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1. INTRODUCTION

The helix, which is a non-resonant electromagnetic structure, finds
applications as an antenna [1], a delay line [2], an applicator in hy-
perthermia [3] and as a slow-wave structure in a wide-band traveling-
wave tube (TWT). Such a helix — held in position in a TWT by a
dielectric-support system enclosed in an envelope, say, made of metal
— was analyzed in the past through mostly in the slow-wave regime
[4-8]. However, more recently, Uhm and Choe [9-11] extended the
analysis of such a structure in the fast-wave regime keeping in mind
its potential application in a gyro-resonance electron beam device like
the gyro-TWT — an upcoming high-power, millimeter-wave amplifier
for communication systems. The objective was to control the structure
parameters with a view to shaping the dispersion (w-f3) characteristics
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of the structure for a wide-band coalescence between the beam-mode
dispersion line and the waveguide-mode dispersion hyperbola. In ana-
lyzing the structure, however, Uhm and Choe [9, 10] ignored the effects
of the dielectric-support system for the helix, though they considered
the effects of the proximity of a metal envelope — the conventional
cylindrical waveguide. Here, we have considered in the analysis the ef-
fects of the dielectric-support parameters, including the inhomogeneity
of the dielectric, in addition to the helix-envelope separation, on the
dispersion and interaction impedance characteristics of the structure.

In the following section is developed the analysis of a helix closely
fitting in a dielectric lining on the inner wall of a cylindrical wave-
guide — a structure that presents a ‘homogeneous’ loading for the
helix. Moreover, we also analyze a helix supported by a number of
identical discrete dielectric rods/bars, arranged symmetrically around
the helix, in the waveguide. Such a support system now presents, in
general, an ‘inhomogeneous’ loading for the helix which in turn loads
the waveguide internally. The inhomogeneity in such a structure is
determined by the cross-sectional geometry of the dielectric supports
for the helix. In the analytical model used here, the discrete inhomoge-
neous dielectric supports are azimuthally smoothed out into a number
of continuous, homogeneous dielectric tube regions. For a particular
case of wedge-shaped dielectric supports, a field analysis was earlier
carried out considering azimuthal space harmonics generated by their
angular periodicity [8]. Hence it was also established that such dis-
crete wedge supports may be azimuthally smoothed out into a single
equivalent continuous, homogeneous dielectric tube of an effective per-
mittivity determined by the relative volume occupied by the supports
in the structure [8]. Such wedge supports thus present essentially a
homogeneous loading for the helix. However, the supports in gen-
eral could deviate from simple wedge geometry. For this situation the
present approach of smearing out the discrete supports into a number
of equivalent dielectric tube regions, instead of a single region, would
be a reasonably good approximation, if the number of such regions is
considered large enough to yield converging results. Furthermore, in
order to take into account the space-harmonic effects we use the tape
model for the helix [2, 12, 13]. Also, in order to add to the rigor of
analysis, we consider the effects of the finite helix thickness as well
as those of the non-uniformity of the radial propagation constant over
the various cross-sectional regions of the structure. The analysis of
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the structure is then used to study the dispersion characteristics of the
structure as well as to examine its quality in terms of the interaction
impedance [14, 15] — a quantity which is relevant to the application of
such a structure in an electron beam device like the gyro-TW'T, which
uses an ‘azimuthal’ electron beam bunching and beam-wave interac-
tion mechanism. It may be mentioned that attempts have been made
here to present the analytical results in a simplified form involving
structured expressions which are easy to handle and amenable to easy
computation requiring less computer time for any desired convergence
accuracy.

