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1. INTRODUCTION

In this paper an experimental implementation of two inversion algo-
rithms for inhomogeneous dielectric media is presented. The first al-
gorithm is based upon an imbedding procedure which was suggested
originally by Corones, Davison and Krueger [2]. The second algorithm
utilizes the Green functions of the problem and this approach was first
introduced by Krueger and Ochs [7]. These algorithms and the under-
lying theory are presented in Section 2.

The permittivity profile is assumed to vary only with depth and
the variation is assumed to be continuous. Otherwise, it is arbitrary.
Thus, no assumptions are made about a piecewise constant permittiv-
ity profile. The assumption on a continuous permittivity profile can be
relaxed, and extensions of the theory so that finite jump discontinuities
in the permittivity profile can be treated are possible, see [5–6]. These
extensions are, however, not presented in this paper. Furthermore, it is
assumed that the medium is dispersion free and lossless. It is, however,
possible to cope with lossy and dispersive profiles, but this requires an
extension of the theory presented in Section 2. The theory of lossy and
dispersive media are presented in [3–6] and [1], respectively.

To meet the assumptions made above and to have an easily con-
trolled environment for the experiment a coaxial component set-up is
adopted. The one-dimensional variation in the permittivity is then
easy to realize and the dispersion free wave propagation in the wave
guide is guaranteed by the TEM wave mode.

One of the prominent advantages of the theory and algorithms used
in this paper is that they only require a finite time trace of reflection
data as input data for the inversion of the permittivity profile. More
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Figure 1. The geometry of the slab.

specifically, one round trip of reflection data is needed, where one round
trip is defined as the time it takes for the pulse to propagate through the
medium and back again. The design of the experiment can therefore
be made so that all unwanted reflections from the experimental set-
up arrive after one round trip. In this way these reflections do not
affect the measurements and it is possible to avoid some unwanted
interference with the experimental set-up. This is not possible with an
experimental set-up that measures the fixed frequency response of the
dielectric sample.

Some general considerations are found in Section 3. In Section 4
the deconvolution problem encountered in this paper is described and
analyzed. The experimental set-up is described in Section 5 and a
detailed presentation of the error analysis is found in Section 6. Finally,
in Section 7 the results of this paper are presented.

2. THEORY

In this section the mathematical model is presented, some notations are
introduced and the precise statement of the inverse problem is given.

2.1 Mathematical Model

An inhomogeneous slab occupies the region 0 ≤ z ≤ L . The slab is
assumed to be lossless and is modeled by a relative permittivity ε(z)
that varies with depth z . A homogeneous lossless medium is situated
on each side of the slab. These homogeneous media have a constant
permittivity ε1 and ε2 , respectively, see Figure 1. The permeability
is that of vacuum everywhere in space.
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Figure 2. The permittivity profile ε(z) as a function of depth z .

To simplify the theoretical analysis in this section it is assumed that
the permittivity profile is continuous at the ends, z = 0 and z = L ,
respectively, and, furthermore, continuously differentiable inside the
slab, 0 < z < L . A typical plot of the permittivity profile is shown
in Figure 2. The assumption of continuity at the left and right ends
of the slab is no loss of generality, see e.g., [5], and for the purpose
of this paper, the present assumptions are quite sufficient. More ex-
plicitly, reflection and transmission data for a permittivity profile with
finite jump discontinuities at the edges can always be transformed to
reflection and transmission data for a permittivity profile where these
jumps have been removed, i.e., the permittivity profile is continuous
everywhere. These transformations consist of solving Volterra integral
equations of the second kind. These equations are well-posed and nu-
merically efficient methods to solve these integral equations are easy
to find. If the jump discontinuities are inside the slab similar methods
apply.

The profile is excited by an electromagnetic wave impinging nor-
mally on the slab from the left, i.e., the field does not depend on x
or y . Assuming that all fields only depend spatially on the depth z ,
the Maxwell equations in the absence of free charges and currents im-



Permittivity profile reconstructions 269

ply (the fields E and D are assumed to have components along the
x -axis and B and H along the y -axis){

∂zE(z, t) = −∂tB(z, t)
∂zH(z, t) = −∂tD(z, t).

(2.1)

Here ∂z and ∂t denote (partial) differentiation with respect to
depth z and time t , respectively. The constitutive relations{

D(z, t) = ε0ε(z)E(z, t)
H(z, t) = B(z, t)/µ0,

and (2.1) then imply that the electric field E(z, t) inside the slab
satisfies the wave equation

∂2
zE(z, t)− c−2(z)∂2

tE(z, t) = 0, (2.2)

where the local phase velocity c(z) = {ε0ε(z)µ0}−
1
2 .

2.2 Scattering Representation and Wave Splitting

To the left of the slab, z < 0 , the electric field is a sum of two parts,
one right going incident wave, Ei(t) , and one left going reflected wave,
Er(t) . Similarly, to the right of the slab, z > L , the electric field
consists of one right going transmitted wave, Et(t) . The total field
E(z, t) outside the slab is therefore

E(z, t) =
{

Ei(t− z/c(0)) + Er(t + z/c(0)), z < 0
Et(t− τ − (z − L)/c(L)), z > L

where c(0) = {ε0ε1µ0}−
1
2 and c(L) = {ε0ε2µ0}−

1
2 are the phase veloc-

ities on the left and right hand side of the slab, respectively (remember
the continuity in the permittivity profile at the ends). The quantity
τ =

