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1. INTRODUCTION

In certain signal processing applications such as radar and mobile com-
munications, the desired signal is usually contaminated by both active
and passive interferences. Examples of passive interferences include
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radar clutter, atmospheric reverberation and specular noise. Active
interferences are caused by the nonlinearities in the transmitter (such
as class C-amplification in satellite transponders). Moreover, the pres-
ence of additive impurities at the sensors also add further non-Gaussian
noise components at the receiver. Efficient forms of adaptive interfer-
ence cancellation and channel identification in such hostile environ-
ments are, of significant interest to research community.

Traditionally, linear interference cancellation techniques are widely
employed to accomplish the interference suppression. However, there
are several applications where the linear filtering concepts are often
too restrictive to yield satisfactory performance and the mathemati-
cal modelling has to be altered to accommodate non-linear filtering.
Furthermore, in many interference cancellation systems in radar and
digital mobile communications signal tracking and detection involves
determining the signal from a sequence of several noise corrupted data
which is subjected to non-Gaussian harmonics. Performance of lin-
ear filtering techniques in such correlated interference environments is
poor and the situation demands the use of nonlinear estimation tech-
niques. Generally the performance of any estimation scheme, depends
on the observability of the information content of the data. This fac-
tor is governed by Signal to Noise and Interference Ratio (SNIR) and
the relationship between the receiver and the target location. In other
words, the estimation process is further encumbered by uncertainties
associated with the poor observability.

Under certain scenarios, with suitable modifications in the mod-
elling, Kalman Filters and Maximum Likelihood Method (MLM) [1–9]
seem to perform well. However because of their massive parallelism
and fast learning architectures Artificial Neural Networks (ANNs) of-
fer greater potential [10–15].

Recently, ANN emerged as an alternative to the nonlinear estima-
tion problems owing to the inherent simplicity and ability to approxi-
mate functions with non-linear behaviour. It is expected that an ANN
can alleviate many of the difficulties existing with the current esti-
mation methods. The generic neural networks and the node models
are shown in Fig. 1 and Fig. 2 respectively. ANN is currently being
explored in several applications including: Signal Processing, Control
Pattern Recognition, Medicine Speech research, and Business. The
advantages of the ANN for array signal processing applications can be
outlined as follows: i- ANNs have the ability to learn from the lim-
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Figure 1. Multilayer Neural network.

ited samples of the input data, ii- ANN is a non-parametric technique
and makes far less assumptions about the data distributions than tra-
ditional statistical methods, such as MLM, and finally iii- ANN has
the capability to form highly non-linear decision boundaries for the
portioning of the input space.

2. MODELLING OF NON-GAUSSIAN CHANNELS

K-distributed interference is gaining increasing importance for non-
Gaussian and nonlinear propagation mediums and they are widely used
in the statistical modelling of several communication and radar envi-
ronments. The performance assessment of ANN for signals subjected
to K-distributed interferences is critical from point of view of the non-
linear interference cancellation. Because of this it is adopted in our
studies as test bed to study the performance characteristics of the
ANNs. With advent of new robust adaptive algorithms, there is an
ongoing active research in this topic [3, 4].
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Figure 2. Node models for neural networks.

2.1 K-distributed Interference

Details of K-distribution statistical models are described in several
articles [2–5]. K-distribution can be regarded as a compound statistical
model . This stems from the fact that, the individual interference sam-
ples are Rayleigh distributed, while their mean is also a random vari-
able following a Gamma Probability Density Function (PDF) [5]. The
former is called a ‘speckle’ component and the later as a modulating
component. This also amounts to treating the baseband equivalent of
interference returns as a product of two mutually exclusive processes.
The deviation from the usual Gaussian distribution is visualised, by
considering signal under investigation, resulting from a superposition
of a small number of equally important contributions. In this case
central limit theorem cannot be applied, and hence Gaussianity is not
guaranteed. K-distribution is claimed to be a fairly good fit to channels
with the non-Gaussian interferences [6, 8, 9].
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Theoretically, K-distribution is derived by averaging the speckle
component over all possible values of the local mean level [3].

