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1. INTRODUCTION

Scattering of electromagnetic waves on dielectric structures is a basic
physical process and plays an important role in different scientific and
technical fields. Due to the increasing interest in remote sensing of
the earth and its environment, scattering on objects in the atmosphere
(aerosols, ice crystals in clouds) and on structures on the earth sur-
face (ice, vegetation, geological structures) becomes more and more
important [1–5]. In astrophysics, the analysis of light scattered by in-
terplanetary and interstellar dust can improve our understanding of the
cosmic evolution [6–8]. In biology and chemistry, the scattered light
analysis is helpful for the investigation of macromolecules in solutions
and, last not least, it’s an important diagnostic method in medicine
and technics [9–11]. These few examples demonstrate the necessity
to deal with scattering in different frequency ranges and on different
geometrical configurations. Scattering on spherical particles and in-
finitely extended circular cylinders can be treated analytically within
the Mie theory (strictly speaking, “Mie theory” means scattering on
spheres but, since the way of solution for an infinitely extended circu-
lar cylinder is very similar, this name will be used for both cases in
this paper) [12–18]. Otherwise, numerical methods have to be applied.
Unfortunately, there exist only few methods which offer a rigorous
electromagnetic approach to this problem. Most of the methods start
from assumptions resulting in a restriction of their applicability like the
Discrete Dipole Approximation to lower frequencies and permittivities
[19, 20], the Ray Tracing technique in the geometric optics approxima-
tion to higher frequencies [21, 22], and the perturbation approach to
minute deviations from separable geometries [23].

Among the rigorous methods, a variety of Finite-Difference/Finite-
Element techniques (FD/FE), the T-matrix approach and the Point
Matching method are of special importance to deal with scattering
on dielectric objects having a non-separable boundary surface. The
common FD/FE techniques start from a complete discretization of the



Discretized Mie-Formalism for electromagnetic scattering 93

scattering problem formulated by partial differential equations [24, 25].
This makes these techniques invariably simpler in concept and execu-
tion than integral equation approaches. FD/FE techniques are appli-
cable to different geometries and are often the only possibility when
dealing with strongly inhomogeneous scatterers. But they suffer from
essential disadvantages. It is known that spurious solutions may occur
which must be withdrawn by additional filtering procedures. Further-
more, the fulfillment of the radiation condition provides difficulties
since the discretization can not be performed up to infinity. Some-
times, this results in very large matrices which must be handled. Due
to these problems, computation in electromagnetic scattering has been
pursued more often in terms of integral equations. At present, Water-
man’s T-matrix approach, which is based on the Extended Boundary
Condition Method (EBCM), is the most powerful method to compute
scattering on different geometries and over wide frequency ranges [26–
30]. Since the radiation condition is analytically incorporated by use of
the free space Green’s function, the final calculation can be restricted
to the scatterer surface, and much smaller matrices are obtained. On
the other hand, the loss of conceptual simplicity (formulation of the
EBCM, singular-kernel problem) requires a higher theoretical effort
to derive appropriate convergency criteria. This makes it a difficult
method for practitioners. The simplest method of all is Point Match-
ing but, it has uncertain convergence and uses too much computer time.
Only if combined with a least-square procedure this method becomes
more practicable [17, 32–34]. Thus, the Mie theory for spheres is still
the mostly used method in practical applications, and non-spherical
particles are often considered by use of its equal-volume or equal-
surface sphere although this approximation produces wrong results
for the polarization behavior. With the Discretized Mie-Formalism
(DMF) presented in this paper it becomes possible to integrate the ad-
vantages of the differential and integral equation approaches into one
method [35–37]. The DMF can be considered as a numerical general-
ization of the Mie theory to structures with non-separable boundary
surfaces. Therefore, this method is especially suitable for practical
applications since the formulation is very similar to what is known
from the conventional Mie theory. This is achieved by using the so
called Method of Lines (MoL) to solve the basic Helmholtz equations
of the scattering problem. The MoL is a special FD technique which
allows the analytical incorporation of the radiation condition. In the
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last years, this mathematical tool has been applied very successfully
to guided wave problems with separable but inhomogeneous boundary
conditions [38–42]. In this paper it is demonstrated that it can be
used also for non-separable boundary value problems. This expands
its range of applicability drastically.

In this contribution, a closed formulation of the DMF in cylindrical
and spherical co-ordinates is given. Beside the direct DMF, we also
discuss an iterative procedure which has an extended range of appli-
cability and a higher numerical stability. This iterative version turns
out to be nothing but a Method of Moment scheme. Finally, different
applications are discussed with special emphasis on the derivation of
an appropriate convergency criterion. This will demonstrate the use-
fulness of the proposed method. It’s our hope that, with this method
we can contribute to a better understanding of non-spherical scattering
processes.

2. FORMULATION OF THE SCATTERING PROBLEM

Throughout this paper, we make the following assumptions to formu-
late the scattering problem:

(a) The medium is assumed to be homogeneous and isotropic inside
and outside the scatterer.

(b) We assume a time dependence according to exp(−jωt) . Thus,
exp(jkz) describes a wave traveling along the positive z -direction.

(c) The permittivity of the scatterer is given by εs = ε′s + jε′′s , where
ε′′s ≥ 0 . The restriction to only positive imaginary parts of the per-
mittivity is caused by our time dependence and the corresponding
expression for the radiation condition. We assume free space out-
side the scatterer.

(d) We consider only source-free regions.

According to the Mie theory for spheres, the scattering problem is
formulated by use of differential equations. For this, we choose the
well-known decomposition of the electromagnetic fields into transverse
electric (TE) and transverse magnetic (TM) parts with respect to a
certain direction [49, 50]. This decomposition is given in cylindrical
and spherical co-ordinates, as well.
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2.1 TE/TM-Decomposition in Cylindrical and Spherical Co-
ordinates

With the requirements given above the Maxwell’s equations read as
follows:

∇× �E = jωµ0
�H (2.1)

∇× �H = −jωε�E (2.2)

∇ · �B = 0 (2.3)

∇ · �D = 0 (2.4)
�D = ε�E (2.5)
�B = µ0

�H . (2.6)

Due to assumption (d), we can define appropriate vector potentials
by the relations

�He = ∇× �Ap (2.7)
�Em = ∇× �Fp . (2.8)

In this way, (2.3) and (2.4) are satisfied automatically. For the vector
potentials we get the vector Helmholtz equations

∇2�Ap + k2�Ap = 0 (2.9)

∇2�Fp + k2�Fp = 0 with k2 = ω2εµ0 . (2.10)

If these potentials are known, any field is given by a superposition of
the fields belonging to each of these potentials [49], i.e.,

�E = �Ee + �Em = ∇× �Fp +
j

ωε
[∇∇ · �Ap + k2�Ap] (2.11)

�H = �He + �Hm = ∇× �Ap −
j

µ0
[∇∇ · �Fp + k2�Fp] . (2.12)

If choosing
�Ap = ĉΠe and �Fp = ĉΠm, (2.13)

(2.11) and (2.12) describe the TE/TM-decomposition with respect to
the direction given by the vector ĉ . From the vector Helmholtz equa-
tions (2.9) and (2.10) two scalar equations for the so-called Debye
potentials Πe and Πm are obtained.
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In the cylindrical co-ordinate system ĉ = ẑ is used. The resulting
components of the electric field are given by

Ez =
j

ωε

[
δ2Πe

δz2
+ k2Πe

]
(2.14)

Er =
j

ωε

δ2Πe

δzδr
+

1
r

δΠm

δφ
(2.15)

Eφ =
j

ωε

1
r

δ2Πe

δzδφ
− δΠm

δr
, (2.16)

and for the magnetic components we have

Hz = − j

ωµ0

[
δ2Πm

δz2
+ k2Πm

]
(2.17)

Hr = − j

ωµ0

δ2Πm

δzδr
+

1
r

δΠe

δφ
(2.18)

Hφ = − j

ωµ0

1
r

δ2Πm

δzδφ
− δΠe

δr
. (2.19)

The Helmholtz equation for the Debye potentials reads

∇2Πe/m + k2r2Πe/m = 0 (2.20)

∇2 = r
δ

δr
r
δ

δr
+ r2 δ2

δz2
+

δ2

δφ2
. (2.21)

We can see that equations (2.14)–(2.19) will indeed produce a trans-
verse electric (Ez = 0) or transverse magnetic (Hz = 0) field if Πe

or Πm is taken to be zero.
In spherical co-ordinates the vector ĉ is chosen to be ĉ = r · r̂ .

This leads to the following expressions for the electromagnetic field
components:

Er =
j

ωε

[
δ2(rΠe)
δr2

+ k2rΠe

]
(2.22)

Eθ =
j

ωε

1
r

δ2(rΠe)
δrδθ

+
1

sin θ
δΠm

δφ
(2.23)

Eφ =
j

ωε

1
r sin θ

δ2(rΠe)
δrδφ

− δΠm

δθ
(2.24)
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Hr = − j

ωµ0

[
δ2(rΠm)
δr2

+ k2rΠm

]
(2.25)

Hθ = − j

ωµ0

1
r

δ2(rΠm)
δrδθ

+
1

sin θ
δΠe

δφ
(2.26)

Hφ = − j

ωµ0

1
r sin θ

δ2(rΠm)
δrδφ

− δΠe

δθ
. (2.27)

Now the Helmholtz equation for the Debye potentials is given by

∇2Πe/m + k2Πe/m = 0 (2.28)

∇2 =
1
r

δ2

δr2
r +

1
r2 sin θ

δ

δθ
sin θ

δ

δθ
+

1
r2 sin2 θ

δ2

δφ2
. (2.29)

It’s our essential problem to solve these scalar Helmholtz equations
for the Debye potentials for cases in which the boundary surface of the
scatterer doesn’t coincide with a co-ordinate line, i.e., the boundary
has an angular dependence in the corresponding co-ordinate system.
That’s what is called a non-separable boundary value problem in scat-
tering.

To find the complete and unique solution of the internal and scat-
tered field, additional boundary and continuity conditions are needed.
These conditions will be discussed in the next section.

2.2 Boundary and Continuity Conditions

First, let’s have a look at the conditions for the radial part of the
solutions. Inside the scatterer (especially at the origin r = 0 ) the
fields must behave regular, i.e., there should be no singularities since
a source-free region is assumed. In the far field region outside the
scatterer the radiation condition has to be fulfilled. This condition
states that no energy may be radiated from infinity into the direc-
tion of the scatterer. Mathematically, this requirement is given by the
equation [51]

lim
r→∞

r

[
dΠ(r)
dr

− jkΠ(r)
]

= 0 . (2.30)

As we will see later, the application of this radiation condition will
withdraw one of the linearly independent solutions of the ordinary
differential equations depending only on the radial co-ordinate.

For the φ -dependence the periodicity condition holds in both co-
ordinate systems, i.e., the following relation is valid:

Π(φ) = Π(φ+ 2π) . (2.31)
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Additional conditions are needed for the θ -dependence of the po-
tentials in the spherical coordinate system. These are linked to the
azimuthal modes of the φ -dependence in the following manner [51,53]:

azimuthal mode l = 0 :
dΠ(θ)
dθ

= 0 if θ = 0, π (Neumann) (2.32)

azimuthal mode l �= 0 : Π(θ = 0) = Π(θ = π) ≡ 0 (Dirichlet) (2.33)

All these conditions are valid for both potentials Πe and Πm , of
course.

To derive the characteristic equation system of the DMF, the con-
tinuity conditions for the tangential electromagnetic field components
are of special importance. These conditions can be derived from the
integral representation of Maxwell’s equation. In the boundary layer
between different dielectric regions we get [49, 50]

�n× (�E1 − �E2) = 0 (2.34)

�n× (�H1 − �H2) = 0 . (2.35)

In what follows, we generally consider two different regions which
are separated by the boundary layers r = r(θ) and r = r(φ) , re-
spectively. This means that we restrict ourselves to non-spherical but
axisymmetric scatterers (NAS) in spherical co-ordinates and to non-
circular but infinitely extended cylinders (NIC) within the cylindrical
co-ordinate system. Inside the scatterer (Figs. 2 and 3, region 1) we
have the internal field �Eint., �H int. . In the outer region (Figs. 2 and
3, region 2), the total field is given by a superposition of the inci-
dent and the scattered field �Et = �Einc. + �Es and �Ht = �H inc. + �Hs .
The tangential components have to be continuous across the boundary
layer. For this, we need the angle of the tangential plane in each point
(ri, θi) of the scatterer surface (see Fig. 1) which is given in spherical
co-ordinates by the expression

αi = arctan
(

1
r(θ)

dr(θ)
dθ

)
θi

. (2.36)

Due to the above mentioned restriction to axisymmetric structures,
the φ -component of the electromagnetic field is always a tangential
component. The remaining tangential contribution is obtained by a
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Figure 1. Angle of the tangential plane in (ri, θi) at the scatterer
surface S .

combination of the r - and θ -components. Applying this to the con-
tinuity conditions (2.34) and (2.35) yields

Eint.
φ = Einc.

φ + Es
φ (2.37)

Eint.
θ + tan(αi) · Eint.

r = Einc.
θ + Es

θ + tan(αi) · [Einc.
r + Es

r ] (2.38)
H int.

φ = H inc.
φ +Hs

φ (2.39)

H int.
θ + tan(αi) ·H int.

r = H inc.
θ +Hs

θ + tan(αi) · [H inc.
r +Hs

r ] . (2.40)

For the NIC in cylindrical co-ordinates we have to replace θ by
φ in (2.36). Now the z -component is already a tangential one, and
the other is obtained by combining the φ - and r -components of the
electromagnetic field:

Eint.
z = Einc.

z + Es
z (2.41)

Eint.
φ + tan(αi) · Eint.

r = Einc.
φ + Es

φ + tan(αi) · [Einc.
r + Es

r ] (2.42)

H int.
z = H inc.

z +Hs
z (2.43)

H int.
φ + tan(αi) ·H int.

r = H inc.
φ +Hs

φ + tan(αi) · [H inc.
r +Hs

r ] . (2.44)
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Finally, some of the boundary surfaces to which the DMF will be
applied are given explicitly.

(a) sphere:
r = constant (2.45)

(b) sphere which is shifted by ε on the z -axis:

r(θ) = rsphere ·
[
p cos θ + (1− p2 sin2 θ)1/2

]
(2.46)

dr(θ)
dθ

= −rsphere p sin θ
[
1 +

p cos θ
(1− p2 sin2 θ)1/2

]
(2.47)

p =
ε

rsphere
. (2.48)

(c) prolate and oblate spheroid:

r(θ) = a ·
[
cos2 θ +

(a
b

)2
sin2 θ

]−1/2

(2.49)

dr(θ)
dθ

= −a sin θ cos θ ·
[(a

b

)2
− 1

]
·
[
cos2 θ +

(a
b

)2
sin2 θ

]−3/2

(2.50)

a : semi-axis on the z-axis
b : semi-axis on the x-axis

(d) Chebyshev particle of n -th order:

r(θ) = rsphere · [1 + ε cos(nθ)] (2.51)
dr(θ)
dθ

= −nrsphere ε sin(nθ) (2.52)

ε : deformation parameter

We will use these boundaries also as cross-sections for the infinitely
extended cylinders. Additionally, hexagonal cross-sections are treated
as basic structures of ice crystals in cirrus clouds.

With the equations discussed in this section, the scattering problem
is formulated. In the next chapter we want to derive the solution of
the Helmholtz equations (2.20) and (2.28) if non-separable boundary
layers are given.

3. THE METHOD OF LINES

From FD-methods the MoL differs in the fact that only one of the
independent variables is discretized to reduce the original partial dif-
ferential equation to a system of ordinary differential equations. For
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the geometries which we want to consider in this paper, a discretiza-
tion with respect to φ in cylindrical and θ in spherical co-ordinates,
respectively, has to be chosen. This discretzation must be performed
in such a way that the lateral boundary conditions are taken into ac-
count. An equidistant discretization scheme in the interval [a1, a2] is
exclusively used throughout this paper. Of course, this restriction is
not necessary but it reduces the numerical effort to solve the related
eigenvalue problem. How a non-equidistant discretization can be per-
formed is discussed in detail in [38].

Because of the equations (2.31), (2.32) and (2.33) the following vari-
ations have to be taken into account:

(a) homogeneous Dirichlet condition in a1 and a2 (DC):

(b) homogeneous Neumann condition in a1 and a2 (NC):

(c) periodicity condition (PC):

Now the first and second derivatives with respect to φ or θ can be
replaced by an appropriate left hand side, right hand side or centered
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difference operator (subscript l, r, c or z ).

δ

δx
=⇒ 1

h

←→
D

(α)

l =⇒ 1
h

←→
D

(α)

r =⇒ 1
2h
←→
D

(α)

c (3.1)

δ2

δx2
=⇒ − 1

h2

←→
D

(α)

z (3.2)

α = DC, NC, PC

These difference operators are matrices of the order (Nd×Nd) , where
Nd denotes the number of discretization lines in the interval [a1, a2] ,
and read as follows:

←→
D

(α)

l =




l1 0 · · · · · · · · · · · · 0 l2
−1 1 0 · · · · · · · · · · · · 0

0 −1 1 0 · · · · · · · · · 0
... 0

. . . . . . . . .
...

