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1. INTRODUCTION

As we know, Fredholm integral equation of the first kind is a kind
of importance in many engineering fields. Several methods have been
proposed, such as expansion method [1,2], regularization method [3],
Backus-Gilbert method [4], Galerkin method [1], and the moment
method [5], etc. But the moment method has played an important
role in engineering computations. Fredholm integral equation of the
first kind appears frequently in practice [6].
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In general, the matrix constructed by the conventional moment
method is dense, and so its solution is very time-consuming, partic-
ularly for large number of subsections. The major computational diffi-
culty in implementing Galerkin’s method is that virtually for all prac-
tical cases the inner products need to be evaluated numerically. In par-
ticular the task of evaluating the double integrals can be quite difficult
and time-consuming for non-smooth kernel functions. To overcome the
difficulties of large memory requirement and high computation time,
many researchers have proposed the use of wavelet basis.

As we know, it is important to select a suitable basis function in nu-
merical computation of integral equations and differential equations.
Many kinds of basis functions have been proposed, such as triangular
basis function, pulse basis function, polynomial basis function, spline
and B-spline basis function. Recently, the wavelet basis function [7] or
wavelet-like basis function [8] has been proposed to solve the numer-
ical solutions of Fredholm equations and differential equation in one
dimension. Steinbery et al. [9] used the wavelet expansions for the un-
known current (function) in the moment method, which is expressed
as a twofold summation of shifted and dilated forms of properly chosen
basis function. Goswami et al. [10] used wavelets on a bounded interval
to solve the first-kind integral equations in electromagnetic scattering
problems.

Wang [11] proposed a hybrid method based on the wavelet expansion
method and boundary element method. In his method, the unknown
surface current is expanded in terms of a basis derived from periodic,
orthogonal wavelet in interval [0,1].

Because of the local supports and vanishing moment properties of
wavelets, many of the matrix elements are very small compared to the
largest element, and hence can be neglected without significantly affect-
ing the solution. Using moment method and subsequently a threshold
procedure, the matrix constructed by these methods can be rendered
sparse. Then, the linear equation with the sparse matrix is solved.

The objective of this paper is to propose an efficient method for solv-
ing Fredholm integral equation of the first kind from the point of view
of reducing the order of the linear equation, rather than making the
matrix sparse. First, a new method for approximating a function has
been proposed based on multiscaling and wavelet-like basis. Second,
by use of this kind of basis, the multiscale moment method for solving
Fredholm integral equation of the first kind in one dimension has been
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proposed. Furthermore, the adaptive algorithm of the multiscale mo-
ment method has been presented according to the characteristics of the
solution of the integral equation. Many of the numerical simulations
are carried out to test the feasibility of the multiscale moment method
and its adaptive algorithm.

2. FORMULA FOR BASIS FUNCTIONS BASED ON
MULTISCALING TECHNIQUE

For reasons of simplicity, consider the problem of approximating a
function f(x) in the interval [0,1]. Suppose the 0’th approximation
function f0(x) is defined as follows:

f0(x) = f(x0,0)φ0(x) + f(x0,1)φ1(x) (1.1)

where

φ0(x) = φ0,1(x) =
{

1− x x ∈ [0, 1]
0 otherwise

,

φ1(x) = φ0,2(x− 1), φ0,2(x) =
{
x− 1 x ∈ [−1, 0]
0 otherwise

x0,0 = 0, x0,1 = 1

By multiscaling the interval on [0,1], the new interpolation node is
x1,1 = x0,0+x0,1

2 = 1
2 , and the 1’st approximation function f1(x) is

defined as follows:

f1(x) = f0(x) + τ1,1φ1,1(x) (1.2)

where φ1,1(x) = φ0,1[2(x−x1,1)]+φ0,2[2(x−x1,1)] . τ1,1 is an unknown
coefficient.

