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1. INTRODUCTION

Open chirostrip structures consist of conventional microstrip devices
in which the dielectric substrate is replaced by a slab of chiral ma-
terial. This class of structures has gained considerable attention due
to the possibility of fabricating such material in the microwave and
millimeter-wave frequency ranges. Its potential applications in future
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designs of new devices and components have been emphasized by sev-
eral authors [1]. Because of this, important canonical problems in-
volving chirostrip structures have been analyzed. Effects of the chiral
admittance on radiation patterns, input impedance, near field distri-
butions and crosspolarization level have been studied and reported in
the technical literature. Patch antennas, dipoles and infinite arrays
printed on grounded chiral slabs have been analyzed [2–8]. Electro-
magnetic properties of guided modes in chirowaveguides are another
topic of interest. Recently, Mariotte, Pelet, and Engheta presented an
excellent review of this subject [9]. The special case of surface wave
modes in grounded chiral slabs has also been discussed [3,9–11].

The purpose of this work is to present an alternative formulation for
the analysis of guided electromagnetic fields in grounded chiral slabs.
Although in a rather different context, this formulation is formally
equivalent to that used by the authors to calculate the spectral fields
in open chirostrip structures [5,8,12,13]. Furthermore, effects of chi-
rality on electromagnetic field distributions and on dispersion curves
of surface wave modes are also analyzed. It has been observed that,
inside a chiral substrate and at the interface with a perfectly conduct-
ing surface, the magnetic field component normal to this surface is not
null. Moreover, at the interface between a chiral substrate and the
free space, the magnetic filed component normal to this interface is
not continuous even when the magnetic permeability is the same in
the two media.

2. THE GEOMETRY OF THE PROBLEM

Fig. 1 shows the geometry of a grounded chiral slab. A homogeneous
isotropic linear chiral substrate of thickness d , permittivity ε , perme-
ability µ and chiral admittance ξ , lies on an infinite perfectly con-
ducting plate, located on the x - y plane of a rectangular coordinate
system. The planar interface z = d separates the chiral medium (re-
gion 1: 0 < z < d ) from the free space region (region 2: z > d ,
permittivity ε0 and permeability µ0 ). For lossless chiral substrates,
the parameters ε , µ and ξ are real quantities.

In our formulation, expressions for guided electromagnetic fields are
obtained from the solution of the wave equations in regions 1 and 2.
After that, the boundary conditions for the electromagnetic fields are
applied on the interfaces z = 0 and z = d . This allows the unique
determination of the electromagnetic field distributions at any point
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Figure 1. Geometry of a grounded chiral slab.

in the region z > 0 , which can be expressed in simple closed forms.
The dispersion equation for surface wave modes is also derived.

3. ELECTROMAGNETIC FIELDS IN REGION 1

In this section, expressions for guided electromagnetic fields inside the
chiral substrate ( 0 < z < d ) are derived. For time harmonic variations,
assuming time dependence of the form eiωt , Maxwell equations for
source-free media are given by

∇× �E = −iω�B (1)

∇× �H = iω �D (2)

∇ · �D = 0 (3)

∇ · �B = 0 (4)

Using the Post-Jaggard time-harmonic constitutive relations for iso-
tropic reciprocal chiral media [14],

�D = ε�E− iξ�B (5)
�B = µ�H + iµξ�E (6)
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the wave equations for electromagnetic fields inside the substrate can
be written as

∇2�E + 2p∇× �E + k2�E = 0 (7)

∇2 �H + 2p∇× �H + k2 �H = 0 (8)

where

k2 = ω2µε (9)
p = ωµξ (10)

As the geometry shown in Fig. 1 is unbounded in the x and y di-
rections, and the chiral substrate is a linear homogeneous medium, we
can assume without loss of generality that the surface waves propagate
along the x direction. Hence, we propose the following vector func-
tions for the electric and magnetic fields, inside the chiral substrate:

�E(x, z) = �E(z)e−iβx (11)
�H(x, z) = �H(z)e−iβx (12)

where β , the propagation constant along the x direction, is a real and
positive quantity in the lossless case.

Introducing expression (11) into the wave equation (7), we obtain
the following fourth order differential equation:

d4Eη(z)
dz4

+2(k2−β2+2p2)
d2Eη(z)
dz2

+(β4−4p2β2−2k2β2+k4)Eη(z) = 0

(13)
where η = x, y or z.