...
...

...
...

. . . . . . . . . 0
...

...
0 · · · · · · 0 −1 1 0 0
0 · · · · · · · · · 0 −1 1 0
0 · · · · · · · · · · · · 0 l3 l4




(3.3)

with

DC NC PC

l1 1 0 1

l2 0 0 -1

l3 -1 0 -1

l4 1 0 1

(3.4)

←→
D

(α)

r =




r1 r2 0 · · · · · · · · · · · · 0
0 −1 1 0 · · · · · · · · · 0
0 0 −1 1 0 · · · · · · 0
...

... 0
. . . . . . . . .

...
...

...
...

...
. . . . . . . . . 0

...
0 · · · · · · · · · 0 −1 1 0
0 · · · · · · · · · · · · 0 −1 1
r3 0 · · · · · · · · · · · · 0 r4




(3.5)

with



Discretized Mie-Formalism for electromagnetic scattering 103

DC NC PC

r1 1 0 1

r2 0 0 -1

r3 -1 0 -1

r4 1 0 1

(3.6)

←→
D

(α)

c =




0 c1 0 · · · · · · · · · · · · c2
−1 0 1 0 · · · · · · · · · 0

0 −1 0 1 0 · · · · · · 0
... 0

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . . 0

...
0 · · · · · · 0 −1 0 1 0
0 · · · · · · · · · 0 −1 0 1
c3 0 · · · · · · · · · 0 c4 0




(3.7)

with

DC NC PC

c1 1 0 1

c2 0 0 -1

c3 0 0 1

c4 -1 0 -1

(3.8)

←→
D

(α)

z =




2 z1 0 · · · · · · · · · 0 z2
−1 2 −1 0 · · · · · · · · · 0

0 −1 2 −1 0 · · · · · · 0
... 0

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . . 0

...
0 · · · · · · 0 −1 2 −1 0
0 · · · · · · · · · 0 −1 2 −1
z3 0 · · · · · · · · · 0 z4 2




(3.9)

with
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DC NC PC

z1 -1 -2 -1

z2 0 0 -1

z3 0 0 -1

z4 -1 -2 -1

(3.10)

Next we apply this discretization scheme to solve the Helmholtz
equation in cylindrical and spherical co-ordinates.

3.1 Solution of the Helmholtz Equation in Cylindrical Co-
ordinates

In this chapter we want to treat the infinitely extended cylinder
having a non-circular cross-section which does not change along the z -
direction. This restriction is not necessary but it reduces the scattering
problem to a two-dimensional one by making it possible to separate
the z -dependence of the Debye potentials in the following way:

Πe(r, φ, z) = − j

ωµ0
E0Π̃e(r, φ) · exp(jhz) (3.11)

Πm(r, φ, z) = − j
k
E0Π̃m(r, φ) · exp(jhz) . (3.12)

Here we have the parameter h which will be determined later by the
incident field (see chapter 4.1, Eq. (4.16) ). Upon substituting these
equations into (2.20) and (2.21), a modified Helmholtz equation results:

∇̃2Π̃e/m + r2(k2 − h2)Π̃e/m = 0

∇̃2 = r
δ

δr
r
δ

δr
+

δ2

δφ2

(3.13)

The discretization is performed with respect to the φ -co-ordinate in
the interval [0, 2π] . The corresponding discretization scheme is shown
in Fig. 2.

hφ denotes the discretization angle given by

hφ =
2π
Nd

and φi = (i− 1)hφ; i = 1, . . . , Nd . (3.14)
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Figure 2. Equidistant discretization of the cylindrical cross-section
taking periodicity into account.

Applying the replacement

δ2

δφ2
=⇒ − 1

h2
φ

←→
D

(PC)

z

to (3.13) yields the algebraic version of the modified Helmhotz equation

{
h2
φ

[
r
d

dr
r
d

dr
+ (k2 − h2)r2

]←→
E −←→P z

}
· |Πt〉 = |0〉

←→
P z =

←→
D

(PC)

z ,
←→
E : unit matrix

(3.15)

|Πt〉 =
(
Π̃e/m(φ1), . . . , Π̃e/m(φNd)

)t
, (3.16)

where we use the “bra ( 〈. . . | )” and “ket ( | . . .〉 )” notation to indi-
cate the algebraic character of the field components and potentials.
This notation is well-known from Quantum Mechanics [54], and it is
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also used in Electrodynamics to formulate the Generalized Method of
Moments [55].

(3.15) is nothing but a coupled system of ordinary differential equa-
tions. The potentials Π̃e/m(φi) given on each discretization line de-
pend only on r .

We are able to decouple this system by solving the corresponding
eigenvalue problem

(
←→
P z − λ�E) · |x〉 = |0〉 . (3.17)

As demonstrated in [56], this can be done analytically resulting in

x
(α)
i =

1√
Nd

[sinβiα + cosβiα] (3.18)

λα = 4 · sin2

(
βα
2

)
(3.19)

βiα = hφ · (α− 1) · (i− 1)
βα = hφ · (α− 1) with α, i = 1, . . . , Nd .

The eigenvectors |xα〉 form the columns of the orthogonal transfor-

mation matrix
←→
T for which the relations

←→
T
−1

· ←→T =
←→
E (3.20)

and
←→
T
−1

· ←→P z ·
←→
T = diag{λi}; i = 1, . . . , Nd (3.21)

are valid. Introducing transformed potentials by the definition

|U〉 =
←→
T
−1

· |Π〉 , (3.22)

we get from (3.15) the following system of uncoupled ordinary differ-
ential equations:{[

r
d

dr
r
d

dr
+ (k2 − h2)r2

]←→
E − 1

h2
φ

diag{λi}
}
· |U t〉 = |0〉 . (3.23)

If substituting
ρ = (k2 − h2)1/2 · r (3.24)
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into (3.23), we obtain Bessels’s differential equation for each component
of the transformed potential

d2Ui(ρ)
dρ2

+
1
ρ

dUi(ρ)
dρ

+
[
1− ν2

i

ρ2

]
Ui(ρ) = 0 (3.25)

ν2
i =

λi
h2
φ

. (3.26)

Since (3.25) must be solved in each homogeneous subregion by taking
the regularity and the radiation condition into account, we finally have

U int.
ei = ai · Jνi(ρs) U int.

mi
= bi · Jνi(ρs) (3.27)

inside the scatterer (region 1) and

U s
ei = ci ·H(1)

νi (ρ0) U s
mi

= di ·H(1)
νi (ρ0) (3.28)

in the outer region (region 2). The coefficients ai, bi, ci and di are
unknown, to the present. Obviously, with the eigenvectors |xα〉 a
space is given in which we can always find a solution of the algebraic
Helmholtz equation, no matter whether the cross-section is circular or
not. Since the solutions given in (3.27) and (3.28) are very similar to
what is known from the conventional Mie theory, this space is called
the Discretized Mie Space (DMS). As we will see later, it has its own
meaning if dealing with the separable limiting case of a circular cylinder
at vertical incidence with respect to the cylindrical axis. The essential
difference of (3.27) and (3.28) compared to the analytical solution of
the circular cylinder is the order of the Bessel and Hankel functions
which are now calculated by use of the eigenvalues of equation (3.17).

In the case of non-circular cross-sections we have to go back to
the physical space by taking the inversion of (3.22), i.e., we have to
calculate

|Π〉 =
←→
T · |U〉 . (3.29)

By simple manipulations this transformation can be put into the form

|Π〉 =
Nd∑
α=1

κα
←→
Π α · |xα〉 (3.30)

κα : unknown coefficients
←→
Π α : matrix operator
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This describes an expansion of |Π〉 with respect to the eigenvectors
|xα〉 , where we have a different matrix operator for each of the expan-
sion coefficients. For the discussion of the Rayleigh hypothesis and the
derivation of the iteration procedure of the DMF, this reformulation
will become a crucial step in our analysis. Additionally, it reveals some
interesting features of the MoL.

Thus, using (3.11) and (3.12), the Debye potentials in each homo-
geneous subregion are given by the expansions:

|Πs
e〉 = − j

ωµ0
E0e

jhz
Nd∑
α=1

cα
←→
Π

s

α · |xα〉 (3.31)

|Πs
m〉 = − j

k0
E0e

jhz
Nd∑
α=1

dα
←→
Π

s

α · |xα〉 (3.32)

|Πint.
e 〉 = − j

ωµ0
E0e

jhz
Nd∑
α=1

aα
←→
Π

int.

α · |xα〉 (3.33)

|Πint.
m 〉 = − j

k0
E0e

jhz
Nd∑
α=1

bα
←→
Π

int.

α · |xα〉 (3.34)

where
←→
Π

s

α = diag{H(1)
να (ρ0i)}, i = 1, . . . , Nd (3.35)

←→
Π

int.

α = diag{Jνα(ρsi)}, i = 1, . . . , Nd (3.36)

The situation will become a little bit more complicated if dealing with
the NAS in spherical co-ordinates.

3.2 Solution of the Helmholtz Equation in Spherical
Co-ordinates

Due to the restriction to axisymmetric scatterers we are able to sep-
arate the φ -dependence which again results in a reduction of the scat-
tering problem to a two-dimensional one. The corresponding ansatz
for the Debye potentials reads as follows:

Πe(r, θ, φ) = − k

ωµ0
E0

∑
l

Π̃(l)
e (r, θ) · exp(jlφ) (3.37)

Πe(r, θ, φ) = E0

∑
l

Π̃(l)
m (r, θ) · exp(jlφ) (3.38)
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Figure 3. Equidistant discretization of the NAS for l = 0 , i.e., taking
the Neumann condition at θ = 0, π into account.

Inserting these equations into (2.28) and (2.29) provides the modified
Helmholtz equation

∇̃2Π̃(l)
e/m + k2r2Π̃(l)

e/m = 0

∇̃2 = r
δ2

δr2
r +

1
sin θ

δ

δθ
sin θ

δ

δ sin θ
− l2

sin2 θ
.

(3.39)

The discretization is performed with respect to θ in the interval
[0, π] . According to (2.32) and (2.33), the dependence on the azimuthal
modes has to be taken into account. For l = 0 we choose

hθ =
π

Nd − 1
and θi = (i− 1)hθ; i = 1, . . . , Nd . (3.40)

The corresponding discretization scheme is shown in Fig. 3. Apply-
ing this to (3.39) results in the following system of coupled ordinary
differential equations:
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{
h2
θ

[
r
d2

dr2
r + k2r2

]←→
E −←→P

(0)

z

}
· |Π(0)t〉 (3.41)

|Π(0)t〉 =
(
Π̃(0)
e/m(θ1), . . . , Π̃

(0)
e/m(θNd)

)t

with

←→
P

(0)

z =
←→
D

(NC)

z − diag{κi} ·
←→
D

(NC)

r and (3.42)
κi = hθ cot θi .

In matrix notation, the expression (3.42) is given by

←→
P

(0)

z =


2 −2 0 · · · · · · 0

−1 (2 + κ2) −(1 + κ2) 0 · · ·
...

0 −1 (2 + κ3) −(1 + κ3)
. . .

...

... 0
. . .

. . .
. . . 0

...
...

. . . −1 (2 + κNd−1) −(1 + κNd−1)

0 · · · · · · 0 −2 2




If l �= 0 is considered the discretization is somewhat different. We
choose (compare Fig. 4)

hθ =
π

Nd + 1
and θi = ihθ; i = 1, . . . , Nd (3.43)

and get from (3.39){
h2
θ

[
r
d2

dr2
r + k2r2

]←→
E −←→P

(l)

z

}
· |Π(l)t〉 = |0〉 (3.44)

|Π(l)t〉 =
(
Π̃(l)
e/m(θ1), . . . , Π̃

(l)
e/m(θNd)

)t

←→
P

(l)

z =
←→
D

(DC)

z − diag{κi} ·
←→
D

(DC)

r + diag{γi} (3.45)

γi =
h2
θl

2

sin2 θi
. (3.46)
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Figure 4. Equidistant discretization of the NAS for l �= 0 , i.e., taking
the Dirichlet condition at θ = 0, π into account.

Again, let’s present (3.45) in matrix notation which reads

←→
P

(l)

z =


(2 + κ1

+γ1)
−(1 + κ1) 0 · · · · · · 0

−1
(2 + κ2

+γ2)
−(1 + κ2) 0 · · ·

...

0 −1
(2 + κ3

+γ3)
−(1 + κ3)

. . .
...

... 0
. . .

. . .
. . . 0

...
...

. . . −1
(2 + κNd−1

+γNd−1)
−(1 + κNd−1)

0 · · · · · · 0 −1
(2 + κNd

+γNd)
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In the following analysis both cases are summarized by the super-
script (l) , i.e., l = 0 is included.

In contrast to what we have got in the case of cylindrical co-

ordinates,
←→
P

(l)

z is now a non-symmetric matrix. Fortunately, it’s
known that each matrix of the form

←→
P unsymm. =




α1 −β2 0 · · · · · · 0

−γ2 α2 −β3 0 · · · ...

0 −γ3 α3 −β4
. . .

...
... 0

. . . . . . . . . 0
...

...
. . . −γNd−1 αNd−1 −βNd

0 · · · · · · 0 −γNd αNd




(3.47)

with αi ∈ R and γi ·βi > 0 can be transformed into a real symmetric
matrix by means of a similarity transformation [57]

←→
P symm. =

←→
Z
−1

· ←→P · ←→Z (3.48)

with a diagonal matrix
←→
Z , where

z1,1 = 1; zii =
(
γ2 · . . . · γi
β2 · . . . · βi

) 1
2

. (3.49)

This results in the following elements of the symmetric matrix:

psymm. i,i = αi; psymm. i,i+1 = psymm. i+1,i = −(βi+1 · γi+1)
1
2 . (3.50)

As in cylindrical co-ordinates, we have to solve the eigenvalue problem

(←→
P

(l)

z symm. − λ(l)←→E
)
· |x(l)〉 = |0〉 (3.51)

to get the orthogonal transformation matrix
←→
T

(l)

for which the rela-
tions

←→
T

(l)−1

· ←→T
(l)

=
←→
E (3.52)
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and

←→
T

(l)−1

· ←→P
(l)

z symm. ·
←→
T

(l)

= diag{λ(l)
i }; i = 1, . . . , Nd (3.53)

are valid. This solution can be found only numerically but without
any difficulties. Now we are able to decouple the equations (3.41) and
(3.44) by introducing the transformed potentials according to

|U (l)〉 =
←→
Tr

(l)−1

· |Π(l)〉 , (3.54)

where
←→
Tr

(l)

=
←→
Z

(l)

· ←→T
(l)

←→
Tr

(l)−1

=
←→
T

(l)−1

· ←→Z
(l)−1

.

(3.55)

Substituting

ρ = k · r and U
(l)
i =

1√
ρ
· Z(l)

i (ρ) , (3.56)

we obtain the following ordinary differential equations in the DMS

defined by
←→
Tr

(l)−1

:

d2Z
(l)
i (ρ)
dρ2

+
1
ρ

dZ
(l)
i (ρ)
dρ

+


1− ν

(l)
i

2

ρ2


Z

(l)
i (ρ) = 0 (3.57)

ν
(l)
i

2
=

λ
(l)
i

h2
θ

+
1
4
. (3.58)

Taking the regularity and the radiation condition into account the
components of the transformed potentials are given by

U (l)int.
ei = a

(l)
i ·

J
ν
(l)
i

(ρs)
√
ρs

U (l)int.
mi

= b
(l)
i ·

J
ν
(l)
i

(ρs)
√
ρs

(3.59)

inside the scatterer, and by

U (l)s
ei = c

(l)
i ·

H
(1)

ν
(l)
i

(ρ0)
√
ρ0

U (l)s
mi

= d
(l)
i ·

H
(1)

ν
(l)
i

(ρ0)
√
ρ0

(3.59)



114 Rother and Schmidt

outside. a
(l)
i , b

(l)
i , c

(l)
i and d

(l)
i are the unknown coefficients.

Since we have to go back to the physical space if dealing with
non-spherical scatterers the expressions of the inversion of (3.54) are
needed, i.e.,

|Π(l)〉 =
←→
Tr

(l)

· |U (l)〉 . (3.61)

Taking equations (3.37) and (3.38) into account, (3.61) can be reformu-
lated to get the following expressions for each of the Debye potentials:

|Πs
e〉 = − k0

ωµ0
E0

∑
l

ejlφ
Nd∑
α=1

c(l)α
←→
Π

(l)s

α · |x(l)
α 〉 (3.62)

|Πs
m〉 = E0

∑
l

ejlφ
Nd∑
α=1

d(l)
α

←→
Π

(l)s

α · |x(l)
α 〉 (3.63)

|Πint.
e 〉 = − k0

ωµ0
E0

∑
l

ejlφ
Nd∑
α=1

a(l)
α

←→
Π

(l)int.

α · |x(l)
α 〉 (3.64)

|Πint.
m 〉 = E0

∑
l

ejlφ
Nd∑
α=1

b(l)α
←→
Π

(l)int.