Let us suppose f1(x1,1) = f(x1,1) , then

τ1,1 = f(x1,1)− f0(x1,1) = f(x1,1)−
1
2
(f(x0,0) + f(x0,1)) (1.3)

By multiscaling the interval [0,1] again, the new interpolation nodes
obtained are, x2,1 = x0,0+x1,1

2 = 1
4 , x2,1 = x1,1+x0,1

2 = 3
4 . The 2’nd

approximation function f2(x) is generated as follows:

f2(x) = f1(x) + τ2,1φ2,1(x) + τ2,2φ2,2(x) (1.4)
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where φ2,1(x) = φ0,1[2(x−x2,1)]+φ0,2[2(x−x2,1)] , φ2,2(x) = φ0,1[2(x−
x2,2)] + φ0,2[2(x− x2,2)] , τ2,1 , τ2,2 are unknown coefficients.

Let us suppose f2(x2,1) = f(x2,1) , f2(x2,2) = f(x2,2) then:

τ2,1 = f(x2,1)− f2(x2,1) = f(x2,1)−
1
2
(f(x0,0) + f(x1,1)),

τ2,2 = f(x2,2)− f2(x2,2) = f(x2,2)−
1
2
(f(x0,1) + f(x1,1))

In general, by J -times multiscaling the interval [0,1] the new inter-
polation nodes generated are {xJ,i = 1

2J + i−1
2J−1 , i = 1, 2, . . . , 2J−1} ,

the J ’th approximation function fJ(x) is defined as follows:

fJ(x) = fJ−1(x) +
2J−1∑
i=1

τj,iφj,i(x)

= f0(x) +
J∑
j=1

2J−1∑
i=1

τj,iφj,i(x)

where φj,i(x) = φ0,1[2j(x−xj,i)] +φ0,2[2j(x−xj,i)] , τj,i are unknown
coefficients.

Let fJ(xJ,i) = f(xJ,i), i = 1, 2, . . . , 2J−1 , then

τJ,i = f(xJ,i)− fJ−1(xJ,i) = f(xJ,i)− f0(xJ,i)−
J∑
j=1

2J−1∑
n=1

τj,nφj,n(xJ,i)

= f(xJ,i)−
1
2

(
f(xJ,i −

1
2J

) + f(xJ,i −
1
2J

)
)

If f(x) possesses a second order differentiability condition at xJ,i ,
then

τJ,i ≈ −
1
2

1
2J+1

f ′′(xJ,i) (1.5)

Apparently, this kind of functions {φ0(x), φ1(x), φJ,i(x); J = 1, 2, . . . ,
i = 1, 2, . . . , 2J−1} can be used as a set of basis functions in the interval
[0,1]. And it is related to the triangular basis functions {Ψi(x)} .

For one multiscale, we have the following formula:

 Ψ1(x)

Ψ2(x)
Ψ3(x)


 =


 1 0 −1/2

0 0 1
0 1 −1/2





 φ0(x)

φ1(x)
φ1,1(x)



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The transform matrix between original basis and new kind of basis is
T :

T1 =


 1 0 −1/2

0 0 1
0 1 −1/2




For two multiscale, the transform matrix can be written as:

T2 =




1 0 −1/2 −1/2 0
0 0 0 1 0
0 0 1 −1/2 −1/2
0 0 0 0 1
0 1 −/2 0 −1/2




For three multiscale, the transform matrix can be written as:

T3 =




1 0 −1/2 −1/2 0 −1/2 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 −1/2 −1/2 0 0
0 0 0 0 0 0 1 0 0
0 0 1 −1/2 −1/2 0 −1/2 −1/2 0
0 0 0 0 1 0 0 −1/2 −1/2
0 0 0 0 0 0 0 0 1
0 1 −1/2 0 −1/2 0 0 0 −1/2




The plots of φ0(x), φ1(x), φ1,1(x), φ2,1(x), φ2,2(x), φ3,2(x) are
shown in Fig. 1.

