successful
also for other studied large scale sea ice types, because they decrease
more steeply close to the origin than the corresponding single scale
exponential curves.

The small scale curves are not quite as clearly exponential as those
of medium or large scale, because some of the individual profiles were
closer to a Gaussian or transformed exponential type. Yet only the
very smooth level ice is better described with a multiscale transformed
exponential than the ordinary exponential surface correlation. How-
ever, the rounding of the autocorrelation function at the origin can
also be an artifact caused by the finite profile length [1]. The stylus
wheel diameter used in the small scale measurements was 1 cm, which
also artificially increased the closest correlations.

The Integral Equation Method for calculating surface backscatter-
ing can be applied to a wide scale of surface roughness, if the surface
is random Gaussian and stationary. For Baltic sea ice these two condi-
tions seem to be justified. This method can be used for cases smaller
than the wavelength, comparable to it and larger than it.
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Figure 4. The spectra of measured large, medium, and small scale
profiles of rough and smooth Baltic sea ice. The solid curves of rough
sea ice represent a many times deformed old ice field in the Bay of
Bothnia in 1993 [15, 16]. The medium scale experimental curve is
an ensemble average of seven 5 m long individual profiles. The small
scale experimental curve is an ensemble average of 24 individual 0.9 m
long profiles. The dashed curves of rough sea ice represent a net-like
rubbled newly formed ice field in the Sea of Bothnia in 1994 [15, 16].
The large scale experimental curve is an ensemble average of four 50
m long individual profiles. The small scale experimental curve is an
ensemble average of 17 individual 0.9 m long profiles. The smooth sea
ice curves represent an old level ice field in the Gulf of Finland in 1994
[15]. The large scale experimental curve is an ensemble average of six
50 m long individual profiles. The small scale experimental curve is
an ensemble average of 18 individual 0.9 m long profiles. The number
of profiles included in the small scale ensembles is smaller than was
measured, to include only profiles of equal length.
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Figure 5. The measured and calculated medium and small scale auto-
correlation functions of a many times deformed old ice field in the Bay
of Bothnia in 1993 [15,16]. The medium scale experimental curve is an
ensemble average of seven 5 m long individual profiles. The small scale
experimental curve is an ensemble average of 24 individual 1 m long
profiles. The multiscale autocorrelation function calculated for the 1
m distance, using the medium scale values for b and k0 is also shown
for comparaison.
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Figure 6. The measured and calculated large and small scale auto-
correlation functions of a net-like rubbled newly formed ice field in the
Sea of Bothnia in 1994 [15,16]. The large scale experimental curve is
an ensemble average of four 50 m long individual profiles. The small
scale experimental curve is an ensemble average of 24 individual 1 m
long profiles. The multiscale autocorrelation function calculated for
the 1 m distance, using the large scale values for b and k0 , is also
shown for comparison.
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Figure 7. The measured and calculated large and small scale auto-
correlation functions of a very smooth old level ice field in the Gulf
of Finland in 1994 [15]. The large scale experimental curve is an en-
semble average of six 50 m long individual profiles. The small scale
experimental curve is an ensemble average of 24 individual 1 m long
profiles. The multiscale autocorrelation function calculated for the 1
m distance, using the large scale values for b and k0 , is also shown
for comparison.
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The problem of using the Integral Equation Method of one scale
surface roughness for sea ice is clarified in Figure 8. The backscattering
coefficient was calculated using measured surface roughness parameter
values corresponding to various lengths within the small and medium
scale profiles. Since the rms height and correlation length increase with
measurement trace length, the backscattering constant varies also with
distance. Moreover, the surface roughness parameters do not generally
saturate within a few metres. In some cases they do not saturate
even within 100 m [15]. It is difficult to decide, which backscattering
coefficient value of Figure 8 (or a value larger than these) one should
choose for simulating the backscattering caused by the ERS-1 SAR,
whose wavelength is about 5.7 cm and pixel size roughly 25 m. Even
the ensemble average would not solve the problem of a backscattering
coefficient that continuously increases with the size of the area included
in the calculation. In principle the whole illuminated area should be
taken into account, but usually it is thought that the roughness scale
close to the wavelength used is the most important. However, there is
no rule on how to choose the exact roughness value to be used.

Since the application of IEM taking into account only one roughness
scale is problematic, it is useful to check how the inclusion of all rough-
ness scales changes the situation. Figures 9 and 10 show the difference
between the backscattering coefficients calculated using the ordinary
IEM equations [3] and the multiscale IEM based on Eq. 33. The de-
formed ice field of Figure 9 is an example, where the multiscale surface
roughness has a destructive effect on the backscattering even in large
distances, whereas the multiscale roughness increases the backscatter-
ing for most of the ice types in Figure 10. Basically, the backscattering
coefficient varies with increasing distance the same way as in Figure 9.
Only the intensity level and the steepness of the curve vary.