α · |x(l)
α 〉 (3.65)

where

←→
Π

(l)s

α = diag



H

(1)

ν
(l)
α

(ρ0i)
√
ρ0i


 , i = 1, . . . , Nd (3.66)

←→
Π

(l)int.

α = diag

{
J
ν
(l)
α

(ρ0i)
√
ρ0i

}
, i = 1, . . . , Nd (3.67)

It can be seen again that the column vectors |x(l)
α 〉 of the transforma-

tion matrix
←→
Tr

(l)

serve as an orthogonal basis in this expansion.
With (3.62)–(3.65), the solution of the algebraic Helmholtz equa-

tion in spherical co-ordinates has been found. Before deriving the
characteristic equation system of the DMF to determine the unknown
expansion coefficients, we want to discuss a problem which is known
as the Rayleigh hypothesis. The point of view of the DMF to this
problem is presented here since it belongs to the representation given
in (3.31)–(3.34) and (3.62)–(3.65).
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Figure 5. Non-spherical scattering geometry and Rayleigh hypothesis.

3.3 The Discretized Mie-Formalism and the Rayleigh Hypoth-
esis

Originally, this hypothesis was related to plane wave scattering from
sinusoidal surfaces. Rayleigh assumed that only upgoing wave eigen-
functions need be considered above the surface but between its peaks.
This assumption became a point of controversy when applied to scat-
tering on finite objects [43–48]. The question is the following:

Consider a scatterer with a non-spherical boundary surface as de-
picted in Fig. 5. At any point outside the circumscribing sphere Cout ,
there exist only outgoing waves. But what happens at any point in-
side Cout but outside the scatterer? Do we have to take into account
incoming waves or, mathematically speaking, is the expansion which
is used outside Cout incomplete and non-unique in this region? Espe-
cially if we think of concave boundaries, this last question seems to be
answered with ‘yes’.

Different methods have given different answers to this question. Es-
pecially the EBCM has been originally developed to circumvent this
discussion [26]. For the original problem, Millar has estimated the
upper limit of validity of the Rayleigh hypothesis. If the surface can
be described by f(x) = a cos(kx) , then, this hypothesis is valid for
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ka < 0.448 [44]. Curiously, Wiscombe and Mugnai have found a cor-
respondence with this value in EBCM convergency considerations for
Chebyshev particles [32]. It is assumed, however, that the validity
depends on which functional basis is used for the expansion of the po-
tentials or fields, and on the location of the origin of the co-ordinate
system.

If we want to answer this question from the point of view of the
DMF for NAS, we must look at the equations (3.62)–(3.67). In con-
trast to other methods (EBCM, Method of Moments, Point Matching)
which start from an appropriate ansatz, the basic partial differential
equations are solved within the DMF by use of the above described
algebraization scheme to get the eigenvectors and eigenvalues of the
expansion, as it is known from the separation of variable method. The
final solution of the ordinary differential equation, depending only on
the radial co-ordinate, is uniquely determined by the radiation con-
dition outside the scatterer as long as the boundary intersects each
discretization line only into two parts. Therefore, we can give the
following answer:

If we can find a co-ordinate system with its origin inside the scatterer
and in which each possible discretization line intersects the boundary
surface only once, then, in the outer section of each discretization line
(i.e., in each point outside the scatterer) the radial solution is uniquely
given by (3.66) which represents outgoing waves, due to the fulfillment
of the radiation condition in the far field. This means that the bound-
ary surface r = r(θ) must be a single-valued function with respect to
θ in this co-ordinate system. If this requirement is violated, the DMF
in its present form can not be applied.

From this point of view we may state that scattering on Cheby-
shev particles is not influenced by the Rayleigh hypothesis since their
boundary surfaces are always single-valued. Nevertheless, there can
exist limitations in size parameter and geometry caused by numerical
problems.

Obviously, our answer to the Rayleigh hypothesis is in contradiction
to the result of Millar since his estimation is a condition of roughness
of the boundary surface. We believe that this contradiction is caused
by the different approaches which are used to formulate the scattering
problem. Millar starts from an expansion of the scattering coefficients
for which the so-called requirement of finality [51] is fulfilled. On the
other hand, the DMF leads to an equation system for the determination
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of the expansion coefficients which do not satisfy such an requirement.
The derivation of this characteristic equation system is of our interest
in the next chapter.

4. DERIVATION OF THE CHARACTERISTIC EQUA-
TION SYSTEM

Now we want to calculate the unknown coefficients of the general so-
lutions (3.31)–(3.34) and (3.62)–(3.65), respectively. As in the case
of the separable scatterer geometries, the continuity conditions of the
tangential field components at the scatterer surface are used for this
purpose. These are given by (2.37)–(2.44). In this way an inhomoge-
neous equation system

←→
A ◦ �x = �Iinc. (4.1)

is obtained the inhomogeneity �Iinc. of which depends only on the in-

cident field. The characteristic coefficient matrix
←→
A for axisymmetric

scatterers is solely determined by their geometries and the size pa-
rameter. In the following derivations of these equation systems in the
different co-ordinates the separable limiting cases are treated in extra
sections. Though this is not necessary because the equations of the
form (4.1) are generally valid, essentially simpler expressions can be
obtained for separable geometries which give the justification for the
name Discretized Mie-Formalism.

Of course, the reproduction of the separable limiting cases is a touch-
stone for every numerical algorithm. This test, however, is of special
importance for the DMF. As we have seen in the preceding chapter,
the eigenvalues and eigenvectors of the eigenvalue problems (3.17) and
(3.51) do not depend on a special scatterer geometry but only on the
angular boundary conditions and the number of discretization lines.
A correspondence of the results obtained by means of both methods,
the DMF and the well-known Mie theory for separable structures, will
demonstrate the quality of these eigenvalues and eigenvectors which
are of decisive importance in formulating the DMF. As it will be dis-
cussed later, appropriate convergency criteria can be derived from this
property.



118 Rother and Schmidt

4.1 The Discretized Mie-Formalism in Cylindrical Co-
ordinates

First of all, the representation of the incident field must be discussed
in order to derive the characteristic equation system. The xz -plane
is assumed to be the incident plane. We consider two different polar-
ization states. In the TE case (vertical polarization), the �E -vector
lies in y -direction whereas in the TM case (horizontal polarization) it
oscillates in ẑ′ -direction (see Fig. 6). Therefore it holds

TE:

�Einc. = ŷ · E0 · exp(−jk0x
′) (4.2)

�H inc. = −ẑ′ · k0

ωµ0
· E0 · exp(−jk0x

′) (4.3)

TM:

�Einc. = ẑ′ · E0 · exp(−jk0x
′) (4.4)

�H inc. = ŷ · k0

ωµ0
· E0 · exp(−jk0x

′) . (4.5)

The system {x̂′, ŷ, ẑ′} results from a rotation of the system {x̂, ŷ, ẑ}
in mathematically negative sense around the ŷ -axis which leads to the
relation

x̂′ = cos δ · x̂− sin δ · ẑ
ẑ′ = sin δ · x̂+ cos δ · ẑ , (4.6)

where the rotation angle δ is just the tilt angle of the incident wave
vector towards the xy -plane. Inserting of (4.6) into (4.2)–(4.5) and
transforming the system {x̂, ŷ, ẑ} to cylindrical co-ordinates by means
of

x̂ = r̂ · cosφ− φ̂ · sinφ
ŷ = r̂ · sinφ+ φ̂ · cosφ
ẑ = ẑ

(4.7)

yield the following expressions for the corresponding incident field com-
ponents.

TE:

(TE)Einc.
r = E0 · sinφ · exp(−j · {φδ}) (4.8)

(TE)Einc.
φ = E0 · cosφ · exp(−j · {φδ}) (4.9)
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Figure 6. Geometry of the scattering problem in cylindrical co-
ordinates.

(TE)Einc.
z = 0 (4.10)

(TE)H inc.
r = − k0

ωµ0
· E0 · sin δ cosφ · exp(−j · {φδ}) (4.11)

(TE)H inc.
φ =

k0

ωµ0
· E0 · sin δ sinφ · exp(−j · {φδ}) (4.12)



120 Rother and Schmidt

(TE)H inc.
z = − k0

ωµ0
· E0 · cos δ · exp(−j · {φδ}) (4.13)

TM:

(TM)�Einc. = −ωµ0

k0
· (TE) �H inc. (4.14)

(TM) �H inc. =
k0

ωµ0
· (TE)�Einc. (4.15)

with

{φδ} = k0 · (r · cosφ · cos δ − z · sin δ) = ρ0 · cosφ− h · z (4.16)
ρ0 = k0 · r · cos δ
h = k0 · sin δ

4.1.1 The Limiting Case of Circular Cylinders

The relations become especially simple if the cylinder exhibits a
circular cross-section (tanαi = 0, ∀ i) and if the incident field impinges
perpendicularly on the cylindrical axis (δ = 0◦) . Then, the expressions
for the incident field can be reduced to

(TE)�Einc.
r = E0 · sinφ · exp(−jρ0 cosφ)

(TE)�Einc.
φ = E0 · cosφ · exp(−jρ0 cosφ)

(TE) �H inc.
z = − k0

ωµ0
· E0 · exp(−jρ0 cosφ)

(TE)�Einc.
z = (TE) �H inc.

r = (TE) �H inc.
φ = 0

(4.17)

and
(TM)�Einc.

z = E0 · exp(−jρ0 cosφ)

(TM) �H inc.
r =

k0

ωµ0
· E0 · sinφ · exp(−jρ0 cosφ)

(TM) �H inc.
φ =

k0

ωµ0
· E0 · cosφ · exp(−jρ0 cosφ)

(TM)�Einc.
r = (TM)�Einc.

φ = (TM) �H inc.
z = 0

(4.18)

In this case, the expressions (3.35) and (3.36) take an especially simple
form. The diagonal matrices change to simple functions in terms of r .
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In order to fulfill the continuity conditions, the corresponding inter-
nal and scattered fields have to possess an analog structure. This is
achieved by means of

TE : ai = ci = 0 (4.19)
TM : bi = di = 0 (4.20)

The following equation systems for the different polarizations of the
incident field arise from the continuity conditions (2.41)–(2.44) in using
the potentials (3.31)–(3.36) and fields (2.14)–(2.19).

TE:

− | d
dρ0

Πs
m〉+ |

d

dρs
Πint.
m 〉 = | d

dρ0
Πinc.〉 (4.21)

− |Πs
m〉+

ks
k0
· |Πint.

m 〉 = |Πinc.〉 (4.22)

TM:

− |Πs
e〉+ |Πint.

e 〉 = |Πinc.〉 (4.23)

− | d
dρ0

Πs
e〉+

ks
k0
· | d
dρs

Πint.
e 〉 = | d

dρ0
Πinc.〉 (4.24)

with
|Πinc.〉 =

(
Πinc.(φ1), . . . ,Πinc.(φNd)

)
Πinc.(φi) = exp(−jρ0 cosφi)
ρs = ksr

(4.25)

These equations can be transformed into the DMS by multiplying the

system from the left by the transformation matrix
←→
T
−1

. In this space,
the contribution of the incident field reads as follows.

ui =
Nd∑
k=1

t−1
ik ·Πinc.(φk) (4.26)

u′i =
Nd∑
k=1

t−1
ik ·

d

dρ0
Πinc.(φk) (4.27)

From the resulting equations the following scattering coefficients are
obtained:

TE : ci ≡ 0

di = − J ′νi(ρs) · ui(ρ0)−
√
εsJνi(ρs) · u′i(ρ0)

J ′νi(ρs) ·H
(1)
νi (ρ0)−

√
εsJνi(ρs) ·H

(1)
νi

′
(ρ0)

(4.28)
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TM : di ≡ 0

ci = −
√
εsJ
′
νi(ρs) · ui(ρ0)− Jνi(ρs) · u′i(ρ0)

√
εsJ ′νi(ρs) ·H

(1)
νi (ρ0)− Jνi(ρs) ·H

(1)
νi

′
(ρ0)

(4.29)

The primes at the Bessel and Hankel functions denote differentiation
with respect to their arguments.

Obviously, the limiting case can be treated simply within the DMS
and leads to expressions for the scattering coefficients which are iden-
tical in structure to those of the analytical solution (compare with
[15]). This identity is the decisive reason for calling this space the
Discretized Mie-Space. There are, however, two essential differ-
ences between (4.28) and (4.29) on the one hand and the analytical
expressions on the other hand.

1. The contributions of the incident field, which provide the inhomo-
geneities of the equation system, have to be calculated also within
the DMS according to (4.26) and (4.27). These two equations de-
scribe the expansion of |Πinc.〉 and | d

dρ0
Πinc.〉 with respect to the

eigenvectors |xα〉 , i.e., it holds:

|Πinc.〉 =
Nd∑
α=1

uα · |xα〉 (4.30)

| d
dρ0

Πinc.〉 =
Nd∑
α=1

u′α · |xα〉 (4.31)

From these equations, it follows directly for the expansion coeffi-
cients:

〈xα|Πinc.〉 = uα (4.32)

〈xα|
d

dρ0
Πinc.〉 = u′α . (4.33)

(4.32) and (4.33) represent, however, only another formulation of
(4.26) and (4.27).

2. The orders νi of the Bessel and Hankel functions in (4.28) and (4.29)
result from the eigenvalues λi of the eigenvalue problem (3.17).

As we will see later in the numerical considerations, the results
obtained by means of (4.28) and (4.29) converge very rapidly to the
known solutions of the Mie theory.
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4.1.2 Non-circular Cross-sections

We are now considering the case of non-circular cross-sections and
obliquely incident fields. Though the calculation proceeds analogously
to the limiting case just considered, it can not any longer be carried out
in the DMS. First of all, we calculate the internal and scattered fields
by using the potentials (3.31)–(3.36) and the equations (3.11), (3.12).
In doing so, the differential quotient δ

δφ occurring in equations (2.14)–

(2.19) is replaced by the difference operator 1/2hφ ·
←→
D

(PC)

c according
to (3.7) and (3.8). Due to the discretization with respect to φ , the
fields are then given in an algebraic form and read as follows:

|esz〉 = E0 · ejhz ·
Nd∑
α=1

cα · s
←→
Π

(z)

α · |xα〉 (4.34)

|esr〉 = E0 · j ·
(
h

k0

)
· cos δ · ejhz ·

Nd∑
α=1

cα · s
←→
Π

(re)

α · |xα〉

− E0 · j · cos δ · ejhz ·
Nd∑
α=1

dα · s
←→
Π

(rm)

α · |xα〉 (4.35)

|esφ〉 = E0 · j ·
(
h

k0

)
· cos δ · ejhz ·

Nd∑
α=1

cα · s
←→
Π

(rm)

α · |xα〉

+ E0 · j · cos δ · ejhz ·
Nd∑
α=1

dα · s
←→
Π

(re)

α · |xα〉 (4.36)

|hsz〉 = − k0

ωµ0
· E0 · ejhz ·

Nd∑
α=1

dα · s
←→
Π

(z)

α · |xα〉 (4.37)

|hsr〉 = − k0

ωµ0
· E0 · j ·

(
h

k0

)
· cos δ · ejhz ·

Nd∑
α=1

dα · s
←→
Π

(re)

α · |xα〉

− k0

ωµ0
· E0 · j · cos δ · ejhz ·

Nd∑
α=1

cα · s
←→
Π

(rm)

α · |xα〉 (4.38)

|hsφ〉 = − k0

ωµ0
· E0 · j ·

(
h

k0

)
· cos δ · ejhz ·

Nd∑
α=1

dα · s
←→
Π

(rm)

α · |xα〉
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+
k0

ωµ0
· E0 · j · cos δ · ejhz ·

Nd∑
α=1

cα · s
←→
Π

(re)

α · |xα〉 (4.39)

with

s←→Π
(z)

α = cos2 δ · diag
{
H(1)

να (ρ0i)
}

; i = 1, . . . , Nd (4.40)

s←→Π
(re)

α = diag

{
d

dρ0

[
H(1)

να (ρ0)
]
ρ0i

}
; i = 1, . . . , Nd (4.41)

s←→Π
(rm)

α = diag

{
1
ρ0i

·H(1)
να (ρ0i)

}
1

2hφ
· ←→D

(PC)

c ; i = 1, . . . , Nd (4.42)

and

|eint.z 〉 = E0 · ejhz ·
Nd∑
α=1

aα · int.
←→
Π

(z)

α · |xα〉 (4.43)

|eint.r 〉 = E0 · j ·
(
h

ks

)
· κδ · ejhz ·

Nd∑
α=1

aα · int.
←→
Π

(re)

α · |xα〉

− E0 · j · κδ · ejhz ·
Nd∑
α=1

bα · int.
←→
Π

(rm)

α · |xα〉 (4.44)

|eint.φ 〉 = E0 · j ·
(
h

ks

)
· κδ · ejhz ·

Nd∑
α=1

aα · int.
←→
Π

(rm)

α · |xα〉

+ E0 · j · κδ · ejhz ·
Nd∑
α=1

bα · int.
←→
Π

(re)