Assuming solutions expressed in the form

Eη(z) = eηeiγz (14)

where eη are constants to be determined, the following biquadratic
equation can be obtained:

γ4 − 2(k2 − β2 + 2p2)γ2 + (β4 − 4p2β2 − 2k2β2 + k4) = 0 (15)

Solving this equation, four different propagation constants in the z
direction are determined. In our work, these propagation constants are
expressed as

γ1 = −γ3 =
√
k2

+ − β2 (16)

γ2 = −γ4 =
√
k2
− − β2 (17)
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where k+ = q + p , k− = q − p and q = (k2 + p2)1/2 . According to
[2], k+ and k− are the wave numbers of the right and left-circularly
polarized waves propagating in an unbounded chiral medium.

lntroducing (14) in (11) we can write the expressions for the electric
field components inside the chiral substrate in the following way

Eη(x, z) =

{
4∑

τ=1

eητeiγτz
}
e−iβx (18)

Using similar development, the components of the magnetic field
are given by

Hη(x, z) =

{
4∑

τ=1

hητeiγτz
}
e−iβx (19)

At this time we have twenty five unknowns: the constants eητ and
hητ ( η = x, y or z ; τ = 1, 2, 3 or 4) and the propagation constant
β.

Introducing expressions (18) and (19) in the Maxwell equations (1)
and (2), the following relations involving eητ and hητ are obtained

exτ =
γτ
β

ezτ (20)

eyτ = (−1)τ+1 ikτ
β

ezτ (21)

hxτ = (−1)τ+1 iγτ
βηc

ezτ (22)

hyτ = − kτ
βηc

ezτ (23)

hzτ = (−1)τ+1 i

ηc
ezτ (24)

where k1 = k3 = k+, k2 = k4 = k−, ηc = (µ/εc)1/2 is the intrin-
sic impedance of the chiral medium and εc = ε + µξ2 its equivalent
permittivity. With this procedure, we have drastically reduced the
number of the unknowns in the chiral substrate. They are now only
the propagation constant β and the constants ez1, ez2, ez3 and ez4.

4. ELECTROMAGNETIC FIELDS IN REGION 2

The wave equations for the electromagnetic fields in the free space
(z > d) can be obtained from equations (7) and (8) if the particular
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conditions ξ = 0, ε = ε0 and µ = µ0 are observed. After the
substitution of these values, we have

∇2�E0 + k2
0
�E0 = 0 (25)

∇2 �H0 + k2
0
�H0 = 0 (26)

where
k2

0 = ω2µ0ε0 (27)

Using a procedure similar to that presented in the previous section,
the expressions for the electromagnetic field components in the free
space region are given by

Eη0(x, z) = eη0e−(αz+iβx) (28)

Hη0(x, z) = hη0e−(αz+iβx) (29)

where α is the attenuation rate in the z direction of the guided modes,
a real and positive quantity, and is written as:

α =
√
β2 − k2

0 (30)

In the free space region, the constants eη0 and hη0 satisfy the
following relations

ex0 =
iα

β
ez0 (31)

ey0 =
ωµ0

β
hz0 (32)

hx0 =
iα

β
hz0 (33)

hy0 = −ωε0
β

ez0 (34)

After that, besides the propagation constant β , only the constants ez0
and hz0 are unknown in this region.

5. BOUNDARY CONDITIONS AND DISPERSION
EQUATION

For the grounded chiral slab presented in Fig. 1, the necessary and
sufficient boundary conditions are those that require the tangential
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components of the electric field to vanish on the ground plane (z = 0)
and the continuity of the tangential components of the electric and
magnetic fields on the chiral-free space interface z = d . After the
application of these conditions, we can write the following system of
equations involving ezτ , ez0 and hz0 :

4∑
τ=1

(γτezτ ) = 0 (35)

4∑
τ=1

[
(−1)τ+1kτezτ

]
= 0 (36)

4∑
τ=1

[
γτe

iγτdezτ
]

= iαe−αdez0 (37)

4∑
τ=1

[
(−1)τ+1kτe

iγτdezτ
]

= −iωµ0e
−αdhz0 (38)

4∑
τ=1

[
(−1)τ+1 γτ

ηc
eiγτdezτ

]
= αe−αdhz0 (39)

4∑
τ=1

[
kτ
ηc
eiγτdezτ

]
= ωε0e

−αdez0 (40)