Clearly the inclusion of all roughness scales has a slightly destructive
effect on the surface autocorrelation function for all studied autocor-
relation types (Fig. 2). The net effect on the backscattering coefficient
is also negative for the smallest distances, because of the shape of the
oscillating integral of Eqs. 31–34. However, the multiscale backscat-
tering increases more strongly with increasing distance than that of
the ordinary IEM and surpasses the one scale backscattering for many
ice types already in an area having a diameter of about 50 m (Fig.
10). These results have been obtained using the isotropic exponen-
tial surface correlation and the comparison has been made using for
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Figure 8. Surface backscattering coefficients calculated using ordinary
one scale IEM and measured rms height and correlation length values
of the many times deformed old ice field of Figure 4. All measurements
have been carried out in the area of 100 m × 100 m. The distance is
the radius of the area included in the calculations.

multiscale calculations maximum distances that produce the observed
correlation length values (Fig. 3). It is natural that the difference be-
tween the single and multiscale results is smallest for the smoothest
surfaces. The destructive effect of the multiscale exponential surface
correlation of Eq. 13 extends up to larger distances, because it neglects
a large part of the spherically symmetric surface correlation of Eq. 14.
The isotropic exponential surface correlation is understandably more
characteristic of natural surfaces than the mathematically more simple
quadrangular exponential.

Usually increasing surface roughness leads to increasing
backscattering. For example ice ridges are typically distinguished as
curvilinear features of higher intensity values in SAR images. However,
the many times deformed old ice area of Figure 9 presented one exam-
ple of a long ridge indistinguishable in an ERS-1 SAR image, although
the ridge was on average 1.1 m high and 4.2 m broad, which is at least
the average size of ridges in the Baltic Sea [16]. Ridges of equal size
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Figure 9. The surface backscattering coefficient of horizontal and ver-
tical polarization calculated for the many times deformed old ice field
where the medium scale roughness measurements were carried out in
1993 [15, 16, Fig. 8]. IEM has been applied to single scale or multiscale
surface roughness with the isotropic exponential autocorrelation func-
tion. The distance is the radius of the area included in the backscatter-
ing calculations. The Kirchhoff and complementary field coefficients
have been approximated with the radar incidence angle. The rough-
ness parameter c corresponding to Eq. 7 is given using cm units for
distance.

in the old ice area having a smoother background were detected in the
same SAR image. The problem is not only that the average intensity
of the deformed ice field was so high that it masked the ridges, but
that the maximum intensity values really were smaller in the deformed
area than in the smoother area. Since the sample areas are in the same
SAR image, the effect can not be explained with calibration errors or
the unfavourable incidence angle of ERS-1. Also, the ice of these two
areas was equally old and originally similar. The temperature was well
below zero during the satellite overpass and the snow cover was only
partial. If the backscattering always increased with increasing surface
roughness, the ridges in the deformed area should cause at least as
high intensities as those of the ridged area. Thus it seems that some
qualitative support for the possibility of a destructive effect of certain
multiscale surface roughness exists.
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Figure 10. The surface backscattering coefficient of horizontal and
vertical polarization calculated for various large scale ice types mea-
sured in 1994 [15, 16]. IEM has been applied to single scale or multi-
scale surface roughness with the isotropic exponential autocorrelation
function. The Kirchhoff and complementary field coefficients have been
approximated with the radar incidence angle. The calculations are
made for an area with a radius of 25 m.

Although the qualitative behaviour of the multiscale surface rough-
ness combined with the IEM is mostly acceptable, the quantitative
results of the very rough ice types do not seem to be high enough. The
multiscale treatment produces, at large distances, higher values than
the ordinary IEM, but the backscattering level is still too low. The
roughness of about the size of the wavelength used is reported to be
the most important from the point of view of backscattering [3], but
the smallest roughness scale does not dominate in Eqs. 2–5. However,
it is well known that SAR images are also sensitive to the degree of
large scale deformation of ice fields. Therefore, the larger roughness
scales cannot be excluded when simulating the backscattering from sea
ice. The problem of taking properly into account the large scale surface
roughness is due to the limitations of validity of the Integral Equation
Method as will be described in the following analysis.