P (x) =
∫

all y
P (y)P (x/y)dy (1)

where P (x) is the over all probability density function (PDF) of the
clutter returns, P (y) is the PDF of the clutter mean level and P (x/y)
is the PDF of the speckle component. P (y) is generally a good fit to
the Chi family of distributions and is given by

P (y) = (2b/Γ(ν))(by)2ν−l exp[−b2y2] 0 < y <∞ (2)

where b is a scale parameter, Γ denotes gamma function and ν is
a shape parameter of the distribution. Also the speckle component,
which has a Rayleigh amplitude distribution P (x/y) of mean level y
is given by

P (x/y) = (πx/2y2) exp(−πx2/4y2) 0 < x <∞ (3)

The overall amplitude distribution is P (x) , of a K-distribution is
given by

P (x) = (4c/Γ(ν))(cx)νKν−1(2cx) (4)

where Kν(x) is a modified Bessel function, c is also a scale parameter
related to the distribution. Further, the nth moment is given as

xn = (1/cn)(Γ(ν + n/2)/Γ(ν))Γ(n/2 + 1) (5)

The cumulative probability is also given by

Pc(x) = (2cν)/(Γ(ν))tνKν(2ct) (6)

The value of the inverse shape parameter (1/ν) is bound by an
upper limit of 0.4 and a lower limit of 0.3.

2.2 An Efficient Method for the Generation of K-distributed
Variables

The nth moment of K-distribution is taken from equation (5) and
from that first and second moments are obtained as mean and variance
as follows:

mx = (1/c)[Γ(ν + 1/2)/Γ(ν)]Γ(3/2) (7)
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Figure 3. Relationship between the variance and shape parameter.

The second moment can be written as:

σ2
x = E[x2]−m2

x (8)

Correspondingly, the second moment of K-distribution is given by

σ2
x = (1/C2)[Γ(ν + 1)/Γ(ν)]Γ(2)−m2

x (9)

Assuming unit mean process (9) may be rearranged to yield

σ2
x = [Γ(ν + 1)Γ(2)Γ(ν)Γ2(ν + 1/2)Γ2(3/2)] (10)

A graph illustrating the relationship between the variance and the
shape parameter is plotted in Fig. 3. We can see that, the variance
is decreasing for increasing shape parameter value. At this stage, we
can choose any value of variance and obtain ν from the graph and
obtain the corresponding c from (7). We also have from the cumulative
distribution function in (6) repeated here for convenience.

Px(x) = 1− ((2cν)/(Γ(ν))) xν Kv(2cx) (11)
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At this stage, a table of x vs Px(x) for all possible values of xi
is created. To generate the K-distributed variables from this table
search algorithm takes a random number from standard uniform ran-
dom number generator and by interpolation and search, it finds out
the corresponding Px(x) . The accuracy of this random number gen-
erator depends upon the sample size and usually large sample size is
recommended to maintain the distribution accuracy. After generating
the K-distributed variables. the ensemble runs are performed to check
the mean and variance of the samples. It is found that, with a large
sample size, the theoretical mean and variance are approximately equal
to the mean and variance of the simulated random variables. For ex-
ample ensemble mean from simulation is equal to 0.994879 and given
theoretical is equal to 1.0 and ensemble variance from simulation is
0.386324 and the theoretical theoretical value is 0.3833. It can be no-
ticed that, both the simulation values and the specified values are in
good agreement. Finally, it should also be noted that, this is by no
means the only method and there are various other ways of generating
the random variables. Details of various methods can be consulted in
the literature [5, 8].

3. APPLICATION OF NEURAL NETWORKS

The application of neural network for channel identification and sig-
nal detection involves classification and training stages. The goal of
a neural network classifier is to train the net to achieve a balance be-
tween the ability to respond correctly to the input signal that is used
for training and the ability to offer good response to the signals during
the testing phase. The former is called memorisation and the latter
is called generalisation. The role of the training sequence is to adapt
the network to fit into the desired response using a stochastic gradient
test procedure. It should be noted that, during the testing phase, the
signals presented to the net need not be identical to the signals ap-
peared during the training phase. There are several ways of designing
an ANN classifier, namely, Back propagation or Generalised delta rule
based classifier [10], Radial Basis Function (RBF) based classifier [16],
Generalised Probabilistic Neural Networks (GPNN) [17] and Cascade
Correlation Neural Networks [12].
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3.1 Radial Basis Function (RBF) Networks

A multilayer neural network representation adopted in these stud-
ies is shown in Fig. 2, which shows the node model of the ANN.
Sigmoid function is usually assumed in the literature for the node
model. Among the nonsigmoid activation functions, RBF is the most
frequently used function [3–5]. The hidden layer projects the input
space x into another space ξ . This projection is also strictly bound
to (ξl, ξ2, ..., ξn) ∈ ξ , where n is the number of hidden nodes in that
layer. The mapping performed by each hidden node is described by
[−1, 1]n and is expressed as