In order to have a solution different from zero for the system (35)–
(40), we must force its determinant to be zero. This results in the
following dispersion equation for surface wave modes, guided in the
chiral substrate:

ηcγ2k−(γ2
1k

2
0 − α2k2

+) sin(γ1d) cos(γ2d)

− αωγ1γ2k
2(ε0η2

c + µ0) cos(γ1d) cos(γ2d)
+ 0.5αω(γ2

1k
2
− + γ2

2k
2
+)(ε0η2

c + µ0) sin(γ1d) sin(γ2d)

+ ηcγ1k+(γ2
2k

2
0 − α2k2

−) cos(γ1d) sin(γ2d)

+ αωγ1γ2k
2(ε0η2

c − µ0) = 0 (41)

According to [15], the cut-off frequencies of these modes are found
by setting α = 0 in (41). When this is done, we get the following
equation:

k−γ1c sin(γ1cd) cos(γ2cd) + k+γ2c sin(γ2cd) cos(γ1cd) = 0 (42)
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where

γ1c = (k2
+ − k2

0)
1/2 (43)

γ2c = (k2
− − k2

0)
1/2 (44)

Equations (41) and (42) are similar to the equations for dispersion
curves and cut-off frequencies presented in [3, 11]. In an achiral slab
(i.e., for ξ = 0.0 S), (41) and (42) reduce to the standard equations for
TE and TM guided modes [15].

We observe that k0 is the lowest value for the propagation constant
of any guided mode because, if β were less than k0, α would be purely
imaginary and the fields in the free space region would be proportional
to e−iz(k

2
0−β2)1/2 . In this case, we would get the so called radiation

modes and the structure behaves like a leaky-wave antenna. On the
other hand, analyzing (41) we note that, under the condition β < k0 ,
this expression is complex and it is not possible to find a β that
simultaneously sets to zero its real and imaginary parts.

We also observe that k+ is the highest value for the propagation
constant of any guided mode because, if β were greater than k+,
γ1 and γ2 would be purely imaginary. This means that all modes
associated to these propagation constants would be attenuated. It can
also be observed that, when β is greater than k+ , (41) is negative,
purely imaginary and cannot be zeroed.

As pointed out in [3], guided waves in grounded chiral slabs are
possible if the condition k+ > β > k0 is satisfied.

6. EXPRESSIONS FOR GUIDED ELECTROMAGNETIC
FIELDS

Solutions of the dispersion equation (41) and of the system (35)–(40)
yield the propagation constant β of a given guided mode and the
expressions for ezτ , ez0 and hz0 . Substituting the values obtained
for β, ezτ , ez0 and hz0 into equations (20)–(24) and (31)–(34) and
then into equations (18), (19), (28) and (29), we obtain the following
expressions for the components of the electric and magnetic fields of
guided modes, inside and outside the chiral substrate:
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a) Inside the chiral substrate (0 < z < d)

Ex(x, z) =
2iez4
β∆

{
γ1γ2[cos(γ1z)− cos(γ2z)]W1

+ [γ1k− sin(γ1z) + γ2k+ sin(γ2z)]W2

}
e−iβx (45)

Ey(x, z) =
2iez4
β∆

{
k2[cos(γ1z)− cos(γ2z)]W2

− [γ2k+ sin(γ1z) + γ1k− sin(γ2z)]W1

}
e−iβx (46)

Ez(x, z) =
2ez4
∆

{
[k− cos(γ1z) + k+ cos(γ2z)]W2

− [γ2 sin(γ1z)− γ1 sin(γ2z)]W1

}
e−iβx (47)

Hx(x, z) = − 2ez4
β∆ηc

{
γ1γ2[cos(γ1z) + cos(γ2z)]W1

+ [γ1k− sin(γ1z)− γ2k+ sin(γ2z)]W2

}
e−iβx (48)

Hy(x, z) = − 2ez4
β∆ηc

{
k2[cos(γ1z) + cos(γ2z)]W2

− [γ2k+ sin(γ1z)− γ1k− sin(γ2z)]W1

}
e−iβx (49)

Hz(x, z) =
2iez4
∆ηc

{
[k− cos(γ1z)− k+ cos(γ2z)]W2

− [γ2 sin(γ1z) + γ1 sin(γ2z)]W1

}
e−iβx (50)

where

∆ = (γ1γ2kak+ + iαγ1k
2) cos(γ1d)− i(γ2

1kak− + iαγ2k
2
+) sin(γ1d)