∫ L
0

√
ε0ε(z)µ0dz is the time it takes for the wave front to go

through the slab from z = 0 to z = L .
The incident and the scattered fields, respectively, are related by

scattering operators. These relations are integral operators represented
by

Er(t) =
∫ t

−∞
R+(t− t′)Ei(t′)dt′ (2.3)

Et(t) =
√

c2

c1

{
Ei(t) +

∫ t

−∞
T+(t− t′)Ei(t′)dt′

}
,
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where the kernels R+(t) and T+(t) are the reflection and the trans-
mission kernels of the slab, respectively, for an incident wave from the
left. These kernels are independent of how the slab is excited, i.e., to-
tally determined by the ε(z) profile. Notice that if Ei(t) = δ(t) (where
δ is the Dirac delta function) then it follows that Er(t) = R+(t) and
Et(t) =

√
c2
c1
{δ(t)+T+(t−t′)} . Hence, the scattering kernels R+ and

T+ are the impulse responses of the medium.
One of the keystones in the theory of this paper is the wave splitting

transformation. This is a transformation of dependent variables from
the pair {E, ∂zE} to another pair {E+, E−} defined by [2, 3]

E±(z, t) =
1
2

{
E(z, t)∓ c(z)

∫ t

−∞
∂zE(zt′)dt′

}
.

This wave splitting transformation can be written in a matrix short-
hand notation as(

E+

E−

)
=

1
2

(
1 −c∂−1

z

1 c∂−1
z

) (
E

∂zE

)
= T

(
E+

E−

)
. (2.4)

The operator T has a formal inverse

T−1 =
(

1 1
−c∂−1

z c∂−1
z

)
,

that will be used below.
In a region where the phase velocity c is constant this wave splitting

transformation has the effect of projecting out the left and the right
going parts of the field. More explicitly, in a region where the phase
velocity c is constant the general solution to (2.2) is

E(z, t) = f(t− z/c) + g(t + z/c),

where f and g are arbitrary functions. It is then easy to calculate
the fields E+(z, t) and E−(z, t) defined in (2.4). They are{

E+(z, t) = f(t− z/c)

E−(z, t) = g(t + z/c).

In a region where c is not constant the transformation defined in (2.4)
is still well-defined. In this case the fields E+(z, t) and E−(z, t) are
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defined as the left and the right going parts of the field, respectively,
even though no interpretation such as in the constant phase velocity
case above can be made. Notice that

E(z, t) = E+(z, t) + E−(z, t), (2.5)

for all profiles.
The fields E+(z, t) and E−(z, t) satisfy the following partial dif-

ferential equation

∂z

(
E+

E−

)
=

(
α β
γ δ

) (
E+

E−

)
, (2.6)

where 


α = −c−1∂t +
c′

2c

β = − c′

2c

γ = − c′

2c

δ = c−1∂t +
c′

2c
This can most easily be seen by combining (2.2) and (2.4). This equa-
tion is equivalent to the wave equation, (2.2), and gives the dynamics
of the fields E+(z, t) and E−(z, t) .

2.3 Invariant Imbedding

Consider now a subsection [z, L] of the region [0, L] , see Figure 3.
Mathematically, the original problem, [0, L] , is imbedded in a family
of problems where the left edge of the slab, z , is the parameter that
is varied.

The fields E+(z, t) and E−(z, t) , defined at the position z , are
related to each other in a similar way as the incident field Ei(t) and the
reflected field Er(t) in (2.3) of the original physical problem are related
to each other. This relation is represented as an integral operator as

E−(z, t) =
∫ t

−∞
R+(z, t− t′)E+(z, t′) dt′. (2.7)

The kernel R+(z, t) can be interpreted as the reflection kernel for the
subsection [z, L] , where the medium to the left of z is of constant
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Figure 3. The geometry of the subsection problem [z, L] .

permittivity ε(z) . The field E+(z, t) serves as an incident field, while
E−(z, t) is a reflected field, for this subsection problem. For the special
value z = 0 , the physical reflection kernel R+(t) in (2.3) is identical
to R+(0, t) . Hence, the reflection kernel R+(t) for the physical re-
gion [0, L] is imbedded in a family of subsection problems [z, L] with
reflection kernels R+(z, t) .

The dynamics, (2.6), and the relation between the fields E+(z, t)
and E−(z, t) , given by (2.7), imply that the reflection kernel R+(z, t)
satisfies a non-linear differential equation. Lengthy, but straightfor-
ward, calculations show that

∂zR
+(z, t)− 2

c(z)
∂tR

+(z, t) =
c′(z)
2c(z)

∫ t

0
R+(z, t− t′)R+(z, t′) dt′ (2.8)

R+(z, 0) =
1
4
c′(z) (2.9)

R+(L, t) = 0. (2.10)

It is intuitively clear that the dependence of the reflection kernel
R+(z, t) on z is related to the local properties of the slab at z . This
is expressed mathematically in (2.9). Equation (2.10) implies that the
reflection kernel is zero at z = L , i.e., no scatterer present. Notice that
(2.8) is non-linear due to the convolution integral on the right hand
side of the equation, and that (2.8) has a directional derivative in the
(z,− 2

c(z)) direction. This latter property solves the inverse problem,
which now can be stated more explicitly.

The inverse problem solved in this paper is the reconstruction of
the permittivity profile ε(z) from reflection data. Specifically, given
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reflection data for one round trip, i.e., R+(t) , for 0 ≤ t ≤ 2τ , find
the permittivity profile ε(z) , 0 ≤ z ≤ L , see Table 1. The numerical
algorithm based upon the imbedding equation (2.8) is now presented.