α · |xα〉 (4.45)

|hint.z 〉 = − ks
ωµ0

· E0 · ejhz ·
Nd∑
α=1

bα · int.
←→
Π

(z)

α · |xα〉 (4.46)

|hint.r 〉 = − ks
ωµ0

· E0 · j ·
(
h

ks

)
· κδ · ejhz ·

Nd∑
α=1

bα · int.
←→
Π

(re)

α · |xα〉

− ks
ωµ0

· E0 · j · κδ · ejhz ·
Nd∑
α=1

aα · int.
←→
Π

(rm)

α · |xα〉 (4.47)
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|hint.φ 〉 = − ks
ωµ0

· E0 · j ·
(
h

ks

)
· κδ · ejhz ·

Nd∑
α=1

bα · int.
←→
Π

(rm)

α · |xα〉

+
ks
ωµ0

· E0 · j · κδ · ejhz ·
Nd∑
α=1

aα · int.
←→
Π

(re)

α · |xα〉 (4.48)

with

κδ =
(

1− h2

k2
s

) 1
2

(4.49)

ρs = κδ · ks · r (4.50)

int.←→Π
(z)

α = κ2
δ · diag {Jνa(ρsi)} i = 1, . . . , Nd (4.51)

int.←→Π
(re)

α = diag

{
d

dρs
[Jνa(ρs)]ρsi

}
i = 1, . . . , Nd (4.52)

int.←→Π
(rm)

α = diag

{
1
ρsi

[Jνa(ρsi)] ·
1

2hφ
· ←→D

(PC)

c

}
i = 1, . . . , Nd

(4.53)

The corresponding algebraic components of the incident field result
from (4.8)–(4.16) by inserting of φi, i = 1, . . . , Nd . Then, the following
equation system from the continuity conditions (2.41)–(2.44) can be
obtained:

Nd∑
α=1

aα
←→
Mα · |xα〉+

Nd∑
α=1

cα
←→
O α · |xα〉 = − 1

E0
e−jhz · |einc.z 〉TE/TM

(4.54)
Nd∑
α=1

aα
←→
Q α · |xα〉+

Nd∑
α=1

bα
←→
R α · |xα〉

+
Nd∑
α=1

cα
←→
S α · |xα〉+

Nd∑
α=1

dα
←→
T α · |xα〉

= − j

E0
e−jhz ·

{
|einc.φ 〉TE/TM + diag[tanαi] · |einc.r 〉TE/TM

}
(4.55)

−
(
ks
k0

) Nd∑
α=1

bα
←→
Mα · |xα〉 −

Nd∑
α=1

dα
←→
O α · |xα〉



126 Rother and Schmidt

= − ωµ0

E0k0
e−jhz · |hinc.z 〉TE/TM (4.56)

−
(
ks
k0

) Nd∑
α=1

aα
←→
R α · |xα〉+

(
ks
k0

) Nd∑
α=1

bα
←→
Q α · |xα〉

−
Nd∑
α=1

cα
←→
T α · |xα〉+

Nd∑
α=1

dα
←→
S α · |xα〉

=
j

E0

ωµ0

k0
e−jhz ·

{
|hinc.φ 〉TE/TM + diag[tanαi] · |hinc.r 〉TE/TM

}
(4.57)

with

←→
Mα = −int.←→Π

(z)

α (4.58)
←→
O α = s←→Π

(z)

α (4.59)
←→
Q α =

(
h

ks

)
κδ

{
int.←→Π

(rm)

α + diag[tanαi] · int.
←→
Π

(re)

α

}
(4.60)

←→
R α = κδ

{
int.←→Π

(re)

α − diag[tanαi] · int.
←→
Π

(rm)

α

}
(4.61)

←→
S α =

(
h

ks

)
cos δ

{
s←→Π

(rm)

α + diag[tanαi] · s
←→
Π

(re)

α

}
(4.62)

←→
T α = − cos δ

{
s←→Π

(re)

α − diag[tanαi] · s
←→
Π

(rm)

α

}
(4.63)

Equations (4.54)–(4.57) can be transformed by simple manipulation
into the form ←→

A ◦ �xt = �Iinc.

�x = (�a,�b,�c,�d) ,
(4.64)

where the coefficient matrix
←→
A is of the size (4Nd × 4Nd) . The

unknown coefficients ai, bi, ci , and di are then computed from this
equation system.

Beside the inhomogeneity at the right hand side of (4.64),
←→
A also

depends on the scatterer orientation with respect to the incident field.
This results from the infinite cylinder extension and the corresponding
separation of the z -variable.

Now we want to deal with the derivation of the corresponding equa-
tion system in spherical co-ordinates.
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Figure 7. Scattering on a dielectric sphere.

4.2 The Discretized Mie-Formalism in Spherical Co-ordinates

4.2.1 The Limiting Case of Spheres

Plane wave scattering on dielectric spheres represents the limiting
case (see Fig. 7). As for circular cylinders, the calculations simplify
considerably. First of all, the expression (2.36) for αi vanishes identi-
cally. We can, furthermore, restrict the consideration to the azimuthal
mode l = 1 . Thus, only the Dirichlet condition must be taken into
account in the discretization with respect to θ . Consequently, Eqs.
(3.37) and (3.38) can be reduced to

Πe(r, θ, φ) = − k

ωµ0
E0 cosφ · Π̃e(r, θ) (4.65)

Πm(r, θ, φ) = E0 sinφ · Π̃m(r, θ) . (4.66)

This form is caused by the simpler representation of the incident field.
Under the assumption that it propagates along the positive z -direc-
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tion, it reads as follows.
�Einc. = x̂ · E0 · exp(jk0z) (4.67)

�H inc. = ŷ · k0

ωµ0
· E0 · exp(jk0z) (4.68)

After choosing spherical co-ordinates we get the expressions

Einc.
r = E0 · cosφ · sin θ · exp(jρ0 · cos θ) (4.69)

Einc.
θ = E0 · cosφ · cos θ · exp(jρ0 · cos θ) (4.70)

Einc.
φ = −E0 · sinφ · exp(jρ0 · cos θ) (4.71)

and

H inc.
r =

k0

ωµ0
E0 · sinφ · sin θ · exp(jρ0 · cos θ) (4.72)

H inc.
θ =

k0

ωµ0
E0 · sinφ · cos θ · exp(jρ0 · cos θ) (4.73)

H inc.
φ =

k0

ωµ0
E0 · cosφ · exp(jρ0 · cos θ) (4.74)

with ρ0 = k0r . In this way, both polarization contributions can be
taken into account. Additionally, the diagonal matrices (3.66) and
(3.67) become simple functions with respect to r . From the Mie theory
it is known that the continuity conditions (2.37)–(2.40) can be reduced
to corresponding continuity conditions for the Debye potentials in the
case of a spherical geometry. In the algebraic form, they read as follows:

| d
dρ0

(ρ0 ·Πinc.
e )〉+ | d

dρ0
(ρ0 ·Πs

e)〉 =
ε0
εs
| d
dρs

(ρs ·Πint.
e )〉 (4.75)

| d
dρ0

(ρ0 ·Πinc.
m )〉+ | d

dρ0
(ρ0 ·Πs

m)〉 = | d
dρs

(ρs ·Πint.
m )〉 (4.76)

|Πinc.
e 〉+ |Πs

e〉 = |Πint.
e 〉 (4.77)

|Πinc.
m 〉+ |Πs

m〉 = |Πint.
m 〉 (4.78)

The corresponding potentials of the incident field (4.69)–(4.74) are
given by (compare, e.g., with [50, 58]):

Πinc.
e (r, θ, φ) = − k0

ωµ0
E0 · cosφ · Π̃inc.(r, θ) (4.79)

Πinc.
m (r, θ, φ) = E0 · sinφ · Π̃inc.(r, θ) (4.80)

Π̃inc. =
1
ρ0

∞∑
n=1

(−j)−n(2n+ 1)
n(n+ 1)

· jn(ρ0) · P 1
n(cos θ) (4.81)
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jn – Riccatti-Bessel functions
P 1
n – Associated Legendre functions .

The components Π̃inc.
i of the algebraization result from (4.81) with

Θ = Θi, i = 1, . . . , Nd . Inserting these expressions and the relations
(3.62)–(3.65) into the above mentioned continuity condition and multi-

plying the resulting equations by
←→
Tr
−1

from the left yield a decoupled
equation system for determining the unknown expansion coefficients.
Note that, exp(j1φ) is replaced by ‘ sinφ ’ or ‘ cosφ ’ according to
(4.65)/(4.66). In eliminating ai and bi , we finally obtain the follow-
ing expressions for the scattering coefficients ci and di .

ci =
ε0J
′
iUi − εsJiU

′
i

εsH ′iJi − ε0HiJ ′i
(4.82)

di =
J ′iUi − JiU

′
i

H ′iJi −HiJ ′i
, (4.83)

where

Ji =
1
√
ρsi
· Jνi(ρsi) ; J ′i =

d

dρs
[
√
ρs · Jνi(ρs)]ρsi (4.84)

Hi =
1
√
ρ0i

·H(1)
νi (ρ0i) ; H ′i =

d

dρ0
[
√
ρ0 ·H(1)

νi (ρ0)]ρ0i
(4.85)

Ui =
Nd∑
k=1

tr−1
ik · Π̃inc.

k ; U ′i =
d

dρ0
[ρ0 · Ui(ρ0)]ρ0i

. (4.86)

(4.82) and (4.83) show clearly the analogy to the Mie theory. But
again, the differences to the known rigorous solutions which have al-
ready been stated in the discussion of (4.28) and (4.29) hold. The
convergency behavior of the differential scattering cross-sections cal-
culated by means of these scattering coefficients will be discussed in
the numerical considerations of chapter 6.

4.2.2 Axisymmetric Geometries

The limitation to the azimuthal mode l = 1 and, consequently, to
the modified ansatz (4.65)/(4.66) can also be maintained in the case
where the incident field propagates along the symmetry axis ( z -axis)
of an axisymmetric scatterer. This would considerably simplify the
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Figure 8. Orientation of the NAS in the laboratory frame.

derivation of the characteristic equation system which can, however,
no longer be done in the DMS. Otherwise, since we want to allow a
random scatterer orientation with respect to the incident field, this
general case should be considered at once. Of course, it contains the
limitation mentioned above as a special case, but in a more complicated
form.

We go back to the ansatz (3.37)/(3.38) and deal first with the scat-
terer orientation with respect to the incident field. This can be done
in a way which is known from the T-matrix approach [28]. The geom-
etry is depicted in Fig. 8. The incident field may propagate, without
loss of generality, along the positive z -axis of the laboratory frame
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{XL, Y L, ZL} , The scattering plane is chosen to be the XLZL -plane.
With respect to this plane, the incident field can be decomposed into
a vertical and a horizontal part, i.e., it is �Einc.

h = Einc.
h · x̂L and

�Einc.
v = Einc.

v · ŷL .
It holds for the several contributions:

�Einc.
v = Ŷ L · E0 · exp(jk0Z

L) (4.87)

�H inc.
v = −X̂L k0

ωµ0
· E0 · exp(jk0Z

L) (4.88)

�Einc.
h = −ωµ0

k0
· �H inc.

v (4.89)

�H inc.
h =

k0

ωµ0
· �Einc.

v (4.90)

The relationship between the vertical and the horizontal fields given
by (4.89) and (4.90) is also valid for all further derivations. Therefore,
we can restrict ourselves to the vertical contributions in the following
considerations.

The orientation of the NAS in the laboratory frame is described
by the 3 Eulerian angles Φp, Θp and Ψp . The rotational symmetry
provides the freedom to choose any value for the angle Ψp but, for
comparison purposes with Barber and Hill [28], Ψp = 180◦ is taken in
this paper. We want to formulate the DMF in the body frame {x, y, z}
since only there the simplifications which result from the rotational
symmetry can be used. The transformation of the incident field into
the body frame is given by:


 X̂L

Ŷ L

ẐL


 =

←→
A
−1

E ◦


 x̂
ŷ
ẑ


 (4.91)

with

←→
A
−1

E =


− cos Φp · cos Θp sin Φp cos Φp · sin Θp

− sin Φp · cos Θp − cos Φp sin Φp · sin Θp

sin Θp 0 cos Θp


 . (4.92)

Applying the transformation to the incident field and choosing spher-
ical co-ordinates in the body frame yield the following expressions:
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(v)Einc.
r = E0 · ej(sb·cosφ+cb) · [sin Φp · sin Θp · cos θ
− cos Φp · sin θ · sinφ− sin Φp · cos Θp · sin θ · cosφ] (4.93)

(v)Einc.
φ = E0 · ej(sb·cosφ+cb) · [sin Φp · cos Θp · sinφ− cos Φp · cosφ]

(4.94)
(v)Einc.

θ = −E0 · ej(sb·cosφ+cb) · [cos Φp · cos θ · sinφ
+ sin Φp · cos θp · cos θ · cosφ+ sin Φp · sin Θp · sin θ] (4.95)

(v)H inc.
r = − k0

ωµ0
· E0 · ej(sb·cosφ+cb) · [sin Φp · sin θ · sinφ

− cos Φp · cos Θp · sin θ · cosφ+ cos Φp · sin Θp · cos θ] (4.96)

(v)H inc.
φ = − k0

ωµ0
· E0 · ej(sb·cosφ+cb) · [sin Φp · cosφ

+ cos Φp · cos Θp · sinφ] (4.97)

(v)H inc.
θ = − k0

ωµ0
· E0 · ej(sb·cosφ+cb) · [sin Φp · cos θ · sinφ

− cos Φp · cos Θp · cos θ · cosφ− cos Φp · sin Θp · sin θ] (4.98)

sb = ρ0 · sin Θp · sin θ
cb = ρ0 · cos Θp · cos θ
ρ0 = k0 · r

(4.99)

In order to achieve the same functional dependence with respect to φ
as in the relations (3.37) and (3.38) we apply a Fourier transformation
to the incident field components in the body frame. This will enable an
azimuthal decoupling of the characteristic equation system as discussed
later (compare also with [34]). The following integrals are needed in
performing the Fourier tranformation:

e
(l)
1 (r, θ) =

1
2π

∫ 2π

0
ejsb cosφ · ejlφdφ = jl · Jl(sb) (4.100)

e
(l)
2 (r, θ) =

1
2π

∫ 2π

0
sinφ · ejsb cosφ · ejlφdφ = −jl · l · Jl(sb)

sb
(4.101)

e
(l)
3 (r, θ) =

1
2π

∫ 2π

0
cosφ · ejsb cosφ · ejlφdφ = −jl+1 · dJl(sb)

dsb
(4.102)
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By this, the expressions for the Fourier transforms of the vertically
polarized incident field components in the body frame are obtained.

(v)Einc.
r = E0 · ejcb

∑
l

ejlφ · [sin Φp · sin Θp · cos θ · e(l)1

− cos Φp · sin θ · e(l)2 − sin Φp · cos Θp · sin θ · e(l)3 ] (4.103)
(v)Einc.

φ = E0 · ejcb
∑
l

ejlφ · [sin Φp · cos Θp · e(l)2 − cos Φp · e(l)3 ]

(4.104)
(v)Einc.

θ = −E0 · ejcb
∑
l

ejlφ · [sin Φp · sin Θp · sin θ · e(l)1

+ cos Φp · cos θ · e(l)2 + sin Φq · cos Θp · cos θ · e(l)3 ] (4.105)

(v)H inc.
r = − k0

ωµ0
· E0 · ejcb

∑
l

ejlφ · [cos Φq · sin Θp · cos θ · e(l)1

+ sin Φp · sin θ · e(l)2 − cos Φp · cos Θp · sin θ · e(l)3 ] (4.106)

(v)H inc.
φ = − k0

ωµ0
· E0 · ejcb

∑
l

ejlφ · [cos Φp · cos Θp · e(l)2 + sin Φp · e(l)3 ]

(4.107)

(v)H inc.
r = − k0

ωµ0
· E0 · ejcb

∑
l

ejlφ · [− cos Φp · sin Θp · sin θ · e(l)1

+ sin Φp · cos θ · e(l)2 − cos Φp · cos Θp · cos θ · e(l)3 ] (4.108)

As already mentioned, the special case of propagation of the incident
field along the symmetry axis, i.e., Φp = Θp = 0 , leads to essential
simplifications. Because of

sinφ =
j

2
· [e−jφ − e+jφ]

cosφ =
1
2
· [e−jφ + e+jφ] .