− (γ1γ2kak+ − iαγ1k
2)eiγ2d (51)

ka = ωε0ηc (52)
W1 = αk2[cos(γ1d) + cos(γ2d)]
− ka[γ1k− sin(γ1d) + γ2k+ sin(γ2d)] (53)

W2 = γ1γ2ka[cos(γ1d)− cos(γ2d)]
+ α[γ2k+ sin(γ1d)− γ1k− sin(γ2d)] (54)

b) Outside the chiral substrate (z > d)

Ex0(x, z) =
2iαez4
β∆

Y1e
[α(d−z)−iβx] (55)
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Ey0(x, z) =
2iez4
β∆

Y2e
[α(d−z)−iβx] (56)

Ez0(x, z) =
2ez4
∆

Y1e
[α(d−z)−iβx] (57)

Hx0(x, z) = − 2αez4
ωβ∆µ0

Y2e
[α(d−z)−iβx] (58)

Hy0(x, z) = −2ωε0ez4
β∆

Y1e
[α(d−z)−iβx] (59)

Hz0(x, z) =
2iez4
ω∆µ0

Y2e
[α(d−z)−iβx] (60)

where

Y1 = (γ2
2k

2
+ − γ2

1k
2
−) sin(γ1d) sin(γ2d) (61)

Y2 = 2γ1γ2kak
2[1− cos(γ1d) cos(γ2d)]− 2αk2[γ1k− cos(γ1d) sin(γ2d)

+ γ2k+ sin(γ1d) cos(γ2d)] + ka(γ2
2k

2
+ + γ2

1k
2
−) sin(γ1d) sin(γ2d) (62)

It is worth pointing out that, in our approach, we have considered
ez4 as a parameter depending on the excitation.

7. NUMERICAL RESULTS

Using the formulation described above, effects of chirality on electro-
magnetic field distributions and on dispersion curves of several surface
wave modes were analyzed. We have chosen chiral admittance values
normally found in the literature [1, 16] and, for brevity, only the results
for the chirostrip structure with ε = 2.0ε0 , µ = µ0 , and d = 32.0 mm
are discussed below.

Dispersion curves for ξ = 3.0 mS and for ξ = 0.0 S (achiral sub-
strate) are presented in Figs. 2(A) and 2(B), respectively. In Fig. 2(A)
the dashed line corresponds to the geometric locus of k0 , the upper
dotted line corresponds to the geometric locus of k+ , the lower one
to the geometric locus of k− and the dot-dash line corresponds to the
geometric locus of k . When the substrate is achiral (Fig. 2(B)), the
geometric loci of k+ and k− coincide with that of k . In Figs. 2(A)
and 2(B) we note that, increasing the chirality parameter, k+ moves
away from k upward and k− downward. This occurs because the
relation k+k− = k2 is valid for any ξ . It is worth noting that, when
ξ > (εr − 1)/(2η0) , where η0 is the intrinsic impedance of the free
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Figure 2. Dispersion curves for guided modes with d = 32.0 mm,
µ = µ0 and ε = 2.0ε0 . (A) ξ = 3.0 mS; (B) achiral substrate.
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space and εr = ε/ε0 , we have k− < k0 . Considering the chiral sub-
strate constitutive parameters used in these examples, the inequality
k− < k0 occurs when ξ is greater than 1.33 mS. This situation can
be observed in Fig. 2(A) for ξ = 3.0 mS. As we pointed out in Section
5, all dispersion curves are located between the k0 and k+ curves.
We observe in Figs. 2(A) and 2(B) that the first mode of propaga-
tion has no cut-off frequency. We also observe that chirality tends to
increase the number of propagating modes for a given operating fre-
quency. For example, at 6.0 GHz the achiral substrate supports three
different propagating modes: TM0, TE1 and TM2 . When chirality
increases to 3.0 mS, this number increases to four hybrid propagating
modes: EH0, HE1, EH2 and HE3.

Effects of chirality on field patterns for the first and the second
propagating modes will now be discussed. In all cases, we employ the
frequency of 5.0 GHz. In Figs. 3 and 4 we have drawn the magnitudes
of the electric and magnetic fields for the first propagating mode. Figs.
3(A) and 4(A) were plotted for an achiral substrate ( TM0 mode) and
Figs. 3(B) and 4(B) for ξ = 0.1 mS ( EH0 mode). As expected, the
components Ey, Hx and Hz are not present in the TM0 mode but
appear with the chirality in the hybrid EH0 mode.