Problem Known Sought
Direct ε(z) , 0 ≤ z ≤ L R+(t) , 0 ≤ t ≤ 2τ
Inverse R+(t) , 0 ≤ t ≤ 2τ ε(z) , 0 ≤ z ≤ L

Table 1.

In order to make the numerical computations more easy a normal-
ized travel time coordinate transformation is made. The transforma-
tion is

x = x(z) =
∫ z

0

dz′

τc(z′)
(2.11)

s = t/τ

R(x, s) = τR+(z, t),

where τ =
∫ L
0

√
ε0ε(z)µ0 dz is the time it takes for the wave front to

go through the slab. This transformation maps the slab z ∈ [0, L] to
the interval x ∈ [0, 1] , and the time s is normalized so that s = 1 is
the time it takes for the wave front to go through the slab. The new
scaled reflection kernel R(x, s) satisfies

∂xR(x, s)− 2∂sR(x, s) = −1
2
A(x)

∫ s

0
R(x, s− s′)R(x, s′) ds′ (2.12)

R(x, 0) = −1
4
A(x) (2.13)

R(1, s) = 0, (2.14)

where

A(x) = −τc′(z(x)) = − d

dx
ln c(z(x)), 0 < x < 1. (2.15)

The inverse transformations of (2.11) and (2.15) are

z(x) = c(0)τ
∫ x

0

{
exp

{
−

∫ x′

0
A(x′′) dx′′

}
dx′

}
, 0 < x < 1 (2.16)

ε(z(x)) = ε1 exp
{

2
∫ x

0
A(x′) dx′

}
, 0 < x < 1. (2.17)
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Thus, the knowledge of A(x) , 0 ≤ x ≤ 1 and the constants τ and ε1
determine z , L and ε(z) , 0 ≤ z ≤ L . How A(x) , 0 ≤ x ≤ 1 can be
reconstructed numerically from (2.12) and (2.13) is now presented.

The numerical implementation of the imbedding equation (2.12) is
most easily done by writing (2.12) as

∂xR(x, s− 2x) = −1
2
A(x)

∫ s−2x

0
R(x, s− 2x− s′)R(x, s′) ds′,

and integrate from x−h to x and let then time be s+2x . The result
is

R(x, s)−R(x−h, s+2h) = −1
2

∫ x

x−h
A(x′)(R∗R)(x′, s+2(x−x′)) dx′,

(2.18)
where star ∗ denotes time convolution, i.e.,

(R ∗R)(x, s) =
∫ s

0
R(x, s− s′)R(x, s′) ds′.

Introduce a uniform grid of points (xi, sj) in (x, s) space, where
xi = ih , sj = 2jh , i = 0, 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i , h = 1/N
and N is an integer. Denote

Ri,j = R(xi, sj)
Ai = A(xi).

With the use of the trapezoidal rule in (2.18) the following algorithm
is easily found

Ri,j =

{
Ri−1,j+1 −

h2

2

{
Ai

j−1∑
k=1

Ri,j−kRi,k

+ Ai−1

j+1∑
k=1

Ri−1,j+1−kRi−1,k

}}{
1− h2

8
A2
i

}−1

, (2.19)

where i = 1, 2, . . . , N , j = 0, 1, 2, . . . , N − i , and the values of Ai are
determined from (2.13) and by using (2.18) with s = 0

Ai = −4Ri−1,1

{
1 +

h2

8
A2
i−1

}
. (2.20)
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The error made in (2.19) and (2.20) is of order O(h3) .
The input data of the numerical algorithm is


R+(2jτh), i = 0, 1, 2, . . . , N
τ
ε1.

(2.21)

The reconstruction of the permittivity profile goes in two steps. First
reconstruct A(x) from the reflection data R+ data (the constant τ
is also needed determined by the time scaling). Then from A(x) and
the constants τ and ε1 determine z(x) and ε(z(x)) . This is done
from (2.16) and (2.17). The length of the slab is also determined by
L = z(1) .

The initialization of the numerical algorithm is made by assigning

R0,j = R(0, 2jh) = τR+(0, 2jτh) = τR+(2jτh), j = 0, 1, 2, . . . , N.

The algorithm then proceeds as follows, see also Figure 4.

1. Use (2.20) to calculate A(xi) from data at grid line i−1 . The two
arrows in Figure 4 indicate this operation.

2. Use (2.19) to calculate Ri,j , j = 1, 2, . . . , N − i from old and new
data at grid lines i − 1 and i , respectively. Notice that the right
hand side of (2.19) is now known from the previous step.

3. Repeat the previous steps to move one grid line deeper into the
medium, until the right edge of the slab, i = N , is reached.

2.4 The Green Functions

It is also possible to arrive at a numerically faster algorithm by using
another relation between the fields E+(z, t) and E−(z, t) , defined
at the position z . The representation used to derive the imbedding
equation in Section 2.3, given by (2.7), gives the reflection kernel for
the subsection problem [z, L] . It is also possible to relate the fields
E+(z, t) and E−(z, t) to the external excitation E+(0, t) . These
relations are integral operators represented by

E+(z, t) =

√
c(z)
c1

{
E+(0, t− τx(z))

+
∫ t−τx(z)

−∞
G1(z, t− t′)E+(0, t′) dt′

}
(2.22)
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Figure 4. The numerical algorithm.