In general, a function f(x) in [0,1] can be approximated by choosing
a scaled version of the triangular basis functions, as illustrated by
{φi(x); i = 0, 1, 2, . . . , N} . The node points are at {x0,i = i

N =
ih; i = 0, 1, 2, . . . , N, h = 1

N } . The basis functions can be written as
follows:

φ0(x) = φ0,1(x)
φN (x) = φ0,2(x− 1)
φi(x) = φ0,1(x− x0,i) + φ0,2(x− x0,i) i = 1, 2, . . . , N − 1

where
φ0,1(x) =

{
1−Nx for x ∈ [0, h]
0 otherwise

φ0,2(x) =
{

1 +Nx for x ∈ [−h, 0]
0 otherwise
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(a) (b)

(c) (d)

Figure 1.

The approximation for the function f0 can be written as

f0(x) =
N∑
n=0

f(x0,n)φn(x) (1.6)

By multiscaling the interval on [0,1], the new interpolation nodes are
given by x1,j = x0,j−1+x0,j

2 = 1
2N + i−1

N . The 1’st approximation
function f1(x) is then defined as follows:

f1(x) = f0(x) +
N∑
i=1

τ1,iφ1,i(x) (1.7)

where φ1,i(x) = φ0,1[2(x − x1,i)] + φ0,2[2(x − x1,i)] . τ1,j are the un-
known coefficients.
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Let’s suppose that f1(x1,i) = f(x1,i) , then:

τ1,i = f(x1,i)− f0(x1,i) = f(x1,i)−
1
2
(f(x0,i−1 + f(x0,i))

By multiscaling the interval [0,1] again, the new interpolation nodes are
given by x2,i = 1

4N + i−1
2N , (i = 1, 2, . . . , 2N) . The 2’nd approximation

function f2(x) is written as follows

f2(x) = f0(x) +
N∑
i=1

τ1,iφ1,i(x) +
2N∑
i=1

τ2,iφ2,i(x) (1.8)

where φ2,i(x) = φ0,1[22(x − x2,i)] + φ0,2[22(x − x2,i)] . τ2,j are the
unknown coefficients.

Let f2(x2,i) = f(x2,i), i = 1, 2, . . . , 2JN , then

τ2,i = f0(x2,i) +
N∑
i=1

τ1,iφ1,i(x2,i) i = 1, 2, . . . , 2jN

By J -times multiscaling the interval [0,1] the new interpolation nodes
are {xJ,i = 1

2JN + i−1
2J−1N , i = 1, 2, . . . , 2J−1N} . The J ’th approxima-

tion function fJ(x) is defined as follows:

fJ(x) = fJ−1(x) +
2J−1N∑
i=1

τJ,iφJ,i(x)

=
N∑
n=0

f(x0,n)φn(x) +
J∑
j=1

2j−1N∑
i=1

τj,iφj,i(x) (1.9)

where φj,i(x) = φ0,1[2j(x−xj,i)]+φ0,2[2j(x−xj,i)] . τJ,i are unknown
coefficients.

Let fJ(xJ,i) = f(xJ,i), i = 1, 2, . . . , 2J−1N , then

τJ,i = f(xJ,i)− fJ−1(xJ,i)

= f(xJ,i)− f0(xJ,i)−
J∑
j=1

2j−1N∑
n=1

τj,nφj,n(xJ,i)

= f(xJ,i)−
1
2

(
f(xJ,i −

1
2JN

) + f(xJ,i +
1

2JN
)
)
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If f(x) possesses the two-order continuous differentiable condition at
xJ,i , then

τJ,i ≈ −
1
2

1
2J+1N

f ′′(xJ,i) (1.10)

We can prove that every function f(x) ∈ C[0, 1] can be uniformly
approximated by {fJ(x), J = 1, 2, 3, . . .} , that is

f(x) =
N∑
i=0

f(x0,i)φi(x) +
∞∑
J=1

2J−1N∑
i=1

τJ,iφJ,i(x) on C[0, 1] (1.11)

From the formula (1.5) and (1.10), we know that if f(x) has the two-
order continuous differentiability condition at xJ,i , the coefficients τJ,i
will be approximately zero as J increases. If f(x) is linear at some
interval in [0,1], τJ,i will be zero. If f(x) has a jump at x∗ in [0,1],
the coefficients τJ,i near x∗ will not decrease to zero. This property
will be very useful in illustrating how to reduce the order of the linear
equations constructed by the moment method, which will be discussed
in the next section.