ξk = exp

[
−

l∑
i=1

(xi −mki)2

2σ2
k

]
(12)

where l is the number of components in each input vector, (x1, x2, . . . ,
xl) ∈ X and ξk denotes the output of the kth hidden layer. From
linear space theory, σk ’s are the coefficients used in computing the
weighted norm, given by

ξk = e
〈x−mk〉2σk (13)

where 〈 〉 denotes a weighted Euclidean norm This weight norm de-
notes the radial distance from any vector x , to the centre mk . Fur-
ther, each output node finally computes the weighted summation of
the values passed on by the nodes in the hidden layer, given by:

yj =
n∑
i=1

wijξi (14)

where Wij are the weights. It may be noted that the term basis in
the RBF indicates that, the output lies in the linear space spanned by
the outputs of the hidden layer nodes.

3.2 Kohenen Networks

In some array processing applications the desired signal may not be
available or may be lost in high interference environments. In such sce-
narios the receiver systems have to be trained blindly in the absence
of the desired signal. Recently, Kohonen Self Orthogonalising Net-
works (KSON) emerged to cater the needs of applications where the
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training sequence is not available. The Kohonen Self Orthogonalising
Method (KSOM) [15] is an algorithm for detecting features in the re-
ceived data and partitioning the data space according to the features.
The networks of Kohonen attempt to mirror the orderly placement of
neurons in the sensory pathways of the brain in their representation
of the external stimulus. No information is used initially about the
correct classification of the input data patterns; instead, the KSOM
discovers its own natural classification scheme based on the combined
distribution of the patterns within the high dimensional data space.

In the basic structure of the KSOM, all input units are connected to
an output grid. The output units are extensively interconnected with
many local connections. The result of this lateral interaction is that,
after adequate self-learning steps, the network tends to be spatially
organised according to the structure of the input data set. The units
become tuned to specific input vectors, or groups of them, such that
each unit responds only to some specific patterns in the input set. In
addition, the weights are organised such that topologically close nodes
are sensitive to inputs that are physically similar.

3.3 Data Processing in ANN

The performance of the ANN, trained with the standard Back Prop-
agation algorithm, is heavily dependent on the input data representa-
tion. In this section, we outline few data processing methods. used in
the context of application of ANN, which is also called pre-processing.
In array signal processing, input vector mainly contains raw data from
sensors. The data samples consist of inphase and quadrature signal
components, the amplitudes of the interference signals, and clutter. It
is observed that, application of these inputs directly to the network
yield unacceptable performance. This is due to the fact that the raw
data conveys only first-order information with a certain degree of in-
herent randomness. This has to be minimised to ensure acceptable
performance of the classifier, and there is, therefore, a need for appro-
priate pre-processing. This is also called the feature-extraction stage.
However, finding a suitable representative feature, in itself, is a difficult
problem. A pre-processing method is developed in [9]. This procedure
determines the phase difference between received data by consecutive
sensors and then utilises the sine and cosine of this phase difference as
the inputs to the ANN. Alternatively, a ML method can be used in the
pre-processing stage to supply the time-delays or angles to the ANN [1,
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17]. The ANN can be utilised to learn from these transformed inputs.
Because of the computational complexity involved in these schemes,
we adopt a more flexible alternative which employs spectral analysis
concept based on Discrete Fourier Transform (DFT). In this method,
the normalised spectral coefficients are derived via DFT and coupled
with a suitable window function for use as features on which an ANN
classification is based [11].

3.4 Training Algorithm

One of the most widely employed ANN is based on the most popular
Back Propagation [13]. This training scheme directly evolved from the
iterative gradient search algorithms. The hub of these algorithms is to
minimise the sum of the squared error ξ , which is the difference be-
tween the desired output (D-vector) and the actual output (Y-vector)
of the Multilayer Neural Network. This error is given by

ξ =
1
2

∑
(D − Y )2 (15)