E−(z, t) =

√
c(z)
c1

∫ t−τx(z)

−∞
G2(z, t− t′)E+(0, t′) dt′, (2.23)

where x(z) is defined in (2.11). The two kernels G1(z, t) and G2(z, t)
are called the Green functions. The kernels G1 and G2 are ordinary
functions; the singular part is represented by the first term on the
right hand side of (2.22). The sum of (2.22) and (2.23) gives the total
internal field in the slab, see (2.5) and Figure 5. This is not true for the
sum of the fields E+(z, t) and E−(z, t) in Section 2.3 since the left
end point of the slab is varied and thus the physical set-up changed.

The representations in (2.22) and (2.23) lead to a very efficient way
to calculate the internal field, see [7]. However, calculations of the
internal fields are not the main topic of this paper and this matter is,
therefore, not pursued here, since the focus is on solving the inverse
problem.
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Figure 5. Wave splitting.

The following boundary conditions on the Green functions are easy
to see by letting z = 0 in (2.22) and (2.23), and comparing with (2.7).

G1(0, t) = 0
G2(0, t) = R+(0, t) = R+(t).

Following the same line of analysis as in Section 2.3, the dynamics,
(2.6), and this new relations between the fields E+(z, t) and E−(z, t) ,
given by (2.22) and (2.23), imply that the Green functions G1(z, t)
and G2(z, t) satisfy a system of first order linear differential equations.
Lengthy, but straightforward, calculations show

∂zG1(z, t) +
1

c(z)
∂tG1(z, t) = − c′(z)

2c(z)
G2(z, t), (2.24)

∂zG2(z, t)−
1

c(z)
∂tG2(z, t) = − c′(z)

2c(z)
G1(z, t), (2.25)

with the boundary conditions

G1(z, τx(z)) = −1
8

∫ z

0

c′(z′)2

c(z′)
dz′ (2.26)

G2(z, τx(z)) =
1
4
c′(z). (2.27)

The numerical computations, just as in Section 2.3, become easier
if a normalized travel time coordinate transformation is made.

x = x(z) =
∫ z

0

dz′

τc(z′)
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s = t/τ

G+(x, s) = τG1(z, t)
G−(x, s) = τG2(z, t).

The system of first order linear differential equations then becomes

∂xG
+(x, s) + ∂sG

+(x, s) =
1
2
A(x)G−(x, s) (2.28)

∂xG
−(x, s)− ∂sG

−(x, s) =
1
2
A(x)G+(x, s), (2.29)

with the boundary conditions

G+(x, x) = −1
8

∫ x

0
A2(x′) dx′ (2.30)

G−(x, x) = −1
4
A(x), (2.31)

and where A(x) is defined as in (2.15).
For the numerical computations create a grid of points (xi, sj) in

(x, s) space similar to the one in Section 2.3. The discretized points
are defined by xi = ih , si+2j = (i + 2j)h , i = 0, 1, 2, . . . , N , j =
0, 1, 2, . . . , N − i , where h = 1/N and N is an integer. Denote

G+
i,j = G+(xi, si+2j)

G−i,j = G−(xi, si+2j)
Ai = A(xi).

With the use of the trapezoidal rule in (2.28) and (2.29) the following
algorithm is easily found

G+
i,j =

{
G+
i−1,j +

h

4

{
AiG

−
i−1,j+1 + Ai−1G

−
i−1,j

}

+
h2

16
AiAi−1G

+
i−1,j+1

}{
1− h2

16
A2
i

}−1

(2.32)

G−i,j = G−i−1,j+1 +
h

4

{
AiG

+
i,j + Ai−1G

+
i−1,j+1

}
, (2.33)
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where i = 1, 2, . . . , N , j = 0, 1, 2, . . . , N−i . The discretized boundary
values of G+ and G− in (2.30) and (2.31) become

G+
i,0 = G+

i−1,0 −
h

16
{
A2
i + A2

i−1

}
(2.34)

G−i,0 = −1
4
Ai, (2.35)

where i = 1, 2, . . . , N . The error made in (2.32), (2.33) and (2.34) is
of order O(h3) . The values of Ai are determined by solving

Ai

{
1 + hG+

i−1,0 −
h2

16
A2
i−1 −

h2

16
A2
i

}
+4

{
G−i−1,1 +

h

4
Ai−1G

+
i−1,1

}
= 0,

(2.36)
for Ai . This equation is obtained by letting j = 0 in (2.33) and then
using (2.34) and (2.35).

The input data in the numerical algorithm are the same as in Sec-
tion 2.3, given by (2.21), and the reconstruction proceeds in two steps.
First a reconstruction of A(x) and then a transformation to z(x) and
ε(z(x)) , where the latter step is identical to the one in Section 2.3. To
find A(x) , initialize G+ and G−

G+
0,j = 0

G−0,j = R(0, 2jh) = τR+(0, 2jτh) = τR+(2jτh),

where j = 0, 1, 2, . . . , N . The algorithm then proceeds similar to the
one in Section 2.3.

1. Solve (2.36) for Ai from data at grid line i− 1 .
2. Use (2.32) and (2.33) to calculate G+

i,j and G−i,j , j = 1, 2, . . . , N−i
from old and new data at grid lines i−1 and i , respectively. Notice
that the right hand side of (2.32) is now known from the previous
step.

3. Repeat the previous steps to move one grid line deeper into the
medium, until the right edge of the slab, i = N , is reached.