This new kind of basis has local support, but does not have vanishing
moment properties unlike wavelets.

We also can deal with f(x) being approximated by triangular func-
tions based on non-uniform grid, and then use the multiscaling tech-
nique. The coefficients for the expansion and approximation of the
discontinuous function utilizing a 5-time multiscale for the function

f(x) =
{

(0.5− x)2 cos(10πx) x ∈ [0, 0.6)√
x x ∈ [0.6, 1]

is shown in Fig. 2a and Fig. 2b.

3. A MULTISCALE MOMENT METHOD FOR SOLVING
INTEGRAL EQUATION

In the section, we discuss how to use a new kind of basis functions
based on multiscaling the region Ω ([0,1]). We name this a multiscale
moment method and use it to solve Fredholm integral equation of the
first kind of the form

g(x) =
∫ 1

0
k(x, t)f(t)dt x ∈ [0, 1] (2.1)
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(a)

(b)

Figure 2.

From the above discussion, we know that every function f(x) ∈ C[0, 1]
can be written as follows:

f(x) =
N∑
n=0

f(x0,i)φi(x) +
∞∑
J=1

2J−1N∑
i=1

τJ,iφJ,i(x) (2.2)

In the method of moment, we select {φi(x), φJ,k(x)} as the basis and
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testing functions. A finite set of functions is used, written as

f(x) ≈ fJ(x) =
N∑
i=0

τ0,iφi(x) +
J∑
j=1

2j−1N∑
i=1

τj,iφj,i(x) (2.3)

By substituting the above formula into the integral equation, we obtain

g(x) =
N∑
i=0

τ0,i

∫ 1

0
k(x, t)φi(t)dt+

J∑
j=1

2j−1N∑
i=1

τj,i

∫ 1

0
k(x, t)φj,i(t)dt

(2.4)
Also we select {φi(x), φJ,k(x)} as the set of weighting functions. And
take the inner product of the above equation with the weighting func-
tions and use the linearity of the inner product to obtain the following
formula

∫ 1

0
g(x)φm(x)dx =

N∑
i=0

τ0,i

∫ 1

0

∫ 1

0
k(x, t)φi(t)φm(x)dtdx

+
J∑
j=1

2j−1N∑
i=1

τj,i

∫ 1

0

∫ 1

0
k(x, t)φj,i(t)φm(x)dtdx

∫ 1

0
g(x)φl,n(x)dx =

N∑
i=0

τ0,i

∫ 1

0

∫ 1

0
k(x, t)φi(t)φl,n(x)dtdx

+
J∑
j=1

2j−1N∑
i=1

τj,i

∫ 1

0

∫ 1

0
k(x, t)φj,i(t)φl,n(x)dtdx

m = 0, 1, 2, . . . , N, l = 1, 2, . . . , J, n = 1, 2, . . . , 2l−1N

The set of equations can be written in a matrix form as


F0

F1
...
FJ


 =



A0,0 A0,1 · · · A0,J

A1,0 A1,1 · · · A1,J
...

...
. . .

...
AJ,0 AJ,1 · · · AJ,J






X0

X1
...
XJ




where X0 = (τ0,0, τ0,1, . . . , τ0,N )T , Xj = (τj,1, τj,2, . . . , τj,2j−1N )T ,
j = 1, 2, . . . , J)

F0(i) =
∫ 1

0
g(x)φi(x)dx i = 0, 1, 2, . . . , N
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Fj(i) =
∫ 1