In the back propagation algorithm, as in the case of other adaptive al-
gorithms, the error minimisation is done through selection of suitable
weights. The crucial requirement is the node transfer function. The
designer has to select, only, the function that is differential everywhere
[12]. Any one of the activation functions, shown in the Fig. 2 can be
selected. Usually, sigmoid function is utilised as an activation function
in the literature [12]. Training a Neural Network by back propagation
involves 4 distinct stage: i- the input patterns from the selected prob-
lem, ii- the feeding forward of the input pattern through the network,
iii- the back propagation of the associated error and iv- updating the
weights in the network. During the feed forward, the input signal re-
ceived by each input node is passed on to the hidden layer nodes. The
response of the hidden node is then computed and transferred to the
output node in the output layer. Each output node, in turn, evalu-
ates its response and compares it with desired output value supplied
by the designer. The resulting error is sent back to the nodes in the
hidden layer that is connected to the output. The weights between
this hidden layer and the output are also adapted based on this error,
at a later stage. In a similar manner, all the hidden layers receive the
back propagated error. After all nodes in the layers are completed. the
weights of all the layers are adjusted simultaneously [2, 14]. Gradient
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algorithm used in the weight adjustment is usually Least Mean Square
(LMS) adaptive algorithm [2] and it also formed the basis of training
algorithm in studies presented in this paper.

4. PERFORMANCE EVALUATION OF ANN WITH K-
DISTRIBUTED INPUTS

In order to evaluate the performance of the ANN, we conducted several
computer simulations. K-distributed noise samples are used at the in-
put of the ANN. Several initial simulations are conducted to evaluate
the most optimum values for the LMS convergence and momentum fac-
tor. Values of 0.7 for the former and 0.1 for the latter yielded the best
performances and used in our studies throughout. The optimisation of
these parameters is not attempted. In all the cases, the network archi-
tecture has the same format as illustrated in Fig. 1, i.e., the network is
specified by Input units - hidden layer(s) units - output units.
For example, all the case studies for processing the K-distributed noise,
employed a 40-30-2 architecture. As a result, this architecture is mod-
elled with 40 input units, one hidden layer (with 30 units) and two
output units. Therefore, two output units are used with the teacher
being (0.9,0.1) and (0.1,0.9) for representing signal and noise respec-
tively. A single hidden layer is used. Although much research has been
carried out in determining the optimum number of hidden units, the
results are all applications dependent. Therefore, networks with vary-
ing numbers of hidden units (from 5 to 30 in steps of 5) are trained in
an effort to find the near-optimum architecture suited to the problem
at hand.

Each network is simulated until the mean square error on the train-
ing set is minimum. This point is reached in approximately 25 training
epochs. The performances, expressed as a percentage, on the training
and the test sets for the six different networks are shown in Table
1. Very high classification rates are exhibited by all networks during
both training and testing, the best testing performance being 96.01%
by network 40-15-2. However, the influence of the number of hidden
units, in this architecture, is not overwhelming. This conclusion is
also supported, by the error convergence studies. Typical error con-
vergence curve for the best architecture is shown in Fig. 4 where, after
few initial epochs, the convergence is reached very quickly. Fig. 5 also
depicts the learning performance of the best network compared with a
40-10-2 network. During the discrimination between pure signal and
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Table 1. Performance of different Multi Layer Perceptrons (MLP).

noise, the percentage of correctly classified signal patterns for various
values of noise power (P ) is shown in Table 2 for three classification
criterion. A criterion of 0.03 means that a pattern is considered as be-
ing correctly classified only if the least mean square error between the
actual network output on presentation of this pattern and the desired
output is less than 0.03. Thus, the lower this value, the more stringent
the criterion. The ‘maximum’ criterion on its part only yields correct
classification if the indices of the maximum values in the actual and the
desired output vectors on presentation of a pattern are the same. The
choice of a particular criterion for quoting performance figures may be
a subject of discussion, but it is believed that such criterion should be
relatively less stringent as the problem complexity increases, i.e., as
the noise power relative to the signal increases. The robustness of the
MLP is clearly demonstrated by the ‘maximum criterion’ curve of Ta-
ble 2 in which it achieves nearly 50% recognition even at a noise power
of 0.9. A series of computer simulations revealed that, the number of
hidden layers plays a rather dominating role during the initial periods
of convergence.

5. PERFORMANCE EVALUATION OF ANN WITH
REAL-TIME CLUTTER INPUTS

In this section, we outline the performance of ANN with real-life clut-
ter interference as inputs to ANNs. Radar clutter is selected as an
example to represent a real-life non-Gaussian interference in electro-
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Figure 4. Error convergence of neural networks.