This numerical algorithm based upon the Green functions approach
is considerably faster than the one presented in Section 2.3, which
was based upon an invariant imbedding procedure. This is simply
due to the absence of time convolution integrals in the Green func-
tions approach. However, the invariant imbedding approach provides a
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stronger mathematical tool for the theoretical analysis and it is there-
fore motivated to present both methods here. It is also possible to
compare the reconstructions made with the two algorithms. No sig-
nificant difference in the accuracy of the reconstructions is, however,
found for the class of profiles that is considered in this paper.

3. GENERAL CONSIDERATIONS

The reconstruction algorithms presented in Section 2 require that the
impulse response R+(t) of the medium is known for one round trip.
However, this is an idealized experimental situation where the incident
field is a Dirac delta function. The real incident pulse has always a
finite width. The algorithm can be used if the reflected wave form is
deconvolved with the incident wave form, i.e., the reflection kernel or
impulse response R+(t) can be extracted from (2.3)

Er(t) =
∫ t

−∞
R+(t− t′)Ei(t′) dt′.

This deconvolution is also very efficient as a tool for removing certain
errors which will be discussed in Section 6 below, but as any tool it
has limitations, which restrict its use. It is sometimes stated that the
deconvolution or some other suitable data processing can significantly
improve the experimental results. This is generally not true because
the measured data contain noise. Thus, outside a limited frequency
band the quality of the data is too low to be processed. This is easily
demonstrated by the following experiment:

1. Measure the same signal twice and calculate the Discrete Fourier
Transform (DFT) of the two measurements, see Figure 6a for an
example of a measurement of the incident pulse and Figure 6b for
its DFT.

2. Divide the Fourier transform of the first measurement with the
Fourier transform of the second. The result is showed in Figure
7.

The expected result is that this quotient is identical to one and this
is indeed the case at low frequencies. However, when the frequency
approaches the upper frequency limit of the system, the quotient of
two small noisy quantities results in violent oscillations. This effect
can only be reduced by bandlimiting the measured signal in the time
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Figure 6a. An example of a recording of the incident waveform. Time
scale in ps.

Figure 6b. The DFT of Figure 6a. Frequency in GHz.

or frequency domain or both. This filtering, if carefully done, can
somewhat extend the useful bandwidth. Additional information can
be extracted from the “out of band” part of the data if additional
properties of the signal are known by other means, i.e., a priori in-
formation. The more a priori knowledge about the unknown sample,
the more specific algorithms can be used and the better results are
expected. A good example to this is found in Section 6.6.

The main practical problem in deconvolution is to obtain a relevant
incident field or waveform. The pulse must be measured with the same
system as used for the actual measurement, i.e., for the reflected field or
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Figure 7. The quotient of the two DFT waveforms. Frequency in
GHz.

waveform. This can be obtained by introducing a short in the sample
cell at the position of the sample. However, this requires frequently
disassembling and assembling of the cell which wears and tears the
precision connectors.

4. DECONVOLUTION

The kernel R+(t) , which is required by the reconstruction algorithm,
is computed by a deconvolution in the frequency domain. There is
also the possibility to perform the deconvolution in the time domain.
A recent contribution to the time domain deconvolution utilizing the
Singular Value Decomposition (SVD) is found in [10]. The time domain
approach has not been pursued in the present paper.

The signal reflected from the sample is sampled in the time domain
and transformed to the frequency domain through a DFT. Assume
that tk = T k

N , k = 0, 1, 2, . . . , N−1 , is a partition of the time interval
[0, T ] into N equidistant points. Then the DFT of fk = f(tk) is
defined as

Fp =
N−1∑
k=0

fke
−iωptk =

N−1∑
k=0

fkW
pk, p = 0, 1, 2, . . . , N − 1, (4.1)
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where ωp = 2πp
T , p = 0, 1, 2, . . . , N − 1 and where

W = exp
{−i2π

N

}
.

This can be computed in an efficient way using any of the FFT algo-
rithms that are available. The inverse transform is

fk =
1
N

N−1∑
p=0

Fpe
iωptk , k = 0, 1, 2, . . . , N − 1.

The limitation of this approach is that the sample points zk =
exp

{
i2πk
N

}
are equally spaced around the unit circle in the complex

z -plane, and ∆t∆f = T
N

1
T = 1

N . Thus, the resolution in the time
domain and the number of sampling points determine the resolution in
frequency domain. This is often undesirable. In this paper the limited
resolution in frequency domain was unacceptable. This problem can
be solved by using “zero padding”, which means increasing the N
with a number of dummy zeros, but the computing time will then
increase drastically. A more efficient way to remedy this problem,
and to be free from the limitations inherent in the ordinary DFT,
is to adopt another algorithm to generate the sampled amplitudes in
the frequency domain - the Chirp z-Transform (CZT), see Ref. [9].
The CZT transform has the advantage that it is possible to choose
the number of time-samples different from the number of frequency-
samples and it is possible to calculate the frequency-samples only in the
frequency interval of interest. The reference signal is also transformed
to the frequency domain using the CZT transform.

The CZT algorithm is based on the identity pk = 1
2

(
p2 + k2 −

(k − p)(k − p)
)

. The DFT defined in (4.1)) is then

Fp = W
p2

2

N−1∑
k=0

gkW
− (k−p)2

2 , p = 0, 1, 2, . . . ,M − 1,

where gk = fkW
k2

2 , k = 0, 1, 2, . . . , N − 1 . This can be viewed as a
three-step process consisting of two multiplications and one convolu-
tion, which can be performed using FFT. The most important feature
of this approach compared to the standard FFT is that the number
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of time samples need not be equal to the number of frequency sam-
ples, i.e., the spacing and the starting point of the argument of Fp are
arbitrary, see Ref. [9].