0
g(x)φj,i(x)dx j = 1, 2, . . . , J, i = 1, 2, . . . , 2j−1N

A0,0(i, k) =
∫ 1

0

∫ 1

0
k(x, t)φi(x)φk(x)dxdt

i = 0, 1, . . . , N, k = 0, 1, . . . , N

A0,j(i, k) =
∫ 1

0

∫ 1

0
k(x, t)φi(x)φj,k(x)dxdt

i = 0, 1, . . . , N, k = 1, 2, . . . , 2j−1N

Aj,0(k, i) =
∫ 1

0

∫ 1

0
k(x, t)φi(x)φj,k(x)dxdt

i = 0, 1, . . . , N, k = 1, 2, . . . , 2j−1N

Aj,l(i, k) =
∫ 1

0

∫ 1

0
k(x, t)φj,i(x)φl,k(x)dxdt

i = 0, 1, . . . , 2l−1N, k = 1, 2, . . . , 2j−1N

The expressions for F0(i), FJ(i), A0,0(i, k), A0,J(i, k), AJ,0(k, i),
AJ,l(i, k) can be written as follows:

F0(i) =




∫ 1
N

0
f(t+

i

N
)(1−Nt)dt i = 1

∫ 1
N

0
f(t+

i

N
)(1−Nt)dt+

∫ 0

− 1
N

f(t+
i

N
)(1 +Nt)dt i = 1, 2, . . . , N − 1

∫ 0

− 1
N

f(t+
i

N
)(1 +Nt)dt i = N

FJ(i) =
1
2J

∫ 1
N

0
f

(
1
2J

(t+
2i− 1
N

)
)

(1−Nt)dt

+
1
2J

∫ 0

− 1
N

f

(
1
2J

(t+
2i− 1
N

)
)

(1 +Nt)dt i = 1, 2, . . . , 2J−1N
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A0,0(i,m) =
∫ 1

N

0
(1−Nx)dx

∫ 1
N

0
k(x+

m

N
, t+

i

N
)(1−Nt)dt

+
∫ 0

− 1
N

(1 +Nx)dx
∫ 1

N

0
k(x+

m

N
, t+

i

N
)(1−Nt)dt

+
∫ 1

N

0
(1−Nx)dx

∫ 0

− 1
N

k(x+
m

N
, t+

i

N
)(1 +Nt)dt

+
∫ 0

− 1
N

(1 +Nx)dx
∫ 0

− 1
N

k(x+
m

N
, t+

i

N
)(1 +Nt)dt

(i = 1, 2, . . . , N − 1, m = 1, 2, . . . , N − 1)

A0,J(i,m)

=
1
2J

∫ 1
N

0
(1−Nx)dx

∫ 1
N

0
k(x+

m

N
,

1
2J

(t+
2i− 1
N

))(1−Nt)dt

+
1
2J

∫ 0

− 1
N

(1 +Nx)dx
∫ 1

N

0
k(x+

m

N
,

1
2J

(t+
2i− 1
N

))(1−Nt)dt

+
1
2J

∫ 1
N

0
(1−Nx)dx

∫ 0

− 1
N

k(x+
m

N
,

1
2J

(t+
2i− 1
N

))(1 +Nt)dt

+
1
2J

∫ 0

− 1
N

(1 +Nx)dx
∫ 0

− 1
N

k(x+
m

N
,

1
2J

(t+
2i− 1
N

))(1 +Nt)dt

(i = 1, 2, . . . , 2J−1N, m = 1, 2, . . . , N − 1)

AJ,0(i,m)

=
1
2J

∫ 1
N

0
(1−Nx)dx

∫ 1
N

0
k(

1
2J

(x+
2m− 1
N

), t+
i

N
)(1−Nt)dt

+
1
2J

∫ 0

− 1
N

(1 +Nx)dx
∫ 1

N

0
k(

1
2J

(x+
2m− 1
N

), t+
i

N
)(1−Nt)dt

+
1
2J

∫ 1
N

0
(1−Nx)dx

∫ 0

− 1
N

k(
1
2J

(x+
2m− 1
N

), t+
i

N
)(1 +Nt)dt

+
1
2J

∫ 0

− 1
N

(1 +Nx)dx
∫ 0

− 1
N

k(
1
2J

(x+
2m− 1
N

), t+
i

N
)(1 +Nt)dt

(m = 1, 2, . . . , 2J−1N, i = 1, 2, . . . , N − 1)
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AJ,l(i,m)