(4.109)

only the azimuthal modes l = ±1 need to be considered. Furthermore,
the calculation has to be performed only for l = +1 since the scattering
coefficients for l = −1 are related to those of l = +1 . For the Fourier
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integrals (4.100)–(4.102) it holds:

e
(±1)
1 = 0

e
(±1)
2 = ∓ j

2

e
(±1)
3 =

1
2

(4.110)

This way is described in detail in [35].
The components of the internal and scattered field discretized with

respect to θ result from equations (2.22)–(2.27) and the expressions
(3.62)–(3.65) for the potentials. Again, the differential quotient δ/δθ

is replaced by the difference operator 1/(2hθ) ·
←→
D

(DC/NC)

c (DC or NC
according to the azimuthal mode l ) defined in (3.7) and (3.8). We get:

|esr〉 = −E0

∑
l

ejlφ
Nd∑
α=1

c(l)α · s
←→
Π

r(l)

α · |x(l)
α 〉 (4.111)

|esθ〉 = −E0

∑
l

ejlφ
Nd∑
α=1

c(l)α · s
←→
Π

θ
(l)
e

α · |x(l)
α 〉

+ E0

∑
l

l · ejlφ
Nd∑
α=1

d(l)
α · s

←→
Π

θ
(l)
m

α · |x(l)
α 〉 (4.112)

|esφ〉 = E0

∑
l

l · ejlφ
Nd∑
α=1

c(l)α · s
←→
Π

φ
(l)
e

α · |x(l)
α 〉

− E0

∑
l

ejlφ
Nd∑
α=1

d(l)
α · s

←→
Π

φ
(l)
m

α · |x(l)
α 〉 (4.113)

|hsr〉 = − k0

ωµ0
· E0

∑
l

ejlφ
Nd∑
α=1

d(l)
α · s

←→
Π

r(l)

α · |x(l)
α 〉 (4.114)

|hsθ〉 = − k0

ωµ0
· E0

∑
l

ejlφ
Nd∑
α=1

d(l)
α · s

←→
Π

θ
(l)
e

α · |x(l)
α 〉

− k0

ωµ0
· E0

∑
l

l · ejlφ
Nd∑
α=1

c(l)α · s
←→
Π

θ
(l)
m

α · |x(l)
α 〉 (4.115)
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|hsφ〉 =
k0

ωµ0
· E0

∑
l

l · ejlφ
Nd∑
α=1

d(l)
α · s

←→
Π

φ
(l)
e

α · |x(l)
α 〉

+
k0

ωµ0
· E0

∑
l

ejlφ
Nd∑
α=1

c(l)α · s
←→
Π

φ
(l)
m

α · |x(l)
α 〉 (4.116)

with

s←→Π
r(l)

α = j · diag
{[√

ρ0 ·H(1)

ν
(l)
α

(ρ0)
]′′
ρ0i

}
+ j · diag

{√
ρ0 ·H(1)

ν
(l)
α

(ρ0i)
}

(4.117)

s←→Π
θ
(l)
e

α = j · diag
{

1
ρ0i

·
[√

ρ0 ·H(1)

ν
(l)
α

(ρ0)
]′
ρ0i

}
· 1
2hθ
· ←→D

(l)

c (4.118)

s←→Π
θ
(l)
m

α = j · diag
{

1
√
ρ0i

·H(1)

ν
(l)
α

(ρ0i)
}
· diag[sin−1 θi] (4.119)

s←→Π
φ
(l)
e

α = diag

{
1
ρ0i

·
[√

ρ0 ·H(1)

ν
(l)
α

(ρ0)
]′
ρ0i

}
· diag[sin−1 θi] (4.120)

s←→Π
φ
(l)
m

α = diag

{
1
√
ρ0i

·H(1)

ν
(l)
α

(ρ0i)
}
· 1
2hθ
· ←→D

(l)

c (4.121)

and

|eint.r 〉 = −E0

∑
l

ejlφ
Nd∑
α=1

a(l)
α · int.

←→
Π

r(l)

α · |x(l)
α 〉 (4.122)

|eint.θ 〉 = −E0

∑
l

ejlφ
Nd∑
α=1

a(l)
α · int.

←→
Π

θ
(l)
e

α · |x(l)
α 〉

+ E0

∑
l

l · ejlφ
Nd∑
α=1

b(l)α · int.
←→
Π

θ
(l)
m

α · |x(l)
α 〉 (4.123)

|eint.φ 〉 = E0

∑
l

l · ejlφ
Nd∑
α=1

a(l)
α · int.

←→
Π

φ
(l)
e

α · |x(l)
α 〉

− E0

∑
l

ejlφ
Nd∑
α=1

b(l)α · int.
←→
Π

φ
(l)
m

α · |x(l)
α 〉 (4.124)
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|hint.r 〉 = − ks
ωµ0

· E0

∑
l

ejlφ
Nd∑
α=1

b(l)α · int.
←→
Π

r(l)

α · |x(l)
α 〉 (4.125)

|hint.θ 〉 = − ks
ωµ0

· E0

∑
l

ejlφ
Nd∑
α=1

b(l)α · int.
←→
Π

θ
(l)
e

α · |x(l)
α 〉

− ks
ωµ0

· E0

∑
l

l · ejlφ
Nd∑
α=1

a(l)
α · int.

←→
Π

θ
(l)
m

α · |x(l)
α 〉 (4.126)

|hint.φ 〉 =
ks
ωµ0

· E0

∑
l

l · ejlφ
Nd∑
α=1

b(l)α · int.
←→
Π

φ
(l)
e

α · |x(l)
α 〉

+
ks
ωµ0

· E0

∑
l

ejlφ
Nd∑
α=1

a(l)
α · int.

←→
Π

φ
(l)
m

α · |x(l)
α 〉 (4.127)

with

int.←→Π
r(l)

α = j · diag
{[√

ρs · Jν(l)
α

(ρs)
]′′
ρsi

}
+ j · diag

{√
ρsi · Jν(l)

α
(ρsi)

}
(4.128)

int.←→Π
θ
(l)
e

α = j · diag
{

1
ρsi
·
[√

ρs · Jν(l)
α

(ρs)
]′
ρsi

}
· 1
2hθ
· ←→D

(l)

c (4.129)

int.←→Π
θ
(l)
m

α = j · diag
{

1
√
ρsi
· J

ν
(l)
α

(ρsi)
}
· diag[sin−1 θi] (4.130)

int.←→Π
φ
(l)
e

α = diag

{
1
ρsi
·
[√

ρs · Jν(l)
α

(ρs)
]′
ρsi

}
· diag[sin−1 θi] (4.131)

int.←→Π
φ
(l)
m

α = diag

{
1
√
ρsi
· J

ν
(l)
α

(ρsi)
}
· 1
2hθ
· ←→D

(l)

c (4.132)

The primes at the brackets denote differentiation with respect to the
arguments of the Bessel and Hankel functions, respectively. The index
i is always running from 1 to Nd . Inserting of these relations into the
continuity conditions (2.37)–(2.40) and integrating each of the four
equations with

∫ 2π
0 e−jl

′φdφ yield a characteristic equation system for
each azimuthal mode l of the form
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Nd∑
α=1

a(l)
α

←→
M

(l)

α · |x(l)
α 〉+

Nd∑
α=1

b(l)α l · ←→N
(l)

α · |x(l)
α 〉

+
Nd∑
α=1

c(l)α
←→
O

(l)

α · |x(l)
α 〉+

Nd∑
α=1

d(l)
α l · ←→P

(l)

α · |x(l)
α 〉

= − 1
E0
·
{
|einc.θ 〉(l) + diag[tanαi] · |einc.r 〉(l)

}
(4.133)

Nd∑
α=1

a(l)
α l · ←→Q

(l)

α · |x(l)
α 〉+

Nd∑
α=1

b(l)α
←→
R

(l)

α · |x(l)
α 〉

+
Nd∑
α=1

c(l)α l · ←→S
(l)

α · |x(l)
α 〉+

Nd∑
α=1

d(l)
α

←→
T

(l)

α · |x(l)
α 〉 =

1
E0
· |einc.φ 〉(l) (4.134)

−ks
k0
·
Nd∑
α=1

a(l)
α l · ←→N

(l)

α · |x(l)
α 〉+

ks
k0
·
Nd∑
α=1

b(l)α
←→
M

(l)

α · |x(l)
α 〉

−
Nd∑
α=1

c(l)α l · ←→P
(l)

α · |x(l)
α 〉+

Nd∑
α=1

d(l)
α

←→
O

(l)

α · |x(l)
α 〉

= − ωµ0

k0
· 1
E0
·
{
|hinc.θ 〉(l) + diag[tanαi] · |hinc.r 〉(l)

}
(4.135)

ks
k0
·
Nd∑
α=1

a(l)
α

←→
R

(l)

α · |x(l)
α 〉 −

ks
k0
·
Nd∑
α=1

b(l)α l · ←→Q
(l)

α · |x(l)
α 〉

+
Nd∑
α=1

c(l)α
←→
T

(l)

α · |x(l)
α 〉 −

Nd∑
α=1

d(l)
α l · ←→S

(l)

α · |x(l)
α 〉

= − ωµ0

k0
· 1
E0
· |hinc.φ 〉(l) (4.136)

with

←→
M

(l)

α = int.←→Π
θ
(l)
e

α + diag[tanαi] · int.
←→
Π

r(l)

α (4.137)

←→
N

(l)

α = −int.←→Π
θ
(l)
m

α (4.138)

←→
O

(l)

α = −
[
s←→Π

θ
(l)
e

α + diag[tanαi] · s
←→
Π

r(l)

α

]
(4.139)
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←→
P

(l)

α = s←→Π
θ
(l)
m

α (4.140)

←→
Q

(l)

α = int.←→Π
φ
(l)
e

α (4.141)

←→
R

(l)

α = −int.←→Π
φ
(l)
m

α (4.142)

←→
S

(l)

α = −s←→Π
φ
(l)
e

α (4.143)

←→
T

(l)

α = s←→Π
φ
(l)
m

α . (4.144)

Again, equations (4.133)–(4.136) can be transformed into the form

←→
A

(l)

◦ �xt(l) = �I
(l)
inc. (4.145)

�x(l) =
(
�a(l), �b(l), �c(l), �d(l)

)
,

where the coefficient matrix is of the size (4Nd × 4Nd) .
In contrast to (4.64), the coefficient matrix in (4.145) is only a func-

tion of the geometry and the size parameter. It does not depend on the
scatterer orientation with respect to the incident field. On the other
hand, �I

(l)
inc. is determined only by the l -th expansion coefficients of

the incident field according to (4.103)–(4.108).
By equations (4.64) and (4.145), which represent the central rela-

tions of the DMF in cylindrical and spherical co-ordinates, the scat-
tering problem on dielectric particles with non-separable boundaries
is solved. In the last section of this chapter we want to discuss an
iteration scheme that results in a more stable numerical algorithm.

4.3 The Iterative Discretized Mie-Formalisms

The determination of the expansion coefficients of the internal and
scattered field by means of equations (4.64) and (4.145), respectively,
is in principle possible but has a restricted range of applicability due
to numerical problems. Investigations of ellipsoidal scatterers with as-
pect ratios ≤ 1.5 : 1 , where aspect ratio means the ratio of the largest
to the smallest scatterer dimension, have shown that a discretization
in 0.7◦ – steps leads to convergent results. This corresponds to a dis-
cretization number of Nd ≈ 250 which is also the number of expansion
coefficients. The resulting coefficient matrix is actually small in com-
parison to FD/FE methods but large enough to have negative effects
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on computing time and memory capacity. An increasing number of dis-
cretization lines produces additionally the problem of an ill-conditioned
coefficient matrix for which more sophisticated algorithms such as the
Singular Value Decomposition have to be applied. Scatterers with
larger aspect ratios can hardly be treated by using equations (4.64)
and (4.145). These are essentially the problems from which some of
the methods mentioned in the introduction suffer, and which can lead
to a rather strong limitation in the range of application.

On the other hand it is known from the Mie theory that the number
of scattered field expansion coefficients, which has to be taken into
account in order to achieve a convergent result, depends mainly on the
size parameter under consideration. There are only three coefficients
sufficient in the Rayleigh region, for instance. We can observe a similar
behavior for nonseparable geometries. The differential scattering cross-
sections of an ellipsoid with a = 3 mm, b = 2 mm, εs = 2.0 , and
f = 10 GHz (this corresponds to a size parameter of k0a = 0.628 )
are shown in Fig. 9. There we assumed plane wave incidence along
the axis of symmetry. The definition of the scattering quantities will
be discussed in the next chapter. Very stable results are obtained in
considering only five coefficients in the field expansion (4.111)–(4.113).
The use of more expansion terms shows only minute changes in the
curves. The first ten expansion coefficients are given in Table 1. It
is seen that they become very rapidly smaller. In practice, however,
250 coefficients are computed. Therefore, the question arises if this
behavior can be taken into account. Indeed, this can be done. For
this, let us return to the expressions (4.34)–(4.53) and (4.111)–(4.132),
respectively. Now the sum is no longer running from 1 to Nd , but
it is stopped at a certain ncut where ncut represents a convergency
parameter still to be determined. Inserting of these expressions into
the corresponding continuity conditions yields

ncut∑
α=1

aα
←→
Mα · |xα〉+

ncut∑
α=1

cα
←→
O α · |xα〉 = −|ẽinc.z 〉TE/TM (4.146)

ncut∑
α=1

aα
←→
Q α · |xα〉+

ncut∑
α=1

bα
←→
R α · |xα〉+

ncut∑
α=1

cα
←→
S α · |xα〉

+
ncut∑
α=1

dα
←→
T α · |xα〉 = −|ẽinc.φ,r 〉TE/TM (4.147)
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Table 1. Expansion coefficients of the scattered field.

−
(
ks
k0

)
·
ncut∑
α=1

bα
←→
Mα · |xα〉 −

ncut∑
α=1

dα
←→
O α · |xα〉 = −|h̃inc.z 〉TE/TM (4.148)

−
(
ks
k0

)
·
ncut∑
α=1

aα
←→
R α · |xα〉+

(
ks
k0

)
·
ncut∑
α=1

bα
←→
Q α · |xα〉 −

ncut∑
α=1

cα
←→
T α · |xα〉

+
ncut∑
α=1

dα
←→
S α · |xα〉 = −|h̃inc.φ,r 〉TE/TM (4.149)

|ẽinc.z 〉TE/TM =
1
E0
· e−jhz · |einc.z 〉TE/TM (4.150)

|ẽinc.φ,r 〉TE/TM =
j

E0
· e−jhz · {|einc.φ 〉TE/TM

+ diag[tanαi] · |einc.r 〉TE/TM} (4.151)

|h̃inc.z 〉TE/TM =
ωµ0

E0k0
· e−jhz · |hinc.z 〉TE/TM (4.152)



Discretized Mie-Formalism for electromagnetic scattering 141

Figure 9. Differential scattering cross-sections ( vv - and hh -polariza-
tion) taking ncut expansion coefficients into account.
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|h̃inc.φ,r 〉TE/TM =
jωµ0

E0k0
· e−jhz · {|hinc.φ 〉TE/TM

+ diag[tanαi] · |hinc.r 〉TE/TM} (4.153)

in the case of NIC, and

ncut∑
α=1

a(l)
α

←→
M

(l)

α · |x(l)
α 〉+

ncut∑
α=1

b(l)α l · ←→N
(l)

α · |x(l)
α 〉

+
ncut∑
α=1

c(l)α
←→
O

(l)

α · |x(l)
α 〉+

ncut∑
α=1

d(l)
α l · ←→P

(l)

α · |x(l)
α 〉 = −|ẽinc.θ,r 〉(l) (4.154)

ncut∑
α=1

a(l)
α l · ←→Q

(l)

α · |x(l)
α 〉+

ncut∑
α=1

b(l)α
←→
R

(l)

α · |x(l)
α 〉

+
ncut∑
α=1

c(l)α l · ←→S
(l)

α · |x(l)
α 〉+

ncut∑
α=1

d(l)
α

←→
T

(l)

α · |x(l)
α 〉 = |ẽinc.φ 〉(l) (4.155)

−ks
k0
·
ncut∑
α=1

a(l)
α l · ←→N

(l)

α · |x(l)
α 〉+

ks
k0
·
ncut∑
α=1

b(l)α
←→
M

(l)

α · |x(l)
α 〉

−
ncut∑
α=1

c(l)α l · ←→P
(l)

α · |x(l)
α 〉+

ncut∑
α=1

d(l)
α

←→
O

(l)

α · |x(l)
α 〉 = −|h̃inc.θ,r 〉(l) (4.156)

ks
k0
·
ncut∑
α=1

a(l)
α

←→
R

(l)

α · |x(l)
α 〉 −

ks
k0
·
ncut∑
α=1

b(l)α l · ←→Q
(l)

α · |x(l)
α 〉

+
ncut∑
α=1

c(l)α
←→
T

(l)

α · |x(l)
α 〉 −

ncut∑
α=1

d(l)
α l · ←→S

(l)

α · |x(l)
α 〉 = −|h̃inc.φ 〉(l) (4.157)

|ẽinc.θ,r 〉(l) =
1
E0
· {|einc.θ 〉(l) + diag[tanαi] · |einc.r 〉(l)} (4.158)

|ẽinc.φ 〉(l) =
1
E0
· |einc.φ 〉(l) (4.159)

|h̃inc.θ,r 〉(l) =
ωµ0

E0k0
· {|hinc.θ 〉(l) + diag[tanαi] · |hinc.r 〉(l)} (4.160)

|h̃inc.φ 〉(l) =
ωµ0

E0k0
· |hinc.φ 〉(l) (4.161)

for NAS. Accordingly, we have ‘ 4Nd ’ equations to determine ‘ 4ncut ’
coefficients. Since we intend to choose ncut much smaller than Nd ,
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there are more equations than unknowns. To remove this overdetermi-
nation the continuity conditions are multiplied from the left by 〈xβ|
and 〈x(l)