Before the CZT transformation, some windowing is sometimes nec-
essary. Depending on the shape of the signals the window function is
chosen so that a good compromise between frequency resolution and
amplitude accuracy is obtained. No weighting function is ideal. The
bandwidth, ripple, sidelobe level, sidelobe fall-off rate, shape factor can
be optimized but not all with the same window. The Kaiser-Bessel
weighting function, defined as

w(t) = 1− 1.24 cos
2πt

T
+ 0.244 cos

4πt

T
− 0.00305 cos

6πt

T
, (4.2)

is superior to the other filters with respect to selectivity. This makes
it excellent for separation of closely spaced components with widely
different levels.

A formal inverse DFT of the quotient of the DFT of the reflected
and the incident waveforms, respectively, is not possible because of
noise at the higher frequencies (above 12 GHz). The deconvolution
problem is an ill-posed problem and filtering is necessary to yield a
stable and physically consistent result. A regularization filter is used
here to stabilize these ill-posedness effects. The reflection kernel R̂+(ω)
in the frequency domain then has the form

R̂+(ω) =
Y (ω)X(ω)∗

|X(ω)|2 + λC(ω)
,

where Y (ω) and X(ω) are the Fourier transformed reflected and inci-
dent waveforms, respectively, and where star ( ∗ ) denotes the complex
conjugate. The function C(ω) is chosen as C(ω) = ω4 , see also
Ref. [8] for more details about this choice. To determine the optimum
value of the parameter λ the procedure described above is used. Two
recordings of the same signal are measured and deconvolved using one
of them as a reference. The constant λ is then adjusted so that a
smooth transition from one to zero at the high frequency end of the
spectrum is obtained. A Kaiser-Bessel window, see (4.2), is used on the
kernel before it is transformed into the time domain. The transforma-
tion to the time domain is made by using an inverse CZT transform.
It has the advantage that the number of time points, the beginning of
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the time trace, and the length of the time trace for the kernel can be
varied arbitrarily.

The deconvolution procedure is illustrated below in Section 7.

5. EXPERIMENTAL SET-UP

The measurement system can be described as a pulsed radar. A short
pulse is generated and sent towards the sample to be investigated. The
reflected waveform is recorded and using the algorithms described in
Section 2.3 or 2.4 the permittivity profile of the sample is reconstructed.

The set-up is similar to a Time Domain Reflectometer (TDR). How-
ever, a short duration pulse is used as excitation instead of a step. A
traditional TDR uses a through-line sampler. This gives the best pos-
sible signal-to-noise ratio (SNR) and the largest bandwidth. In our
application a terminated sampler and a power divider is used because
the amplitude errors due to multiple reflections are reduced by atten-
uations in the divider. The loss of resolution and dynamic range due
to losses in the divider are insignificant. Because the algorithms used
are developed for a one-dimensional case, the system is built using
coaxial components. As long as the underlying PDE for the system is
the one-dimensional wave equation, (2.2), it is a possible realization of
the theory. Other TEM transmission lines, such as striplines, have the
advantage of being open structures which makes it easier to insert and
remove samples in the sample cell. Flat samples are, however, more
difficult to machine than cylindrical ones. A section of a coaxial air
line was used as a sample cell. The longest air line available is only
200mm long which requires short samples and, consequently, pulses
with very short rise time have to be used in order to obtain adequate
relative resolution.

The two main components of the system are the pulse generator
(Picosecond Pulse Labs Model 3050A) and the sampling oscilloscope
(Tektronix TDR/Sampler 7S12 with a S-6 head installed in a 7854
frame). The specifications of these components are summarized in
Table 2 and 3, respectively, and an outline of the experimental set-up
is given in Figure 8. The signal from the generator is connected to the
sample cell and to the oscilloscope through a power divider optimized
for broadband pulses. The generator is also a source of trigger pulses.
The reflection from the sample is continuously monitored and can be
sampled, averaged, and stored under the control of a desktop computer.
Data are then transferred to a mainframe computer for processing.
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Immediately after recording of the reflection data from an unknown
sample a short is placed in its place and a new recording is made. This
waveform is an inverted copy of the incident waveform (including all
imperfections of the measurement system) and is used as a reference
for deconvolution.

    PSPL 3050 A
        PULSE
   GENERATOR

 PSPL 5330
   POWER
   DIVIDER

 S 53 TRIGGER /
  RECOGNIZER

  S6 SAMPLING
        HEAD

             TEK 7S12 TDR / SAMPLER

               TEK 7854 OSCILLOSCOPE

10 dB PAD

         10 dB
           PAD

  HP VECTRA DESKTOP COMPUTER

      HP 9000 /800 MINICOMPUTER

200 mm DELAY LINE

50 mm
DELAY
LINE

SMA /
APC7

200 mm
AIR LINE
HP 11567A
(SAMPLE
 HOLDER)

50 OHM
TERMINATION

Figure 8. The experimental set-up.
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Specifications
Pulse width (FWHM, 50%) 60ps
Pulse width (10%) 115ps
Rise & Falltime (10%-90%) 45ps
Amplitude 4V
Residual ringing ± 3%
Precursor ± 1%
VSWR 3:1
Jitter ± 2.5ps
Repetition rate 1MHz
Trigger risetime 0.5ns

Table 2. Specifications of the pulse generator PSPL Model 3050A.

Specifications
Risetime 30ps
Displayed noise 5mV
Jitter 10ps
Maximum input voltage 1V p-p
Input resistance 10kOhm
Deflection factor accuracy 3%
Time/Div accuracy 3%

Table 3. Specifications of the Tektronix TDR/Sampler 7S12 with S-6
head installed in a 7854 frame.