=
1

2J+l

∫ 1
N

0
(1−Nx)dx

∫ 1
N

0
k(

1
2J

(x+
2m− 1
N

),
1
2l

(t+
2i− 1
N

))·

(1−Nt)dt

+
1

2J+l

∫ 0

− 1
N

(1 +Nx)dx
∫ 1

N

0
k(

1
2J

(x+
2m− 1
N

),
1
2l

(t+
2i− 1
N

))·

(1−Nt)dt

+
1

2J+l

∫ 1
N

0
(1−Nx)dx

∫ 0

− 1
N

k(
1
2J

(x+
2m− 1
N

),
1
2l

(t+
2i− 1
N

))·

(1 +Nt)dt

+
1

2J+l

∫ 0

− 1
N

(1 +Nx)dx
∫ 0

− 1
N

k(
1
2J

(x+
2m− 1
N

),
1
2J

(t+
2i− 1
N

))·

(1 +Nt)dt

(m = 1, 2, . . . , 2J−1N, i = 1, 2, . . . , 2l−1N)

The scheme of solving the above matrix equation is as follows:

Step 1: By utilizing the conjugate gradient method, we solve the
equation A0,0X0 = F0 . The result is expressed as X∗0 .

Step 2: solve the equation
(
A0,0 A0,1

A1,0 A1,1

) (
X0

X1

)
=

(
F0

F1

)
, by the

conjugate gradient method. The initial guess
(
X0

X1

)(0)

can be selected

as
(
X∗0
�0

)
. The computed result is expressed as

(
X∗0
X∗1

)
.

Step 3: solve the equation


A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2





X0

X1

X2


 =


F0

F1

F2


 ,

by the conjugate gradient method utilizing the initial guess


X0

X1

X2




(0)

for


X∗0
X∗1
�0


 . The result is expressed as


X∗0
X∗1
X∗2


 . This procedure con-
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tinues until the original equation is solved by satisfying some prescribed
degree of accuracy.

Some Notes:

(1) This new method is a kind of moment method, but is different from
the conventional MM. The coefficient matrix of the two methods has
the following relation:




(φ1, φ1) . . . (φ1, φN )
...

. . .
...

(φN , φ1) . . . (φN , φN )


 = T




(ψ1, ψ1) . . . (ψ1, ψN )
...

. . .
...

(ψN , ψ1) . . . (ψN , ψN )


T ′

where T is the transform matrix between original basis {φi(x)} and
new kind of basis {ψi(x)} , that is



φ1(x)

...
φN (x)


 = T



ψ1(x)

...
ψN (x)




(f(x), g(t)) =
∫ 1

0
dx

∫ 1

0
k(x, t)f(x)g(t)dt

(2) This new method is different from the method used to solve the
integral equations by use of the multigrid method. But it is like the
wavelet method of solving the Fredholm equation.
(3) When it is desired to increase the scale, one needs to compute only
the terms introduced by the new scale. But if the conventional MM
or multigrid method is adapted, all of the elements of the coefficients
matrix need to be computed again.
(4) The initial guess can be chosen easily.

4. ADAPTIVE ALGORITHM OF MULTISCALE
MOMENT METHOD

From the above discussion, it is known that if the solution of the inte-
gral equation is smooth in some region, many of the coefficients {τJ,i}
will be near zero. So we can reduce the size of the linear equation in
the moment method. For every scale, the order of the linear equation
formed by the multiscale moment method will be changed according to
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the coefficients {τJ,i} , as some of them approach zero. This method
is called an adaptive multiscale moment method. The scheme of the
adaptive multiscale moment method used to solve the Fredholm inte-
gral equation of the first kind is given as follows:

Step 1: By use of the conjugate gradient method, we solve the equa-
tion A0,0X0 = F0 . The result is expressed as X∗0 .
Step 2: Using an interpolation technique, estimate the coefficients
{τ1,i} of the function f0(x) based on (x0,i, X

∗
0 (x)) or (x0,i, f0(x0,i)) .