β | , respectively, where β runs from 1 to ncut . In this way, a
uniquely determined system of the size (4ncut× 4ncut) is obtained.
The resulting inhomogeneities at the right hand side represent the ex-
pansion coefficients of the incident field components if expanded in
terms of the eigenvectors |xα〉 and |x(l)

α 〉 , respectively, i.e., we obtain

|ẽinc.z 〉TE/TM =
ncut∑
α=1

e(TE/TM)
zα · |xα〉 (4.162)

|ẽinc.φ,r 〉TE/TM =
ncut∑
α=1

e
(TE/TM)
φ,rα

· |xα〉 (4.163)

|h̃inc.z 〉TE/TM =
ncut∑
α=1

h(TE/TM)
zα · |xα〉 (4.164)

|h̃inc.φ,r 〉TE/TM =
ncut∑
α=1

h
(TE/TM)
φ,rα

· |xα〉 (4.165)

with

e(TE/TM)
zα = 〈xα|ẽinc.z 〉TE/TM (4.166)

e
(TE/TM)
φ,rα

= 〈xα|ẽinc.φ,r 〉TE/TM
(4.167)

h(TE/TM)
zα = 〈xα|h̃inc.z 〉TE/TM (4.168)

h
(TE/TM)
φ,rα

= 〈xα|h̃inc.φ,r 〉TE/TM
(4.169)

as expansion coefficients of the incident field in cylindrical co-ordinates
with respect to the φ -dependence, and

|ẽinc.θ,r 〉(l) =
ncut∑
α=1

e
(l)
θ,rα
· |x(l)

α 〉 (4.170)

|ẽinc.φ 〉(l) =
ncut∑
α=1

e
(l)
φα
· |x(l)

α 〉 (4.171)

|h̃inc.θ,r 〉(l) =
ncut∑
α=1

h
(l)
θ,rα
· |x(l)

α 〉 (4.172)
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|h̃inc.φ 〉(l) =
ncut∑
α=1

h
(l)
φα
· |x(l)

α 〉 (4.173)

with

e
(l)
θ,rα

= 〈x(l)
α |ẽinc.θ,r 〉

(l)
(4.174)

e
(l)
φα

= 〈x(l)
α |ẽinc.φ 〉

(l)
(4.175)

h
(l)
θ,rα

= 〈x(l)
α |h̃inc.θ,r 〉

(l)
(4.176)

h
(l)
φα

= 〈x(l)
α |h̃inc.φ 〉

(l)
(4.177)

as expansion coefficients of the incident field in spherical co-ordinates
with respect to the θ -dependence. By using the definition

←→
Z αβ =

{
〈xβ|
←→
Z α|xα〉 ; α, β = 1, . . . , ncut

}
, (4.178)

where
←→
Z α =

←→
Mα,

←→
O α,

←→
Q α,

←→
R α,

←→
S α,

←→
T α , according to (4.58)–

(4.63), and

←→
Z

(l)

αβ =
{
〈x(l)

β |
←→
Z

(l)

α |x(l)
α 〉 ; α, β = 1, . . . , ncut

}
, (4.179)

where
←→
Z

(l)

α =
←→
M

(l)

α ,
←→
N

(l)

α ,
←→
O

(l)

α ,
←→
P

(l)

α ,
←→
Q

(l)

α ,
←→
R

(l)

α ,
←→
S

(l)

α ,
←→
T

(l)

α , accord-
ing to (4.137)–(4.144), respectively, the following equation system for
NIC in cylindrical co-ordinates can be derived



←→
Mαβ

←→
0

←→
O αβ

←→
0

←→
Q αβ

←→
R αβ

←→
S αβ

←→
T αβ

←→
0 −ks

k0

←→
Mαβ

←→
0 −←→O αβ

−ks
k0

←→
R αβ

ks
k0

←→
Q αβ −←→T αβ

←→
S αβ



◦




�a

�b

�c

�d




=




−�ez(TE/TM)

− �eφ,r
(TE/TM)

− �hz
(TE/TM)

�hφ,r
(TE/TM)




, (4.180)
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and for NAS in spherical co-ordinates we get




←→
M

(l)

αβ l
←→
N

(l)

αβ

←→
O

(l)

αβ l
←→
P

(l)

αβ

l
←→
Q

(l)

αβ

←→
R

(l)

αβ l
←→
S

(l)

αβ

←→
T

(l)

αβ

−ks
k0
l
←→
N

(l)

αβ
ks
k0

←→
M

(l)

αβ −l←→P
(l)

αβ

←→
O

(l)

αβ

ks
k0

←→
R

(l)

αβ −ks
k0
l
←→
Q

(l)

αβ

←→
T

(l)

αβ −l←→S
(l)

αβ



◦




�a(l)

�b(l)

�c(l)

�d(l)




=




−�e(l)θ,r
�e

(l)
φ

−�h(l)
θ,r

−�h(l)
φ




. (4.181)

In contrast to the equation systems (4.64) and (4.145), we have to
consider now the two convergency parameters Nd and ncut . The
accuracy in calculating the several matrix elements zαβ depends deci-
sively on Nd , independent of the chosen value for ncut . ncut itself
determines the number of expansion terms in (3.31)–(3.34) and (3.62)–
(3.65). It will be favorable to determine Nd first at a fixed ncut .
Then, ncut can be increased until a convergent result is achieved. The
convergency criteria will be discussed in more detail in chapter 6 deal-
ing with the application of the DMF to various scatterer geometries.
Of course, the dependence on the azimuthal modes has additionally to
be considered in the case of NAS, where the convergency with respect
to Nd and ncut must be newly investigated for every mode.

The iterative DMF described here represents a method of moments
scheme [59] in which the inhomogeneous equation system is given by
the continuity conditions of the tangential field components. Corre-
sponding to the relations (3.31)–(3.34) and (3.62)–(3.65) for the De-
bye potentials, the eigenvectors calculated by means of the Method of
Lines are used as basis as well as weighting vectors. This special choice
is known as the Galerkin method which has the advantage of ensur-
ing energy conservation and reciprocity for each approximate solution
[55]. The coefficient matrix formed by the scalar products (4.178) and
(4.179) exhibits a non-diagonal form, in general. But, if the separa-
ble limiting cases are considered again (sphere and circular cylinder at
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perpendicular incidence) a diagonal matrix is obtained from which the
known expressions (4.28), (4.29) and (4.82), (4.83) can be derived.

We will see in chapter 6 that, indeed, ncut can chosen to be much
smaller than Nd in most of the applications. Due to this, the iterative
DMF represents a numerically very stable algorithm that is able to
treat particles at larger size parameters without any problems. Next,
the scattering quantities and their calculation within the framework of
the DMF are discussed.

5. DEFINITION OF SCATTERING PARAMETERS

The scattering problem has been solved with the determination of the
unknown coefficients ai and bi for the internal and ci and di for
the scattered field by means of the equation (4.180) in cylindrical and
(4.181) in spherical co-ordinates. The total electromagnetic field can
be readily calculated at any point inside and outside the scatterer.
However, the calculation of scattering cross-sections from the known
fields is of more practical interest because they allow a direct compari-
son between theory and experiment. In investigating the convergence,
the differential scattering cross-sections are more appropriate than the
integral scattering quantities because of their higher sensitivity. There-
fore, we will mainly concentrate on the differential scattering quantities
in our numerical considerations. First we want to discuss the general
definitions and relations.

The differential scattering cross-section in spherical co-ordinates for
any finite obstacle is defined by [3, 60]

dσ(θ, φ)
dΩ

= lim
r→∞

r2
�Es(r, θ, φ) · [�Es(r, θ, φ)]∗

�Einc.(r, θ, φ) · [�Einc.(r, θ, φ)]∗
. (5.1)

In the far field region, the scattered field of any finite particle represents
an outgoing spherical wave of the form

�Es(r, θ, φ) = �Es
0(θ, φ) · e

jk0r

r
. (5.2)

�Es
0 denotes the complex scattering amplitude vector that contains

all information about the scattering process. On the other hand, an
infinitely extended cylinder with an arbitrarily shaped cross-section
causes a scattered field which is in the far field region given by

�Es(r, φ, z) = �Es
0(φ, z) ·

ejk0r

√
r

. (5.3)
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Because of the different r -dependence it is more meaningful to define
the differential scattering cross-section as follows [49, 61–64]:

dσ(φ, z)
dΩ

= lim
r→∞

r
�Es(r, φ, z) · [�Es(r, φ, z)]∗

�Einc.(r, φ, z) · [�Einc.(r, φ, z)]∗
. (5.4)

Considering in all cases a plane wave as the incident field, i.e.,

�Einc.(�r) = �Einc.
0 · ej(k0·(r , (5.5)

one obtains for the differential scattering cross-sections (5.1) and (5.4)

dσ

dΩ
=
|�Es

0|2

|�Einc.
0 |2

. (5.6)

Equation (5.6) shows that, a main problem in scattering theory is the
determination of the complex scattering amplitude �Es

0 .
In order to describe the polarization behavior of the scatterer, both,

the incident and the scattered field are decomposed with respect to a
reference plane into two components which are perpendicular to each
other and perpendicular to the propagation direction. For finite ob-
jects, the reference plane is usually chosen to be the scattering plane
that is determined by the wave vectors of the incident and of the scat-
tered field �k0 = k0 · êinc. and �ks0 = k0 · ês [60]. êinc. and ês are
unit vectors in the incident and the scattered propagation direction.
The infinitely extended cylinder requires another representation which
will be discussed in detail in chapter 5.1. The polarization of a field
is referred to as either vertical (v) if its �E -vector stands perpendic-
ularly on the reference plane, or horizontal (h) if it lies in this plane.
Consequently we get (see, e.g., [3])

�Einc.(�r) =
[
v̂inc. · Einc.

v + ĥinc. · Einc.
h

]
· ej(k0·(r (5.7)

and
�Es(�r) = v̂s · Es

v + ĥs · Es
h . (5.8)

Here, v̂ and ĥ denote unit vectors of the vertical and horizontal field
components, respectively, resulting from the decomposition. In gen-
eral, each polarization component of the scattered field depends on
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both components of the incident field. This fact can be expressed by a

scattering amplitude matrix
←→
F which is for a finite obstacle defined

by [3, 15, 18, 60](
Es
v(r, θ, φ)

Es
h(r, θ, φ)

)
=

ejk0r

r
·
(
fvv(θ, φ) fvh(θ, φ)
fhv(θ, φ) fhh(θ, φ)

)
·
(
Einc.
v

Einc.
h

)
. (5.9)

For infinitely extended cylinders we have(
Es
v(r, φ, z)

Es
h(r, φ, z)

)
=

ejk0r

√
r
·
(
fvv(φ, z) fvh(φ, z)
fhv(φ, z) fhh(φ, z)

)
·
(
Einc.
v

Einc.
h

)
. (5.10)

A comparison of equations (5.2), (5.3) and (5.8)–(5.10) yields the re-
lation between the scattering amplitude vector �Es

0 and the scattering

amplitude matrix
←→
F that holds for finite particles as well as for in-

finitely extended cylinders.

�Es
0 = v̂s · (fvvEinc.

v + fvhE
inc.
h ) + ĥs · (fhvEinc.

v + fhhE
inc.
h ) (5.11)

From equations (5.5) and (5.7) we can immediately see that the am-
plitude of the incident field is given by

�Einc.
0 = v̂inc. · Einc.

v + ĥinc. · Einc.
h . (5.12)

Inserting the scattered and the incident field amplitudes (5.11) and
(5.12) into equation (5.6) for the differential scattering cross-section
and considering only one linear polarized incident field component
α̂inc. · Einc.

α yield the following expression:

dσ

dΩ
= |fαα|2 + |fβα|2 , α, β = v, h and β �= α . (5.13)

In a scattering experiment on a single particle, each term of the right
hand side of (5.13) can be measured separately by use of polarizing
filters, for instance. Thus, one may define polarimetric differential
scattering cross-sections as follows [65].

dσαβ
dΩ

= |fαβ |2 , α, β = v, h (5.14)

These differential scattering cross-sections can be directly compared
with the intensity functions given in [15, 17, 28].
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Other interesting quantities that characterize the scattering process
on a finite obstacle are the total cross-sections σsca , σext , and σabs
of the scattering, extinction and absorption. σsca is obtained by in-
tegrating (5.13) over the solid angle dΩ . The extinction cross-section
σext describes the sum of absorption and scattering and can be calcu-
lated from the scattering amplitude in forward direction by means of
the optical theorem [58, 60, 66, 67].

σext = A · ξext =
4π
k0
· Imfαα(θ = 0) (5.15)

α indicates the polarization state of the incident field ( v or h ). ξext is
referred to as the extinction efficiency and A denotes the particle cross-
sectional area projected onto a plane perpendicular to the incident
beam [18]. Instead of this area, a spherical cross-section is frequently
used in calculating the efficiency of non-spherical particles, i.e.,

A = π · a2 . (5.16)

a represents a characteristic dimension of the particle (often the larg-
est or smallest dimension). Finally, the difference between σext and
σsca yields the absorption cross-section σabs .

From the discussion given above it is seen that, the problem to be

solved now is the calculation of the scattering amplitude matrix
←→
F

from the known scattered field. In the next chapters, this will be done
in cylindrical and spherical co-ordinates.

5.1 Polarimetric Differential Scattering Cross-sections in
Cylindrical Co-ordinates

The scattered field components of an infinitely extended cylinder
with an arbitrarily shaped cross-section are given by equations (4.34)–
(4.36). Because of the special dependence on the tilt angle of the
incident field we introduce the new radial variable

r̃ = r · cos δ (5.17)

in the following considerations. Since all scattering quantities discussed
in chapter 5 are defined in the far field region, ( lim

r̃→∞
) has to be applied

to the scattered field. By using the expressions (4.40)–(4.42) and the
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asymptotic expression of the Hankel function for large arguments [68]
one obtains

|esz〉 =E0 ·
√

2
π
· cos2 δ · ejhz · diag

{
ejk0r̃i

√
k0r̃i

}
·

ncut∑
α=1

cα · e−j(να·
π
2 +π

4 ) · |xα〉 (5.18)

|esr〉 = − tan δ · |esz〉 (5.19)

|esφ〉 = − E0 ·
√

2
π
· cos δ · ejhz · diag

{
ejk0r̃i

√
k0r̃i

}
·

ncut∑
α=1

dα · e−j(να·
π
2 +π

4 ) · |xα〉 (5.20)

with i = 1, . . . , Nd . Note that all terms vanishing stronger than
(
√
r̃)−1 have been omitted in the far field approximation.
A comparison between (5.3) and (5.18)–(5.20) shows that the scat-

tering amplitude is mainly characterized by the discretized φ -depen-
dence. The separation factor ejhz holds for any infinitely long cylinder,
independent of the cross-section shape. From (5.18)–(5.20) we can fur-
thermore see that, for a fixed time and perpendicular incidence (δ = 0)
the surfaces of constant phases (k0 · r = const.) are circular cylinders.
In the more general case of oblique incidence the surfaces of constant
phases (k0 · r · cos δ + k0 · z · sin δ = const.) are cones with an half-
angle δ . Since the propagation direction �ks0 stands perpendicularly
on the phase surfaces, the scattered radiation itself propagates along
the surface of a cone with an apical angle (180◦ − 2δ) [17, 18].

In order to calculate the scattering amplitude matrix
←→
F from the

scattered field (5.18)–(5.20), one has to define certain reference planes
to decompose the incident and the scattered field into vertical and
horizontal components. In contrast to NIC, any finite particle produces
an outgoing spherical wave of the kind (5.2) in the far field. For these
particles, the reference plane is usually chosen to be the scattering
plane determined by the incident and the scattered wave vector �k0

and �ks0 . The finite obstacle can be randomly oriented with respect
to the incident field. Furthermore, the observation direction �ks0 may
also be chosen randomly. In dealing with infinitely long cylinders,
this concept fails, however, because we do not have outgoing spherical
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waves, and the case that �k0 and �ks0 are pointing along the cylinder axis
is impossible. In these directions, there can not exist an incident field
impinging on the particle and a scattered field leaving the particle.
Moreover, the observation direction is related to the incident wave
vector. Thus,�ks0 can not be chosen randomly for a given incident field.

Bohren and Huffman [18] proposed a scheme that allows the intro-

duction of a scattering amplitude matrix
←→
F and the representation of

the scattered field in the form (5.10) also for infinitely long cylinders.
They defined two reference planes, one for the incident and one for the
scattered field (see Fig. 10). The reference plane of the incident field is
formed by the cylinder axis and the incident wave vector �k0 = k0 · êinc.
whereas that for the scattered field is given by the cylinder axis and
the scattered wave vector �ks0 = k0 · ês . Then, the φ -dependence of
the scattering amplitude which is characteristic for each cylinder can
simply be recorded by rotating the scattering reference plane around
the cylinder axis.