The following dielectric materials have been used (data supplied by
the manufacturer)
1. PTFE εr = 2.0 at 1 MHZ
2. POM εr = 3.7 at 1 MHZ
3. PA εr = 3.5− 3.7 at 1 MHZ
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6. ANALYSIS OF ERRORS

In this section a detailed analysis of the errors of the experimental
set-up is presented.

6.1 Signal Quality

The most important parameter of the signal source is the rise time
of the pulse, because it determines the resolution of the system. The
generator is one of the fastest that is available commercially. Moreover,
it has two important characteristics: relatively large output voltage,
which gives a good SNR of the system, and very little residual ringing.
This last property is essential, because low level perturbations on the
baseline, which can only partially be removed from the recorded data,
will seriously degrade the performance of the system. The generator
also gives clean and stable trigger pulses which reduces the system
jitter.

6.2 Cable Loss

As the pulse travels down the line it is attenuated by dielectric losses
and finite losses in the conductors. The losses are frequency dependent
and high frequencies are generally more attenuated. This degrades the
risetime of the pulse and limits the distance resolution. To avoid this
problem the cables are kept as short as possible. However, certain
lengths are necessary to avoid multiple reflections and to create a clean
portion of the base line.

6.3 Internal Reflection

The discontinuities present in the pulse source, connectors and other
parts of the system will degrade the performance. Consider a transmis-
sion line with two discontinuities on it. If the first one has a reflection
coefficient of 0.1, the error in determining the reflection coefficient of
the other will be 6%. The connectors (APC7 and SMA) contribute very
little to this error when they are new. However, after a few months
of use, even if handled with care, reflections became noticeable. This
effect can be reduced using deconvolution.
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6.4 Oscilloscopes

The fastest available oscilloscopes have a rise time of the order of
300 ps. For analysis of faster signals the sampling technique must be
used. The obvious drawback of this approach is that only repetitive
waveforms can be captured. The main problem is that the design of
the sampling bridge makes it difficult to determine the baseline level.

6.5 Input Impedance Error

The input of the oscilloscope has an impedance of 50 Ohms. For Tek
S-6 terminated by a HP load, the VSWR is < 1.05 which corresponds
to a variation in resistance of 47.6 to 52.5 Ohms. When connected
to a 50 Ohms source, the measured voltage can differ by 2.5% from
the correct value. The attenuators, which generally have lower perfor-
mance, contribute to this error. However, if, as in our measurements,
all data are measured using the same system layout and the same sen-
sitivity settings, this effect is not noticeable. The discontinuities cause
reflections back into the source. If the source is not matched, these
reflections will be re-reflected and will distort the measured waveform.
This can be avoided by using a suitable time window.

6.6 Baseline Error

Due to the design of the sampling head, it is difficult to determine
the exact position of the baseline. The reconstruction algorithm as-
sumes that this position is at zero level. If this is not the case, the error
is integrated and an erroneous slope in the reconstructed permittivity
profile is introduced. Remember, that without any a priori knowl-
edge, the reconstruction algorithms in Section 2.3 or 2.4, will always
generate a permittivity profile that corresponds to the given reflection
kernel including all errors. It is possible to eliminate this problem by
an offset of the recorded data and a repetition of the calculation un-
til the relative permittivity outside the sample is 1. This procedure
requires that the approximate length of the sample be known, which
is the case in our tests, but not in general. This corresponds to the a
priori knowledge introduced into the inverse scattering problem. This
baseline error, if not corrected, can easily create a 20% error in the re-
constructed permittivity profile. If more information is available (i.e.,
that the sample has constant or piecewise constant permittivity), ad-
ditional degrees of correction can be introduced. Figures 9 a and b
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clearly illustrate this effect.

Figure 9a. Reconstruction with 2% baseline offset. Length scale in m.

Figure 9b. Reconstruction with corrected baseline error. Length scale
in m.
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6.7 SNR of an A/D Converter

A 10 bits converter in the TEK oscilloscope gives a SNR = 62 dB,
which is more then enough compared to the SNR of the signal.

6.8 Amplitude Linearity

All the measurements are made at the same sensitivity setting. Con-
sequently, the absolute value of the amplitude error has no importance.
The vertical linearity is investigated by measuring a number of iden-
tical waveforms which are offset by different amounts. This offset is
then compensated by adding a constant to the stored waveform. No
significant differences are detected when the processed waveforms are
compared, as long as the input is kept under 250 mV.

6.9 Jitter and noise

Jitter is the random time uncertainty of a waveform point relative
to a reference point. In a TDR application jitter is particularly critical
because the information is extracted from time relations. The amount
of jitter depends on the slope of the trig signal and the amount of noise
in it. During the sampling of a signal with a slope different from zero,
values randomly distributed around the signal value are recorded. This
makes jitter difficult to distinguish from amplitude noise. However, the
amount of noise due to jitter is largest at the large slope portions of
the signal as opposed to the amplitude noise.

Jitter always limits the bandwidth of the system because the dis-
tribution of the noise around the signal is not symmetric. The mean
value at points where the signal has negative second derivative is below
the signal and where the second derivative is positive the mean value
is above the signal. After averaging the original waveform will be re-
constructed only for segments with constant slope. All other parts of
the signal will be smoothed which results in loss of resolution. The
distortion caused by this effect cannot be determined exactly because
the probability distribution of the error depends on the waveform and
is therefore unknown. It can be estimated, however, by measuring the
noise at the most vertical part of the signal. Both kinds of noise can
be removed from the signal by measuring it several times and then
averaging. Generally, the larger the number of recordings averaged,
the better the signal quality becomes. However, the process takes time
and if the number of recordings is growing one must take into account
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the long-time drift of the oscilloscope. For the set-up reported in this
paper, 100 times is about optimum.