If |τ1,i| ≤ ε (threshold parameter) for {i = 1, . . . , N} , the correspond-

ing array and column of the matrix
(
A0,0 A0,1

A1,0 A1,1

)
will be omitted.

After reducing the elements of the original matrix and getting an initial
guess according to X∗0 and {τ1,i} , the solution of the linear equations
can be obtained by use of the conjugate gradient method. The result of

the original linear equation is expressed as
(
X∗0
X∗1

)
, where X∗1 maybe

contain some zero elements.
Step 3: Using an interpolation technique, estimate the coefficients
{τ2,i} of the function f1(x) based on (x0,i, f1(x0,i)) and (x1,i,
f1(x1,i)). If |τ2,i| ≤ ε for {i = 1, ..., 2N} and |τ1,i| ≤ ε for {i =
1, . . . , N} , the corresponding array and column of the matrix
A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2


 will be omitted. After reducing the orders of

the original matrix and getting an initial guess according to
(
X∗0
X∗1

)

and {τ2,i} , the solution of the linear equation can be obtained by use
of the conjugate gradient method. The result of the original linear

equation is expressed as


X∗0
X∗1
X∗2


 , where X∗2 may contain some zero

elements.

This procedure continues until some error criteria is met.

In the numerical computation the use of interpolation to estimate
the coefficients, we adapt the following method:

For that points in the middle of the region, where the known data is
{f(−3

2h), f(−1
2h), f(1

2h), f(3
2h)} , the value for f(0) can be computed

from the following formula by using a cubic polynomial approximation
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as

f(0) =
[f(−1

2h) + f(1
2h)]− [f(−3

2h) + f(3
2h)]

6

For that point to the left of the region, suppose the known data is
{f(−1

2h), f(1
2h), f(3

2h)} , the value f(0) can be computed from the
following formula according to the quadratic polynomial approxima-
tion

f(0) =
[f(−1

2h) + f(1
2h)]

2
− [2f(−1

2h) + f(3
2h)]

3

For the point to the right of the region, suppose the known data is
{f(−3

2h), f(−1
2h), f(−1

2h)} , the value f(0) can be computed from the
following formula according to quadratic polynomial approximation

f(0) =
[f(−1

2h) + f(1
2h)]

2
− [2f(1

2h) + f(−3
2h)]

3

So interpolation can be used to estimate the coefficients, {τj,i}.

5. NUMERICAL SIMULATI0NS

In order to test the feasibility of the multiscaling moment method for
solving Fredholm integral equation of the first kind in one dimension,
two kinds of kernel functions of the integral equation will be considered.
The kernel functions, the exact solution and the source functions are
listed in the following table.

Table 1a. k(x, t) = 1√
|x−t|

.
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Table 1b. k(x, t) = − ln |x− t| .

The orders and index of the condition number of the system of linear
equations of the multiscale moment method is given in Table 2a and
Table 2b for different scales and initial divisions, respectively for the
kernel functions k(x, t) = 1√

|x−t|
and k(x, t) = − ln |x− t| .

Table 2a.

Table 2b.

(where OLE is defined as the order of linear equations, ICN is equal
to one over the condition number.) For the case (a) ,N = 8 and the
exact solution function f∗(x) = 1 , the solutions of linear equations
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and the solution function f(x) for different scales is shown in Fig. 3a
and Fig. 3b.

Figure 3a. The solution of the coefficients in different scales.

Figure 3b. The solution of the equation in different scales. Initial
number of nodes, N = 8 .



Multiscale moment method 255

For the case (a) with N = 16 , the exact solution f∗(x) = x2 , the
solutions of linear equations and the solution f(x) on different scales
is shown in Fig. 4a and Fig. 4b.

Figure 4a. The solution of the coefficients in different scales.

Figure 4b. The difference between the exact solution and the solutions
of equation in different scales. Initial number of nodes, N = 16 .
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For the case (a) with N = 32 , the exact solution f∗(x) ={
1 x ∈ [1, 0.5)
1
2 x ∈ [0, 0.5] , the solutions of linear equations, and the solution

f(x) on different scales is shown in Fig. 5a and Fig. 5b.