Field patterns for the second propagating mode were plotted in Figs.
5 and 6. When the substrate is achiral, only the Ey, Hx and Hz

components are present, and the propagating mode is the TE1 . On the
other hand, increasing the chirality, all the components are present and,
in this case, the chiral substrate supports the hybrid HE1 propagating
mode.

Finally, in Figs. 7(A) and 7(B), we have drawn the amplitudes of
|Hz| and |Bz| versus z/d for the first hybrid mode and ξ = 1.0 mS
to better observe their behavior at z = d and z = 0 . Two interesting
things related to the magnetic field component Hz can be observed
in Fig. 7(A):
a) the magnetic field component normal to a perfectly conducting sur-

face is not zero in a chiral medium. It can be shown analytically
that the value of the Hz component at z = 0 interface is given by

Hz(x, 0) = −4iωµ0W2e
−iβxez4

∆ηc
ξ (63)
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Figure 3. Electric field patterns for the first propagating mode with
d = 32.0 mm, µ = µ0 , ε = 2.0ε0 and f = 5.0 GHz. (A) achiral
substrate ( TM0 mode); (B) ξ = 0.1 mS ( EH0 mode).
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Figure 4. Magnetic field patterns for the first propagating mode with
d = 32.0 mm, µ = µ0 , ε = 2.0ε0 and f = 5.0 GHz. (A) achiral
substrate ( TM0 mode); (B) ξ = 0.1 mS ( EH0 mode).
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Figure 5. Electric field patterns for the second propagating mode
with d = 32.0 mm, µ = µ0 , ε = 2.0ε0 and f = 5.0 GHz. (A) achiral
substrate ( TE1 mode); (B) ξ = 0.1 mS ( HE1 mode).
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Figure 6. Magnetic field patterns for the second propagating mode
with d = 32.0 mm, µ = µ0 , ε = 2.0ε0 and f = 5.0 GHz. (A) achiral
substrate ( TE1 mode); (B) ξ = 0.1 mS ( HE1 mode). The region
between z = 0.999d and z = 1.001d has been expanded to show the
discontinuity in the |Hz| component.
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Figure 7. Magnitudes of Hz and Bz versus z/d with ξ = 1.0 mS,
for the first hybrid mode. The region from z = 0.9d to z = 1.1d has
been expanded to show the discontinuity in the |Hz| component.
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b) Hz is not continuous on the interface between the chiral substrate
and the free space region even when the permeability is the same
in the two media. The difference between Hz(x, d) and Hz0(x, d)
can be expressed as:

Hz(x, d)−Hz0(x, d) =
4iγ1γ2ωµ0e

−iβxez4
∆

{
ka[1− cos(γ1d) cos(γ2d)]

− αd[k+ cos(γ2d) sinc(γ1d) + k− cos(γ1d) sinc(γ2d)]

+ kad
2(k2 + β2) sinc(γ1d) sinc(γ2d)

}
ξ2 (64)

where sinc(x) = sin(x)/x.
To better observe the discontinuity at z = d , the region from

z = 0.9d to z = 1.1d has been expanded in Fig. 7(A). We note also
in expression (64) that the value of the discontinuity at the interface
is proportional to the square of the chiral admittance ξ . This propor-
tionality is confirmed from the fact that in Fig. 6(B) we had to zoom
in a region one hundred times smaller than in Fig. 7(A). This was done
in order to observe a similar discontinuity as the chiral admittance was
ten times smaller.

On the other hand, Bz is zero on the perfectly conducting surface
and continuous on the chiral-free space interface, as shown in Fig. 7(B).

8. CONCLUSIONS

We have presented an alternative formulation for guided electromag-
netic fields in grounded chiral slabs. This formulation is formally equiv-
alent to the double Fourier transform method used by the authors to
calculate the spectral fields in open chirostrip structures. Special at-
tention to the behavior of the electromagnetic fields in the vicinity of
the ground plane and on the interface between the chiral substrate
and free space was given. It has been observed that, inside a chiral
substrate and on the interface with a perfectly conducting surface, the
magnetic field component normal to this surface is not null. More-
over, on the interface between a chiral substrate and free space, the
magnetic filed component normal to this interface is not continuous
even when the magnetic permeability is the same in the two media.
Clearly, chirostrip structures exhibit unusual boundary conditions for
the magnetic field when compared with microstrip structures.
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