6.10 Sweep Errors

Sweep errors consist of the absolute error and the linearity error.
Both can be calibrated by using a stable sinewave and using the zero
crossing points as time markers. The frequency of the wave must be
high in order to obtain a large number of calibration points. Unfor-
tunately, due to the design of the TEK oscilloscopes trigger circuit,
the highest possible frequency is about 900 MHz which is not suffi-
cient. This problem is solved by using a chain of frequency multipliers
connected to a very stable 500 MHz source which is also used as a
trigger. Alternatively, a high Q-value resonator is used, triggered by
short pulses with repetition frequency of 1 MHz.

6.11 Bandwidth

Many kind of errors can be normalized or filtered out. The price
for these improvements in signal quality is generally a loss of effective
bandwidth. Thus, one should try to start with as large bandwidth
as possible even when the required resolution does not motivate this.
In this set-up all the components were specified for operation to at
least 18 GHz. The resulting bandwidth of the system is 12 GHz. This
corresponds to a resolution of about 7 mm for permittivity values in the
range 2–4 where the measurements are made. A 20 mm long sample
with constant permittivity showed a clean flat portion of permittivity
in the middle of the profile.

6.12 Residual Ringing

The ringing, which mainly originates from the generator, can be
divided into two parts. Some ringing is created in the step generating
parts, and cannot be affected, and some is created in the following,
pulse shaping components, and can be delayed with respect to the main
pulse, see Figure 10. This makes it possible to create a ”quiet zone”
where the first ringing has died out and the second has not arrived
yet. The sample should be placed in this zone. This zone limits the
maximum length of the sample to about 90mm.
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Figure 10. Residual ringing of the incident waveform. Time scale is
ns.

7. RESULTS

The general scheme for processing the recorded data is illustrated in
Figures 11 a–11 j. These figures show the step by step procedure to
obtain the inversion of the permittivity profile. The recorded incident
and reflected waveforms, Figures 11 a and b, are first transformed
into the frequency plane, Figures 11 c and d, using the transformation
described in Section 4. Figures 11 e and f show the deconvolved re-
flection kernel in the frequency domain with different normalizations.
The time domain behavior of the kernel from Figure 11 e is showed
in Figures 11 g. Finally, in Figures 11 i and j the reconstructions
corresponding to Figures 11 g and h, respectively, are showed illustrat-
ing the trade off between the resolution and amplitude accuracy when
different windows are used.
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Figure 11a. The incident waveform. Time scale in ps.

Figure 11b. The reflected waveform. Time scale in ps.
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Figure 11c. The DFT of the incident waveform. Frequency in GHz.

Figure 11d. The DFT of the reflected waveform. Frequency in GHz.



296 Fuks et al.

Figure 11e. Deconvolved reflected waveform with optimum normal-
ization. Frequency in GHz.

Figure 11f. Same as Figure 11e, but with insufficient normalization.
Frequency in GHz.
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Figure 11g. Deconvolved reflected waveform with optimum window-
ing. Time scale in ns.

Figure 11h. As Figure 11g, but with rectangular windowing. Time
scale in ns.
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Figure 11i. Permittivity profile reconstruction from waveform in Fig-
ure 11g. Length scale in m.

Figure 11j. Permittivity profile reconstruction from waveform in Fig-
ure 11h. Length scale in m.
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Two additional sets of figures illustrate the reconstruction of permit-
tivity profiles which are inhomogeneous, see Figures 12–13 and 15–16.
The original samples are depicted in Figures 14 and 17. In both the
cases the samples are turned round and new measurements with these
reflected profiles are made for comparison. The two reconstructions
should be mirror images of each other. From these comparisons it
is possible to conclude that the accuracy decreases slightly when the
length of the sample increases. This is due to the losses. If the losses
are a priori known, then these losses can be compensated for. No such
compensation is made here.

Figure 12. Reconstruction of a composite sample. Length scale in m.

Figure 13. Reconstruction of a composite sample (sample turned
round). Length scale in m.
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ε0 ε1 ε2 ε0

Figure 14. The original sample of Figure 13.

Figure 15. Reconstruction of a composite sample. Length scale in m.
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The resolution of the measurement system is also clearly shown.
A comparison of the length of the samples (measures with a sliding
calliper) with the length obtained from the reconstructions of the per-
mittivity profiles shows an error of 2%. This is indeed a very sensitive
test because the length of the medium is calculated from the recon-
structed permittivity.

The last set of reconstructions, see Figures 15–17, also illustrates
the resolution of the system in a different way. (The reconstruction
depicted in Figure 15 has already been given in Figure 11 i, but it is
repeated here to facilitate the comparison.) Between the two dielectric
samples (of different lengths, but the same permittivity) there is an air-
gap. The length of this air-gap can be varied. The smallest possible
air-gap that still gives a fair reconstruction of the vacuum value of
the permittivity is a measure of the resolution of the system. This is
illustrated in Figures 15–16.

Figure 16. Reconstruction of a composite sample (sample turned
round). Length scale in m.
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ε0 ε1 ε0 ε2 ε0

Figure 17. The original sample of Figure 16.
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