Figure 5. Learning performance of neural networks.
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Table 2. Performance of the network using 3 criterion.

magnetically dense environments. We reconstructed some measured
clutter data including some nonlinear harmonics from the transmit
system which used class-C amplification [6], resulting in a very small
sample size of 100. The training and testing ANNs on these limited
data set is proved to be a formidable task. Because of this, we adopted
a pre-processing approach which consisted of segmenting the data into
small windows. This segmentation is done carefully to ensure that, we
end up with some signal-only and noise-only windows. This process,
further reduced the data sample size, available for the ANN to receive
training and testing. To overcome this problem, we resorted to over-
lapped windows. These overlapped windows are utilised to evaluate
the performance of ANN. The error convergence and percentage per-
formance is depicted in Table 3 during both training and testing. In all
the cases, both the number of input nodes and the number of output
nodes are kept fixed. The number of hidden units and hidden layers
are both varied. Comparing the sets of 15-10-2 and 15-20-2 confirms
the conclusion that the number of hidden units, given the fixed archi-
tecture, does not influence the error convergence significantly. Studies
are also carried out to obtain the information about the influence of
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Table 3. Performance of MLP with real-life interference.

number of hidden units on the convergence of ANN. By comparing
ANNs 15-10-20-2, 15-20-10-2 and 15-30-10-2, it is noticed that net-
work with 20 hidden units in the first hidden layer performed well
both in terms of error reduction as well as the percentage performance
rather than its counter part with 30 hidden units in the first hidden
layer. Finally, adding more hidden units to the first hidden layer did
not improve the performance of the ANN. A specific example of error
convergence during the testing phase for networks 15-30-10-2 and 15-
20-25-10-2 is shown in Fig. 6, where the network with 20 hidden nodes
in the first hidden layer clearly outperformed that of 30 hidden units.
The percentage performance of both the networks during testing phase,
depicted in Fig. 7, also confirms our conclusion. Several simulations,
demonstrated the fact that the performance of ANN critically depends
on the architectural specifications.

6. PERFORMANCE OF KOHONEN NETWORKS

Learning steps in KSOM is a two dimensional map of units, each of
which carries a tag or label of the object that has excited it at the
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Figure 6. Error convergence during testing phase.

Figure 7. Comparative study of the percentage performance during
testing phase.
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Table 4. Performance of different Kohonen Networks.

final training epoch. Units excited by patterns of the same class form
clusters on such a map. If a test pattern falls into a cluster, it is classi-
fied as belonging to the group which forms this cluster. An important
consideration in the use of the KSOM is the choice of the size of the
output layer. An excessively large layer produces empty regions with
units not excited by any pattern and too small a layer causes conflicting
situations where units are excited by patterns from different classes.

In order to determine the near-optimum layer size, a set of networks
with different numbers of output units are simulated, these having
dimensions 5*5, 8*8, 10*10, 12*12, 15*15 and 18*18. The results are
shown in Table 4. These performance figures are only reached after
about 200 training epochs which is in contrast to the 25 epochs for the
MLP. This is simply explained by the fact that, contrary to the MLP,
the KSOM has no teacher during the learning phase and thus requires
more training epochs to extract the clusters from the input data. The
network with the highest performance and producing the most distinct
map, i.e., completely separate clusters with no empty regions, is the one
with a 10*10 output layer size. This network is subsequently tested
on data sets with increasing noise levels and the results are already
depicted in Table 2. Sharp reductions in performance are observed
for noise power 0.2 and 1.2. One important aspect of KSOM, is that
unlike the MLP, it correctly classifies more than 50% of the signal
patterns, corrupted with equal noise power (i.e., P = 1 ). It must
be emphasised that KSOM performs in blind scenarios where MLP
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will not produce any result and as far as robustness is concerned, the
KSOM outperforms the MLP. As a general conclusion, it seems that
unsupervised learning procedures are better suited to the extraction
of signals and they cater for all the environmental scenarios. The
longer training times encountered do not pose any major drawback
since training can be carried out off-line and, once completed, the
network is capable of almost instantaneous results, crucial in real time
applications.

7. CONCLUSIONS

In this paper, we have dealt with the concept of non-linear interfer-
ence cancellation in electromagnetically dense environments where the
desired signal is contaminated by several unwanted non-Gaussian in-
terferers. A new nonlinear interference canceller is introduced based
on Artificial Neural Networks and the performance evaluations high-
lighted the importance of the network architecture on the performance.
A simple and effective method of simulating K-distributed interference,
which is known to provide a better model to the practical non-Gaussian
electromagnetic interferences is devised. The performance of ANNs
against the K-distributed noise inputs is addressed. Further, some ex-
amples of the noise cancellation capabilities of the back propagation
based ANN are also illustrated. It was concluded that, selection of the
architectural parameters is most crucial, to realise suitable receivers
tailored to the practical applications. It is also demonstrated that,
blind interference cancellation in the absence of desired signal can be
accomplished by a class of Kohonen Self Orthogonalising Neural Net-
works.
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