The necessary condition for the rms slope to guarantee the validity
of IEM is [4] √

2σ
L

< 0.3 (35)

where σ is the rms height and L the correlation length of the surface.
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Another criterion for validity of IEM is required for dielectric surfaces
when the local incidence angle of the Fresnel reflection coefficients is
approximated with the radar incidence angle. For non-Gaussian sur-
faces the rule of thumb for validity is the following relationship for the
surface and material parameters and frequency [3]

k2σL < 1.6
√

εr (36)

where k is the wave number and εr is the relative permittivity of the
surface. Nevertheless, it is possible that IEM is valid even for larger
values of σ and L . When the local incidence angle is approximated
by specular angle the validity criteria of IEM replacing Eq. 36 is

kL > 5 (37)

For surfaces of multiscale roughness, like Baltic sea ice, Eqs. 35 and
36 actually define the maximum and Eq. 37 the minimum dimension
of the area (and roughness size) for which the IEM is guaranteed to be
applicable. Combining them with Eqs. 6 and 7 we obtain

x <

(
0.3ko√

2c

) 1
b−1

(38)

x <

(
1.6
√

εr
k2cko

) 1
b+1

(39)

x >

(
5

kko

)
(40)

for Eqs. 35–37 respectively. For Baltic sea ice the local incidence angle
condition is, in most cases, more restrictive than the rms slope con-
dition. The maximum and minimum dimensions calculated for mea-
sured surfaces using Eqs. 38–40 are given in Table 1. The ERS-1 SAR
frequency 5.3 GHz was used to calculate the wave number. The per-
mittivity was taken to be 3.15, which is a common value for Baltic sea
ice. It is obvious that neither of the two local incidence angle approxi-
mations alone permits the use of IEM for large areas, which are rough
in all scales from small to large. In addition, in most cases there is
a gap between the validity areas of these two approximations, so that
even a piecewise approach using IEM is not possible.
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Table 1. The criteria (Eqs. 38 and 40) for the validity of IEM calcu-
lations for measured Baltic sea ice surfaces. The frequency used was
5.3 GHz, the radar incidence angle 23 ◦ and the permittivity 3.15.

The validity of IEM clearly varies quite remarkably for the surfaces
measured. Still, it seems that in many cases IEM could be applied
to areas comparable for example to the resolution of ERS-1 SAR, if
the local incidence angle of the Fresnel reflection coefficients can be
approximated with a better value than the radar incidence angle or
zero.

The effect of the varying local incidence angle has been studied by
calculating separately the Kirchhoff coefficients fpp and the comple-
mentary field coefficients Fpp for all individual local incidence angles
corresponding to two successive measured surface heights along the 50
m–100 m long surface roughness measurement lines [15]. The statistics
of these parameters are given in Table 2. It is obvious that even a small
variation of the local incidence angle may cause a large change in the
values of the field coefficients. For horizontal polarization the field co-
efficients are monotonous and increase with increasing local incidence
angle. For vertical polarization the effect of increasing the local inci-
dence angle is more complicated and may increase or decrease the field
coefficients.
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Table 2. The ratio of standard deviation and average values of the
terms |fhh|2 , |Fhh|2 , Re (f∗hhFhh) , |fvv|2 , |Fvv|2 , and Re (f∗vvFvv)
for measured surfaces of Baltic sea ice corresponding to Table 1.

Reliable determination of the Fresnel reflection coefficients for ma-
terials with low dielectric constant values is not easy, since the deter-
mination of the local incidence angle depends crucially on the chosen
horizontal increment between the successive surface heights. The val-
ues used for Table 2 are rather moderate, since the distance was 50
cm. On the other hand, they represent the aerial statistics well, be-
cause the length of each line is 50–100 m. Similar analysis of small
scale surface roughness measurements showed, that the average values
of the local incidence angle, and thence also, the values of the terms
involving field coefficients vary even more, when the statistics is cal-
culated for intervals of 10 cm, 5 cm, 5 mm and 1 mm from the 1 m
long measurement lines. In practice, it is not possible to measure very
long distances with such small intervals. Therefore the results do not
then represent a large area very reliably. The calculation of the field
coefficients is a question that requires further investigation.

Although the backscattering level in Figures 9 and 10 is not reliable
(Table 1, Eqs. 38 and 40), the general shape of the curve in Figure 9
is reasonable, if the ensemble average of the field coefficients does not
vary strongly with changing distance. Moreover, the difference between
the one scale and multiscale cases should not depend very strongly on
the field coefficients.
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5. DISCUSSION

The multiscale surface roughness description developed assumes the
surfaces to contain all frequencies above a minimum value. For many
natural surfaces having a long history, such as sea ice, this seems to be
a good assumption. For more dynamic materials or targets consisting
of several subtargets, the approach of separate frequency bands, also
presented here, could be more promising. The same applies to cases,
when the smallest scale of surface roughness has disappeared, like when
the ice surface has melted and refrozen.