First we want to define horizontal and vertical field components of
the scattered field with respect to the scattering reference plane on
the cone discussed above. Since electromagnetic waves are transverse
waves, the horizontal and vertical component at φ = constant are
given by (see Fig. 11)

|esh〉 = cos δ · |esz〉 − sin δ · |esr〉 (5.21)
|esv〉 = −|esφ〉 . (5.22)

Next we decompose the incident field (4.8)–(4.16) into a horizontal
and a vertical component with respect to the incident reference plane.
Without loss of generality the reference plane is chosen to be at φ = 0◦ .
Thus, the incident field is obtained in the following form:

TE:

(TE)Einc.
r = (TE)Einc.

z = 0 (5.23)
(TE)Einc.

φ = E0 · ejhz · e−jk0r̃ (5.24)

TM:

(TM)Einc.
φ = 0 (5.25)
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Figure 10. Reference planes for the infinitely extended cylinder.

(TM)Einc.
r = E0 · sin δ · ejhz · e−jk0r̃ (5.26)

(TM)Einc.
z = E0 · cos δ · ejhz · e−jk0r̃ (5.27)

In the incident TE case, only a field component perpendicular to the
reference plane remains whereas the TM case exhibits only compo-
nents in this plane. This makes it possible to define the horizontally
polarized field component from the incident TM field and the vertical
component from the TE field. As it was also done for the scattered
field, the horizontal component is taken from the projection of the
TM-contributions into the plane perpendicular to the propagation di-
rection. Using (5.7) and considering that the factor e−jk0r̃ has to be
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Figure 11. Definition of the horizontally polarized components of the
incident and the scattered field for an infinitely extended cylinder.
Here, the reference plane of the scattered field is considered at φ =
180◦ .

separated provide

Einc.
h = [cos δ · (TM)Einc.

z + sin δ · (TM)Einc.
r ] · ejk0r̃ = E0 · ejhz (5.28)

Einc.
v = (TE)Einc.

φ · ejk0r̃ = E0 · ejhz . (5.29)

The magnitude of the horizontally and the vertically polarized incident
field component is equal. v̂inc. · Einc.

v and ĥinc. · Einc.
h are, however,

perpendicular to each other.
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Now we are able to derive a relation between the scattered and the
incident field of the kind (5.10). Inserting the vertical and horizontal
components of the scattered and the incident field into (5.10) provides
the elements of the scattering amplitude matrix on one discretization
line.

fhh,i =
√

2
πk0
· cos δ ·

ncut∑
α=1

c(h)
α · e−j(να·

π
2 +π

4 ) · xα,i (5.30)

fhv,i =
√

2
πk0
· cos δ ·

ncut∑
α=1

c(v)α · e−j(να·
π
2 +π

4 ) · xα,i (5.31)

fvh,i =
√

2
πk0
· cos δ ·

ncut∑
α=1

d(h)
α · e−j(να·

π
2 +π

4 ) · xα,i (5.32)

fvv,i =
√

2
πk0
· cos δ ·

ncut∑
α=1

d(v)
α · e−j(να·

π
2 +π

4 ) · xα,i (5.33)

i = 1, . . . , Nd

xα,i represents the i -th component belonging to the eigenvector |xα〉 .
The coefficients c

(h)
α and d

(h)
α are those obtained from (4.180) by using

the incident TM field whereas c
(v)
α and d

(v)
α are calculated in the TE

case. Within the DMF the relation (5.10) holds on each discretization
line. Furthermore it can be seen that the elements of the scattering
amplitude matrix have the dimension

√
length . This is due to the fact

that the scattered field of an infinitely extended cylinder decreases
with 1/

√
r̃ in the far field. The polarimetric differential scattering

cross-sections (5.14) for infinitely long cylinders are therefore of the
dimension ‘length’ in contrast to finite particles the cross-sections of
which have the dimension ‘area’. In order to compare our results with
the intensity functions given in [15, 17, 28] the factor

√
2

πk0
is replaced

by
(√

x1,1 ·
√
Nd

)−1

in the amplitudes (5.30)–(5.33).

5.2 Polarimetric Differential Scattering Cross-sections in
Spherical Co-ordinates

In the general case of oblique incidence the scattered field (4.111)–
(4.113) of NAS is calculated in the particle frame {x, y, z} in which the
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z -axis coincides with the symmetry axis of the particle (see Fig. 8). In
this co-ordinate system one makes use of the rotational symmetry of
the scatterer in deriving the characteristic equation system of the DMF.
On the other hand, the scattering quantities discussed in the beginning
of this chapter are defined in the laboratory frame {XL, Y L, ZL} . The
transformation of the scattered field from the particle frame into the
laboratory frame is done by inverting (4.91), i.e.,

 x̂
ŷ
ẑ


 =

←→
A E ·


 X̂L

Ŷ L

ẐL


 (5.34)

with
←→
A E =

(←→
A
−1

E

)T

. (5.35)

Note that
←→
A
−1

E is given by (4.92). Since the radial variables of both
systems are proportional to each other, as it can be seen below, the
far field approximation of the scattered field can already be taken in
the particle frame. By use of the asymptotic expression of the Hankel
function for large arguments [68] in the Eqs. (4.117)–(4.121) we obtain

|esr〉 = |0〉 (5.36)

|esθ〉 = E0 ·
√

2
π
· diag

{
ejρ0i

ρ0i

}
·
∑
l

ejlφ ·
ncut∑
α=1

e−j(ν
(l)
α

π
2 +π

4 )·
(
c(l)α ·

1
2hθ
· ←→D

(l)

c + j · l · d(l)
α · diag

{
1

sin θi

})
· |x(l)

α 〉 (5.37)

|esφ〉 = E0 ·
√

2
π
· diag

{
ejρ0i

ρ0i

}
·
∑
l

ejlφ ·
ncut∑
α=1

e−j(ν
(l)
α

π
2 +π

4 )·
(
j · l · c(l)α · diag

{
1

sin θi

}
− d(l)

α ·
1

2hθ
· ←→D

(l)

c

)
· |x(l)

α 〉 (5.38)

i = 1, . . . , Nd .

Now we are coming to the transformation of the scattered far field
(5.37)–(5.38) from the particle frame into the laboratory frame. As it
was already mentioned in chapter 4.2.2, the scattering plane is chosen
to be the XLZL -plane, i.e., we consider the incident and the scat-
tered field only at ΦL = 0 and ΦL = π . Consequently, all terms
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in the transformation with sin ΦL vanish. The relations between the
variables {r, θ, φ} of the particle frame and those of the laboratory
frame {RL,ΘL,ΦL} are given by [28]

φ = arctan
(y
x

)
(5.39)

θ = arctan
[√

(x2 + ys)/z
]

(5.40)

r =
z

cos
{

arctan
[√

(x2 + ys)/z
]} (5.41)

with

x = RL · (− sin ΘL · cos ΦL · cos Φp · cos Θp + cos ΘL · sin Θp)

y = RL · sin ΘL · cos ΦL · sin Φp

z = RL · (sin ΘL · cos ΦL · cos Φp · sin Θp + cos ΘL · cos Θp) .

(5.42)

It is immediately seen that θ and φ are independent of RL , and
r = const. ·RL , The constant is determined by the particle orientation
{Θp,Φp} and the observation point {ΘL,ΦL} . The field components
(5.37) and (5.38) can be directly transformed into the laboratory frame
at the scattering plane by means of

|esRL〉 = αRL · |esθ〉+ βRL · |esφ〉
|esΘL〉 = αΘL · |esθ〉+ βΘL · |esφ〉
|esΦL〉 = αΦL · |esθ〉+ βΦL · |esφ〉

(5.43)

with

αRL = sin ΘL · cos ΦL · (sin Φp · cos θ · sinφ
− cos Φp · cos Θp · cos θ · cosφ− cos Φp · sin Θp · sin θ)
+ cos ΘL · (sin Θp · cos θ · cosφ− cos Θp · sin θ)

βRL = sin ΘL · cos ΦL · (sin Φp · cosφ+ cos Φp · cos Θp · sinφ)

− cos ΘL · sin Θp · sinφ

(5.44)

αΘL = cos ΘL · cos ΦL · (sin Φp · cos θ · sinφ
− cos Φp · cos Θp · cos θ · cosφ− cos Φp · sin Θp · sin θ)
+ sin ΘL · (cos Θp · sin θ − sin Θp · cos θ · sinφ)

βΘL = cos ΘL · cos ΦL · (sin Φp · cosφ+ cos Φp · cos Θp · sinφ)

+ sin ΘL · sin Θp · sinφ

(5.45)
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αΦL = − cos ΦL · (cos Φp · cos θ · sinφ
+ sin Φp · cos Θp · cos θ · cosφ+ sin Φp · sin Θp · sin θ)

βΦL = − cos ΦL · (cos Φp · cosφ− sin Φp · cos Θp · sinφ) .

(5.46)

The transformation of the scattered far field (5.37)–(5.38) of the parti-
cle frame provides initially a |esRL〉 -component in (5.43). On the other
hand it is known that the scattered far field of any arbitrarily shaped
finite particle represents an outgoing spherical wave with a vanishing
radial component in each arbitrarily chosen spherical co-ordinate sys-
tem. Indeed, inserting (5.42) into (5.44) and using (5.39)–(5.40) yield

αRL = βRL = 0 (5.47)

so that |esRL〉 = |0〉 . Furthermore, one can show [28] that

αΘL = βΦL

αΦL = −βΘL .
(5.48)

Therefore, the far field approximation of the scattered field in the lab-
oratory frame in the scattering plane reads as follows:

|esΘL〉 = βΦL · |esθ〉+ βΘL · |esφ〉
|esΦL〉 = βΦL · |esφ〉 − βΘL · |esθ〉 .

(5.49)

For the further discussion we define the functions

f
(l)
θ,i (θ

dis
i ) =

ncut∑
α=1

e−j(ν
(l)
α

π
2 +π

4 ) ·
(
c(l)α ·

1
2hθ
· ←→D

(l)

c · |x(l)
α 〉

+ j · l · d(l)
α · diag

{
1

sin θdisn

}
· |x(l)

α 〉
)
θdisi

(5.50)

f
(l)
φ,i(θ

dis
i ) =

ncut∑
α=1

e−j(ν
(l)
α

π
2 +π

4 ) ·
(
j · l · c(l)α · diag

{
1

sin θdisn

}
· |x(l)

α 〉

− d(l)
α ·

1
2hθ
· ←→D

(l)

c · |x(l)
α 〉

)
θdisi

(5.51)

(i, n) = 1, . . . , Nd
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so that (5.37) and (5.38) provide

esθ,i(ri, θ
dis
i , φ) = E0 ·

√
2
π
· e

jk0ri

k0ri
·
∑
l

ejlφ · f (l)
θ,i (θ

dis
i ) (5.52)

esφ,i(ri, θ
dis
i , φ) = E0 ·

√
2
π
· e

jk0ri

k0ri
·
∑
l

ejlφ · f (l)
φ,i(θ

dis
i ) (5.53)

i = 1, . . . , Nd .

In the above expressions, the index ‘dis’ is introduced in order to in-
dicate that the particle frame angle θdisi results from the discretiza-
tion scheme (3.40) and (3.43), respectively. As we will see later, the
functions f

(l)
θ,i (θ

dis
i ) and f

(l)
φ,i(θ

dis
i ) are important in calculating the

elements of the scattering amplitude matrix.
Since f

(l)
θ,i (θ

dis
i ) and f

(l)
φ,i(θ

dis
i ) are given only at certain discrete

angles θdisi within the DMF, the calculation of the scattering ampli-
tudes in the laboratory frame is more complicated than known from
the T-matrix method which allows the field calculation in the particle
frame directly at those points resulting from the variable transforma-
tion (5.39)–(5.42). For the determination of these functions as well
as of the coefficients βΘL and βΦL we proceed as follows. First we
choose a fixed particle orientation {Θp,Φp} , some discrete laboratory
frame angles {ΘL

m,Φ
L
m} and calculate the corresponding particle frame

angles {θtrm, φtrm} by means of (5.39)–(5.42). It has to be mentioned
that the choice of ΦL

m is already done by the above defined scatter-
ing plane. The index ‘ tr ’ is to indicate that these angles result from
a transformation. For a given orientation {Θp,Φp} of the particle,
any angle θtrm differs, in general, from any angle θdisi , i = 1, . . . , Nd .
This makes an interpolation or extrapolation of the functions f

(l)
θ,i (θ

dis
i )

and f
(l)
φ,i(θ

dis
i ) necessary in order to get f

(l)
θ,m(θtrm) and f

(l)
φ,m(θtrm) . The

accuracy of the interpolation or extrapolation depends on the num-
ber Nd of the discretization lines. An increasing Nd decreases the
error. In the applications we will see that this procedure does not
lead to numerical problems. The functions obtained in this way are
then multiplied by the factor ejlφ

tr
m and inserted into the modified

equations (5.52) and (5.53). Performing the summation over l re-
sults in the interpolated far field components and esθ,m(rm, θtrm, φ

tr
m)

and esφ,m(rm, θtrm, φ
tr
m) in the particle frame belonging to the chosen

set of variables {Θp,Φp; ΘL
m,Φ

L
m} . The coefficients βΘL and βΦL are
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also calculated by use of the angles {θtrm, φtrm} . Due to the interpolation
procedure, an arbitrary number nd of observation points {ΘL

m,Φ
L
m}

m = 1, . . . , nd , can be chosen, i.e., we are now independent of the
original discretization of the DMF. In this way, the dimension of each
scattered field component (5.49) becomes nd instead of Nd .

Finally we are dealing with the horizontally and vertically polarized
components of the scattered and the incident field in the laboratory
frame with respect to the scattering plane. Because of the restriction
to this plane in calculating the field (5.49) we can immediately define

|esh〉 = |esΘL〉
|esv〉 = |esΦL〉 .

(5.54)

On the other hand, the incident electric field decomposed into a vertical
and a horizontal component with respect to the scattering plane is
already given by equations (4.87) and (4.89). Corresponding to (5.7),
the amplitude of both components is simply E0 . We determine the
elements of the scattering amplitude matrix (5.9) by means of the
equations (5.49)–(5.54). On each fixed ΘL

m we have

fhγ,m =

√
2
π
· 1
k0
·
∑
l

exp(jlφtrm) ·
[
βφL · f (l)

θ,γ,m(θtrm) + βθL · f (l)
φ,γ,m(θtrm)

]
(5.55)

fvγ,m =

√
2
π
· 1
k0
·
∑
l

exp(jlφtrm) ·
[
βφL · f (l)

φ,γ,m(θtrm)− βθL · f (l)
θ,γ,m(θtrm)

]
(5.56)

with m = 1, . . . , nd and γ = (v, h) .In these equations,the func-
tions f

(l)
θ,v,m(θtrm) and f

(l)
φ,v,m(θtrm) denote those functions f

(l)
θ,m(θtrm) and

f
(l)
φ,m(θtrm) calculated by means of the coefficients c

(l)
α,v and d

(l)
α,v if using

the vertically polarized incident field. In the other case, the coefficients
c
(l)
α,h and d

(l)
α,h coming from the horizontally polarized incident field are

taken to calculate f
(l)
θ,h,m(θtrm) and f

(l)
φ,h,m(θtrm) .

Due to the interpolation or extrapolation the angles ΘL
m can be

fixed only to those points where we want to know the scattering behav-
ior of the particle. In this way we can directly take the angle ΘL

1 = 0◦

to calculate the extinction cross-section by means of the optical theo-
rem (5.15) for any particle orientation. Otherwise, the uncomfortable
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task would be to find a discretization that gives the scattering pattern
at the desired angles ΘL

m .
Finally it should be noted that we multiply the polarimetric differen-

tial scattering cross-sections (5.14) of the NAS by k2
0 in all following

calculations. In this way, these cross-sections become dimensionless
and comparable with the results of other authors.

6. APPLICATIONS

In this chapter, numerical results obtained with the iterative DMF are
presented and discussed. For the numerical computation double pre-
cision accuracy has been used, throughout. This will allow us to deal
with size parameters up to 100. With this range of applicability we are
able to bridge the gap between the resonant region and the geomet-
ric optics approximation for certain structures. This is demonstrated
for the infinitely extended cylinder with an hexagonal cross-section.
The result shows the well-known 22◦ halo which has been observed
only within ray-tracing techniques, so far. Additionally, a comparison
with the corresponding circular cylinder at the same size parameter
will enable us to estimate the validity of an assumption underlying the
hybrid techniques presently developed for scattering calculations. The
convergence behavior of the polarimetric differential scattering cross-
sections with respect to the number of discretization lines (Nd) and
to the number of expansion contributions (ncut) is of our main inter-
est. Whenever possible, the results have been compared with those of
other methods, especially with T-matrix computations and with the
separation of variable method. These comparisons demonstrate the ac-
curacy and usefulness of the proposed method. As already mentioned
in chapter 4, the reproduction of the known results for spheres and
infinitely extended circular cylinders are of special importance for the
DMF. These cases are treated first.