Figure 5a. The solution of the coefficients in different scales.

Figure 5b. The solution of the equation on different scales, initial
number of nodes, N = 32 .
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For the case (a) with N = 64 , the exact solution f∗(x) ={
2x x ∈ [0, 0.5)
0.1 x ∈ [0, 0.5] , the solutions of linear equations and the solution

f(x) on different scales is shown in Fig. 6a and Fig. 6b.

Figure 6a. The solution of the coefficients in different scales.

Figure 6b. The solution of the equation on different scales, initial
number of nodes, N = 64 .
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For the case (b) with N = 64 , the source function g(x) = 2π , the
solutions of linear equations and the solution f(x) on different scales
is shown in Fig. 7a and Fig. 7b.

Figure 7a. The solution of the coefficients in different scales.

Figure 7b. The solution of the equation on different scales, initial
number of nodes, N = 64 .
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For the case (b) with N = 16 , the source function g(x) = 2π(2x−
1) , the solutions of linear equations and the solution f(x) on different
scales is shown in Fig. 8a and Fig. 8b.

Figure 8a. The solution of the coefficients in different scales.

Figure 8b. The solution of the equation on different scales, initial
number of nodes, N = 16 .
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Now the adaptive multiscale moment method is adapted to solve the
above integral equations. For the case (a), the exact solution f∗(x) ={

1 x ∈ [1, 0.5)
1
2 x ∈ [0, 0.5] , for different initial divisions and threshold values

ε = 0.0001 , the orders and the index of the condition number for the
system of linear equations for the adaptive multiscale moment method
is given in Table 3 for different scales. The solutions of linear equations
and the solution function f(x) on different scales for the case N = 32
is shown in Fig. 9a and Fig. 9b.

Table 3.

(where OA is defined as the order of the linear equation of adaptive
multiscale moment method, ICN is equal to one over the condition
number correspond to the matrix)

Figure 9a. The solution of the coefficients in different scales.



Multiscale moment method 261

Figure 9b. The solution of the equation on different scales. Initial
number of nodes, N = 32 .

For the case (b), the source function g(x) = 2π , different initial
divisions threshold ε = 0.0001 , the orders and index of the condition
number of linear equations of multiscale moment method is given in
Table 4 for different scales. The solutions of linear equations and the
solution function f(x) on different scales in the case of N = 32 is
shown in Fig. 10a and Fig. 10b.

Table 4.
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Figure 10a. The solution of the coefficients in different scales.

Figure 10b. The solution of the equation on different scales. Initial
number of nodes N = 32 .

6. DISCUSSIONS

For two kinds of kernel functions the solution of the Fredholm integral
equation of the first kind has been presented utilizing basis functions
based on different scales and different initial division of the interval.
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From the numerical results, one can observe:

(1) For the multiscale moment method, it is seen that the condition
number of the linear equations is poor when the number of multi-
scale is large. And many of the elements of the solutions of linear
equations are very small.

(2) Because the condition of the linear equation will be poor as the
scale increases, the scale cannot be taken too large. The solution
of the linear equation has large oscillations for large scales. The
adaptive multiscale moment method can improve the condition
number of the linear equation resulting from the integral equation.

(3) The order of the linear equation constructed by the adaptive mul-
tiscale moment method at the i th scale will be reduced according
to the solution of linear equation at the i− 1 ’th scale

(4) The point of discontinuity of the solution can be found from the
solution of the linear equation, without getting blurred too much
by the Gibb’s phenomenon associated with the Fourier series

(5) If the solution of the integral equation is almost a linear function,
the order of the linear equation can be reduced by about 90% of
the original order of the linear equation. This property shows that
the method can save time in computing the numerical solution of
the integral equation.

(6) The adaptive multiscale moment method can realize automati-
cally the mesh-refinement procedure in the local regions.

Efforts in studying Fredholm integral equation of the first kind in
two or three dimension by use of this new technique are under way and
their results will be reported in the future.
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