The radar return of a target depends on the backscattering inte-
grated over individual pixels. The rms height, the autocorrelation
function and average local incidence angle of an illuminated pixel char-
acterize the pixel statistically from the point of view of backscattering.
The rms height affects strongly the intensity level of the backscattering
coefficient. The terms of the IEM backscattering coefficient involving
the rms height of the surface decrease with increasing rms height for
large values of σ [3]. Moreover, the spectrum for the surface correla-
tion (Eqs. 31–34) increases with increasing correlation length. There-
fore, without the field coefficients the net effect would typically be a
decrease of the backscattering coefficient with an increase of the surface
roughness. This is in contradiction with generally made observations
of SAR images. Unfortunately, the field coefficients seem to have an
important role in the surface backscattering calculations of materials
of low permittivity. The reliable estimation of the magnitude of these
parameters is though very difficult.

It is obvious that the approximation of the local incidence angle with
the radar incidence angle (or zero angle) is not always well justified for
very rough surfaces. This might explain the significant deviation of the
calculated backscattering coefficient from the measured one, observed
in some cases. It has often been suspected that this disagreement is
a calibration problem of the measurements or due to a wrong value
of the dielectric constant [4, 17]. Unfortunately this field coefficient
approximation severely limits the validity of IEM for rough, low per-
mittivity surfaces like Baltic sea ice (Table 1). This is evident also from
the results of Figure 10, which show a systematic decrease in backscat-
tering level with an increase of surface deformation. This is in contra-
diction with general observations. It seems that the high rms height
values dominate the results, which are quite sensitive to the exact val-
ues of the surface roughness parameters. In conclusion, IEM is not yet
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applicable to large pixels of very rough surfaces with low permittivity
values like Baltic sea ice. Small laboratory samples with salinity re-
sembling that of Arctic sea ice (which is roughly 10 times larger than
that of Baltic sea ice) have been successfully modelled using IEM [12,
18]. The multiscale surface roughness of natural sea ice can be taken
into account using the autocorrelation functions presented here, but
further research of estimation of the field coefficients and of the effect
of large rms height values is required.

The correlation length of surface heights relatively increases and
the rms height decreases with increasing smoothness. In analogy, one
may think that a large spatial correlation length of the backscattering
coefficient combined with a small amplitude of its variation corresponds
to a smooth surface, whereas a larger amplitude represents a rough
surface. One might expect that for Baltic sea ice the interdependence
of the backscattering coefficient rms height and correlation length is
fractallike.

6. SUMMARY AND CONCLUSIONS

Autocorrelation functions describing surfaces with a continuous rough-
ness spectrum were derived. A method to apply these functions to
surfaces rough only in separate frequency bands is presented. Multi-
scale autocorrelation functions were found to approximate correspond-
ing experimental curves of Baltic sea ice better than the ordinary sin-
gle roughness scale autocorrelation functions. A multiscale surface
description makes it easy to study the properties of a surface without
having to fix in advance the exact wavelengths of interest.

Equations taking into account multiscale surface roughness, when
calculating the surface backscattering coefficient, were developed. The
results shown correspond to surfaces, where all individual roughness
components have the same type of autocorrelation function and the
same characteristic roughness parameters. The relationship between
the roughness parameters and the distance is similar to that of frac-
tallike surfaces. The results can easily be used to surfaces of piecewise
homogeneous roughness characteristics. The method can also be ap-
plied to other types of surfaces with a continuous roughness range,
if only the dependence of rms height and correlation length for the
distance is known.
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The problem of multiscale surface roughness, typical of natural sur-
faces like sea ice, can be taken into account by applying the method
presented here, when modelling the backscattering using IEM. The
problem that still requires further research is how to estimate the local
incidence angles of the field coefficients. In the case of Baltic sea ice, it
turned out that the determination of these parameters from measured
surface heights is subject to large uncertainty. On the other hand, the
use of the radar incidence angle instead of the local incidence angle
severely limits the validity of IEM, when the target is rough and has
a small dielectric constant. Because of the field coefficient approx-
imation, IEM is mostly not suitable for large pixels of targets with
multiscale surface roughness and small dielectric constant values like
Baltic sea ice, although it seems to be applicable for smaller laboratory
samples of artificial saline ice.
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