6.1 Circular Cylinders and Spheres

Scattering of a plane wave impinging perpendicularly on a infinitely
extended circular cylinder (δ = 0◦) has been already solved in 1881
by Lord Rayleigh and is discussed in detail in [15], for instance. The
generalization to the case of oblique incidence (δ �= 0◦) has been given
in this century only [16, 17, 69]. Although practitioners are mostly
interested in finite cylinders, the infinitely extended cylinder can be
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used in some cases as an approximation of sufficiently long cylinders.
Figures 12 and 13 show the differential scattering behavior of a circular
cylinder for different tilt angles. In all the following figures concerning
cylinders, φ = 0◦ refers to the forward and φ = 180◦ to the back
scattering direction. In Figs. 12 and 13, a size parameter of k0r = 5
is chosen which is beyond the Rayleigh limit. If using 30 discretiza-
tion lines in [0, 2π] and a parameter of ncut = 15 , convergency is
achieved, i.e., if increasing Nd by 100 and ncut by 5, the changes in
the differential scattering cross-sections are generally below 0.5% for
each value of φ . Our results obtained with the DMF are in excellent
agreement with the results given in [17, 64, 70]. For perpendicular inci-
dence (Fig. 13a) Eqs. (4.28) and (4.29) have been used to calculate the
scattering coefficients. In this case no cross-polarization contributions
will appear, in contrast to oblique incidence for which the horizontal-
vertical and vertical-horizontal contributions are identical if dealing
with circular cylinders. If we look at the results for increasing tilt an-
gles another interesting feature can be seen. The oscillations typical
for the resonance region become fewer and fewer, and the scattering
behavior is approaching that of a dipole. This is due to the argument
ρ0 in the Hankel functions which contains a cos δ -dependence. There-
fore, an increasing value of δ from 0◦ to 90◦ acts like a reduction in
frequency.

In the literature there are very few calculations for size parameters
above 20. To demonstrate that the DMF is able to deal with this
region, the differential scattering cross-sections for a circular cylinder
at perpendicular incidence and at a size parameter of k0r = 100 are
given in Fig. 14. Reaching those values will allow a comparison with
ray-tracing techniques [21, 71]. In our example, convergent results
have been achieved with Nd = 4000 and ncut = 240 which is accom-
panied by a much higher numerical effort. In the logarithmic scale, a
remarkable splitting into a shadowed (φ = 0◦–90◦) and an illuminated
region (φ = 90◦–180◦) can be observed, each of which reveals a differ-
ent scattering behavior. That of the shadowed region is what we know
from the geometric optics approximation while in the illuminated area
the typical oscillations of the resonance region appear. It’s exactly this
behavior which gives the justification for the hybrid techniques devel-
oped for scattering on non-separable objects [72]. These methods start
from an appropriate splitting of the scatterer into different regions in
which different approximations hold. As we will see later, this splitting
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Figure 12. Differential scattering behavior of a circular cylinder with
r = 3 mm, f = 79.5775 GHz (k0r = 5) and εs = 2.1316 : (a) tilt
angle δ = 0◦ , (b) tilt angle δ = 30◦ .



Discretized Mie-Formalism for electromagnetic scattering 163

Figure 13. Same as Fig. 12, but for (a) tilt angle δ = 60◦ and (b)
tilt angle δ = 80◦ .
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Figure 14. Differential scattering behavior of a circular cylinder with
r = 3 mm , f = 1591.55 GHz (k0r = 100) and εs = 1.721 in both,
linear and logarithmic scale. Number of discretization lines: Nd =
4000 . Number of expansion coefficients: ncut = 240 .
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becomes questionable when dealing with non-circular cross-sections.
At the end of this section we want to treat a dielectric sphere in

the Rayleigh and resonance region (Fig. 15). If the orientation is given
by Θp = Φp = 0◦ , Eqs. (4.82) and (4.83) have been used to calculate
the scattering coefficients. For the size parameter of k0r = 0.628 ,
the interval [0, π] is discretized with 150 lines, and for k0r = 6.28 ,
300 discretization lines are needed to reach convergency (including the
down spikes). In Table 2, the corresponding extinction efficiencies
calculated with the DMF and the Mie theory are given.

Table 2. Extinction efficiencies of the dielectric sphere discussed in
Fig. 15. Results are obtained with the iterative DMF and Mie theory.

If we repeat the same calculation but for the orientation Θp = Φp =
45◦ , then we have to solve the equation system (4.181). To reproduce
the results given in Fig. 15, 4 and 8 azimuthal modes are necessary
for the lower and higher size parameter, while the numbers of Nd and
ncut remain unchanged.

In the examples discussed above, the origin of the co-ordinate sys-
tem has been put into the point of symmetry to make the boundary
surface a separable one. A first step into non-spherical and non-circular
scattering consists in shifting the origin. From the mathematical point
of view, the spherical (circular) boundary becomes non-spherical (non-
circular). But this shift is washed out in the differential scattering
behavior since it appears only as a phase factor. Therefore, from the
physical point of view, the scattering is still that of a sphere or circular
cylinder. To proof this we have shifted the sphere of Fig. 15 by 0.5
mm along the positive z -axis. If increasing the number of discretiza-
tion lines by 150 and ncut by 7, the results are exactly the same. This
demonstrates that the shifted but separable boundary surface provides
an ideal test case for the numerical procedure, and it is suitable for the
production of appropriate initial values for Nd and ncut if dealing
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Figure 15. Differential scattering behavior of a sphere with r = 3 mm
and εs = 5.0 at two different size parameters: (a) f = 10 GHz (k0r =
0.628) σext (Mie) = 0.163 , σext (DMF) = 0.1627 (To reproduce
this result for Θp = Φp = 45◦ , 4 azimuthal modes are needed). (b)
f = 100 GHz (k0r = 6.28) σext (Mie) = 2.514 , σext (DMF) = 2.524
(To reproduce this result for Θp = Φp = 45◦ , 8 azimuthal modes are
needed).
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with real non-separable scatterers. For example, if we want to calcu-
late the scattering behavior of a spheroid having an aspect ratio of 2:1
and a certain size parameter, first we perform the calculation for the
sphere at the same size parameter and permittivity. This is followed
by shifting the sphere along the z -axis until an aspect ratio of 2:1 is
reached. Now we have to increase Nd and ncut to reproduce the for-
mer results. These values of Nd and ncut are the initial values to deal
with the spheroid. In most of the cases considered in this paper, these
initial values produce results which are accurate enough for practical
applications.

6.2 Non-circular Cylinder

Let us now consider a cylinder with an elliptical cross-section at a
size parameter of k0a = 5 . The aspect ratio of the cross-section is
1.5 : 1 . The results for different tilt angles are shown in Figs. 16 and
17. Convergency has been achieved with Nd = 300 and ncut = 25
for each of the tilt angles. In contrast to the circular cylinder, if look-
ing at oblique incidence, the horizontal-vertical and vertical-horizontal
cross-polarization contributions differ from each other (compare Fig.
17). Thus, a measurement of these contributions allows a distinction
between circular and non-circular cross-sections. This difference van-
ishes for increasing tilt angles, i.e., if approaching the dipole behavior.

In Table 3 the back scattering cross-sections are given for elliptical
cylinders of different aspect ratios and size parameters. The results
are compared with a surface integral method discussed in [64]. The
calculations within the DMF have been performed with Nd = 350
and ncut = 20 . A good correspondence has been obtained.

Hexagonal cylinders present basic models for ice crystals in cirrus
clouds. To get an understanding of how do they affect the radiation
balance of clouds an understanding of their scattering behavior in dif-
ferent frequency regions is necessary [73–78]. The ray-tracing technique
in the geometric optics limit is the mostly used method to deal with
those structures [79, 80] at higher size parameters but, it’s still ques-
tionable if this method can be applied to intermediate size parameters
between the resonance region and the geometric optics limit [71, 81,
82]. With the following examples we want to demonstrate that the
DMF can be successfully applied to analyze those structures in the in-
termediate size parameter range. The discretization scheme has to be
chosen in such a manner that no discretization line is located exactly
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Figure 16. Differential scattering cross-sections ( hh - and vv -polari-
zation) of an elliptical cylinder with a = 3 mm , b = 2 mm , f =
79.5775 GHz (k0a = 5) and εs = 2.1316 at different tilt angles.
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Figure 17. Same as Fig. 16, but for vh - and hv -polarization.
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Table 3. Backscattering cross-sections of an ellipsoidal particle (εs =
2.0, f = 10 GHz) at different aspect ratios and size parameters.

on an edge, due to the singularity of the electromagnetic field in this
point. In this way, the dielectric edge is smoothed. Nevertheless we
get a convergent result if increasing the number of discretization lines,
i.e., if approaching the edge more and more. In Fig. 18, the results are
given for a hexagonal cross-section with equal sides at a size parameter
of k0a = 100 in a linear and logarithmic scale. We can see remarkable
differences to the results depicted in Fig. 14 for the circular analogue.
The circular cylinder has only a sharp peak in the forward direction
while in the hexagonal case the well-known halo can be observed at an
angle of 24.9◦ in both polarizations. It is caused by the plane faces of
the hexagonal cross-section. The angle of the halo is a consequence of
the permittivity and the angle of incidence in the xy -plane used in our
example. From Fig. 19 we can take that, the halo already appears at a
size parameter of k0a = 40 but, at this size parameter it is overlapped
by the oscillations typical for the resonance region. Additionally we
can see that, if performing an orientation averaging with respect to the
angle of incidence in the xy -plane, the halo is shifted toward the 22◦ .
To achieve convergency we have used Nd = 3999 and ncut = 240
for the results in Fig. 18. The results of Fig. 19 are obtained with
Nd = 1099 and ncut = 160 . Of course, the numerical effort increases
drastically for these calculations.

There is another interesting behavior in Fig. 18 which is not seen in
the circular case. For the hexagonal cylinder we can find no splitting
into a shadowed and illuminated region. Over the whole scattering
range a behavior can be observed which is that of the resonance region.
As a consequence it seems to be difficult to find an appropriate splitting
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Figure 18. Differential scattering behavior of a hexagonal cylinder
with a = 3 mm , f = 1591.55 GHz (k0a = 100) and εs = 1.721
in both, linear and logarithmic scale. Number of discretization lines:
Nd = 3999 . Number of expansion coefficients: ncut = 240 . Please
note the halo effect at 24.9◦ .
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Figure 19. Same as Fig. 18, but for f = 636.62 GHz (k0a = 40) .
The first two pictures show the effect of orientation averaging with
respect to the incidence in the xy -plane. Number of discretization
lines: Nd = 1099 . Number of expansion coefficients: ncut = 160 .
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for the hybrid methods if they are applied to non-separable scattering
problems.

6.3 Axisymmetric Scatterers

In this last section we want to give some examples for oblate and
prolate spheroids and for Chebyshev particles. The results for ellip-
soidal particles can be compared with the calculations of the separation
of variable method carefully performed by Asano and Yamamoto [83].
This provides another possibility to estimate the accuracy of our nu-
merical procedure. In Fig. 20, the differential scattering cross-sections
are presented for ellipsoidal particles with an aspect ratio of 2:1 for
both, prolate and oblate geometries. An incident field propagating
along the axis of symmetry is assumed. The results obtained with the
DMF agree very well with those of [83]. In our calculations it has
been proved that the numerical effort is higher for the oblate spheroid
than for the prolate one. The differences between both structures are
most obvious in the back scattering region. Especially at θ = 120◦

the vertically polarized differential scattering coefficient of the oblate
spheroid is much higher than that of the prolate spheroid. A similar
behavior can be observed at higher size parameters.

Fig. 21 shows the scattering characteristics of an prolate spheroid
(aspect ratio 2:1) at a size parameter of k0a = 10 in different orienta-
tions. Exactly the same case has been considered by Barber and Hill in
[28] with the T-matrix approach. The correspondence with our results
is very good for both, the differential scattering cross-sections and the
extinction efficiencies. If we look at the orientations of Θp = Φp = 0◦

and 90◦ , no cross-polarization contributions exist due to the symme-
try of these scattering configurations. For the different orientations
(except Θp = Φp = 0◦ ) 7 azimuthal modes are needed.

Finally, an example for Chebyshev particles is discussed. This ge-
ometry plays an important role in the modelling of hydrometeors and
atmospheric aerosols [1]. Therefore, this structure has been considered
systematically by Wiscombe and Mugnai with the T-matrix method
[84–87]. Due to convergency problems for a deformation parameter of
ε = 0.2 , their calculations are restricted to an upper limit of k0r = 5
in size parameter. No problems occur within the DMF if we go be-
yond this value although the numerical effort increases drastically (see
Fig. 22). After determining the initial values as discussed above, Nd

and ncut have been increased stepwise until the differences between
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Figure 20. Differential scattering behavior of a prolate and oblate
spheroid with εs = 1.7689 at a frequency of f = 73.46 GHz and for
incidence along the axis of symmetry (Θp = Φp = 0◦) : (a) prolate
spheroid with a = 3 mm , b = 1.5 mm . σsca = 0.878 . (b) oblate
spheroid with a = 1.5 mm , b = 3 mm . σsca = 1.0605 .
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Figure 21. Differential scattering behavior of a prolate spheroid with
a = 3 mm , b = 1.5 mm and εs = 2.25 at f = 159.155 GHz
(k0a = 10) . Independent of the orientation, the discretization pa-
rameters are Nd = 700 and ncut = 45 . (a) Θp = Φp = 0◦ :
σext (DMF) = 0.518 , σext (B/H in [28]) = 0.519 . (b) Θp = Φp = 90◦ :
σext (DMF) = 1.645 , σext (B/H in [28]) = 1.647 . (c1) Θp = Φp =
45◦ : σext (DMF) = 1.138 , σext (B/H in [28]) = 1.14 . (c2) orientation
as in (c1), but for hv - and vh -polarization.
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Figure 22. Differential scattering behavior of a Chebyshev particle of
second order with rsph = 3 mm , εs = 5.0 and ε = 0.2 at different
size parameters: (a) f = 7.9577 GHz (k0rsph = 0.5) , Nd = 300 and
ncut = 10 . σext = 0.0355 . (b) f = 79.577 GHz (k0rsph = 5) ,
Nd = 300 and ncut = 15 . σext = 0.66 . (c) f = 159.155 GHz
(k0rsph = 10) , Nd = 500 and ncut = 50 . σext = 2.504 . (d) f =
232.5 GHz (k0rsph = 15) , Nd = 600 and ncut = 65 . σext = 2.508 .
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two steps following each other become less than 0.5% over the whole
scattering range from 0◦ to 180◦ .

7. CONCLUSION

In this paper, a new method for the analysis of plane wave scattering
on axisymmetric objects and infinitely extended cylinders with non-
circular cross-sections has been discussed. This method is called the
Discretized Mie-Formalism and is based on a transformation of the
corresponding Helmholtz equations into uncoupled systems of ordi-
nary differential equations depending only on the radial co-ordinate.
These systems can be solved by taking the regularity and the radia-
tion condition analytically into account. Thus, the final calculation
is reduced to the scatterers surface. The decoupling of the equation
systems has been achieved by means of the so-called Method of Lines.
The algebraic eigenvectors of this mathematical tool to solve partial
differential equations have been used, furthermore, as a functional ba-
sis for the expansion of the Debye potentials and the electromagnetic
field components, respectively. Therefore, the DMF looks very similar
to what is known from the Mie theory for separable geometries. The
validity of the Rayleigh hypothesis from the point of view of the DMF
can be clarified.

The DMF in its direct form has a restricted range of applicability
due to the fact that the coefficient matrix of the final characteristic
equation system becomes very large and ill-conditioned for higher size
parameters. To overcome this difficulty an iterative version of the DMF
has been derived which is based on a Method of Moment scheme. For
this, the above mentioned eigenvectors serve as both, basis and weight-
ing functions. The resulting equation system is much more stable and
smaller than that of the direct method. The iterative DMF is able
to analyze scattering for size parameters up to 100. This makes it
possible to estimate approximate methods like the geometric optics
approximation and hybrid techniques, for instance.

The DMF as it is discussed in this paper uses a one-dimensional dis-
cretization scheme. If one is interested in non-axisymmetric scatterers,
a two-dimensional discretization must be chosen. This is possible but
accompanied by much higher numerical efforts.

For further considerations, the expansions of the Debye potentials
given in Eqs. (3.31)–(3.34) and (3.62)–(3.65), respectively, are of spe-
cial importance. This expansion is valid no matter whether we look
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at a separable or non-separable boundary value problem. It should
be possible to use such an expansion for the derivation of the corre-
sponding Green’s function. This would allow us to switch to the in-
tegral representation of non-spherical scattering. As a result, different
approximations will become possible (approximations within a Born
series, for instance). Additionally, the relations between our approach
and that of the Extended Boundary Condition Method will become
more clearly. As we have already discussed, the coefficient matrix of
our characteristic equation system reveals some similar features which
are known from the T-matrix of the EBCM.

Since the way of solution in plane wave scattering is very similar to
other electromagnetic field problems (guided waves, antenna problems,
. . . ), these future considerations should be of general interest.
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