2. ANALYSIS

Let us consider a helix supported by a number of identical discrete
dielectric bars/rods of an arbitrary cross section in a cylindrical wave-
guide (Fig. la). Such a support geometry in general causes an in-
homogeneous structure loading and may be analyzed in a model in
which the discrete supports are azimuthally smoothed out into n con-
tinuous dielectric tube regions of appropriate ‘effective’ permittivity
values determined by the relative volume occupied by the supports in
the structure (see the discussion following (1)) — the value of n in-
creased for the desired convergence accuracy [16] (Fig. 1b). It may be
noted that, here, the helix presents a skew boundary in the structure
thereby arousing both TE and TM modes. Further, the space peri-
odicity of the helix has been accounted for in the analysis by using
the tape-helix [2, 12, 13] instead of the simplified sheath-helix model
[17]. Moreover, the usual approximation made in analyzing a loaded
helical structure by considering the radial propagation constant to be
the same in the different structure regions is removed here by taking
into account the nonuniformity of the radial propagation constant over
the structure cross section. Considering the RF quantities associated
with the m th space-harmonic mode to vary as exp j(wt — B,z +mb) ,
one may write the following expressions for the components of the elec-
tric (E) and magnetic (H) field intensities in the different structure
regions in the cylindrical system of coordinates (7,0, z):
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Figure 1. Cross section of an inhomogeneously-loaded helix supported
by arbitrarily-shaped dielectric bars (a) and its equivalent model (b).
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where p refers to a region of the structure (Fig. 1b). Ay, Bmyp,
Cmp, and Dy, are the field constants. (= (k%€ — ﬁ?n)lfé)
is the radial propagation constant, k(= w(ueo)'/?) and ﬁm(: Bo +
mcot1/a) being the free-space and the axial propagation constants
of the structure, respectively. 1 and a are the pitch angle and the
mean radius of the helix, and €, ,(= 1+ (¢ — 1)A,,/A,) represents
the effective relative permittivity [16] of the pth of the n effective
dielectric tube regions into which the discrete supports are azimuthally
smoothed out (Fig. 1), lep being the cross-sectional area of the entire
pth tube, Asp the cross-sectional area of the actual dielectric supports
in the pth tube region, and €, the relative permittivity of the support
material. m represents the space harmonic number. Jy, {vm pr} and
Yy {Ympr} represent the Bessel functions of order m of the first and
second kinds, respectively, the prime indicating their derivative with
respect to the argument.

2.1. Circuit Dispersion

The structure model for analysis has (n + 2) regions (Fig. 1b): the
free-space region (p = 1,6;’1 = 1,0 < r < a) inside the winding ra-
dius (r = a) of the helical tape, the free-space gap (p = 2, 6;72 =1,
a < r < by) between the tape and the beginning (r = by) of the
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dielectric regions, to take into account the finite helix wire/tape thick-
ness [18] (= 2(bp — a)), and n continuous, homogeneous, effective
dielectric tube regions into which the discrete helix supports are az-
imuthally smoothed out. Out of (4n 4 8) field constants relevant to
these (n 4+ 2) regions, By,1 and D, become each equal to zero to
satisfy the condition that the fields are to be finite at the axis (r = 0)
of the structure, giving (4n 4+ 6) non-zero field constants. The rel-
evant electromagnetic boundary conditions for the problem are: the
tape-helix boundary conditions [12] at r = a, the boundary condi-
tions related to the continuity of the tangential components of the
electric and magnetic field intensities at each of the interfaces (r = b)
between the dielectric tube regions (between the pth and (p + 1) th),
and the boundary condition that the tangential component of electric
field intensity is null at the waveguide wall (r = b, = rw). These
boundary conditions are:

at r =a:
00 o0
Eyy= Y Biym= Y, (Epimcost + Ex;ymsing) =0,
m=—00 m=-00
00 (o9}
Eyj= Y BEym= Y (Eogmcos+ Ezpmsing) =0,
m=—00 m=-00
Ez71,m = EZ,Q,ma

Eo1,m = Eg2.m,
H,1m—H,2m=Jom = J||7m cos 1,
H@,Q,m — H9717m = Jz’m = JHJ” sin ’lﬁ,
Jo,msiny — J, ,, cosp = 0;

at r = by:

Ez,p = Ez,p+1> E@,p = E&,p+17
Hz,p = Hz,erla H@,p = HG,p—&—l;

at r =b, = rw:

Ez,nJrl = 07 EO,n—l—l =0.
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With the help of these boundary conditions, one may choose to ex-
press the field constants in terms of a single constant, namely, A, .
Then following the Sensiper’s approach [12], one may express A, in
terms of the amplitude of the m th harmonic Fourier component of
the tape surface current density in the direction of the tape, which in
turn may be easily found assuming a simple tape-current distribution,
with all its Fourier components summed together—by taking it con-
stant in amplitude over the tape width and varying in phase along the
helix winding direction as per the phase propagation constant of the
fundamental mode [2, 12] as follows:

Ama = GQdjm

with (; defined in Appendix. Next, the electric field intensity parallel
to the winding direction at the center line of the tape FE)(a)(z =
pf/2m), is expressed in terms of A,, 1, and hence in terms of the
assumed current distribution. Precisely, thus one gets EL”(a)(z =
pf/27) in terms of J, being the amplitude of J) (= Jexp(—3jBz)),
the latter expanded into its Fourier components as:

J| = exp(—jfoz) i J (%) (g) exp[—jn(27z/p — 0)].

m=—00

Ey)(a)(z = pf/2m), thus obtained in terms of J, is set equal to zero
to obtain the dispersion relation in the following simplified form after
a lengthy algebra:
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where Y (= Ym1 = Ym2) = (k% — ﬁ?n)l/g is the radial propagation

constant of the free-space region. § is the width of the tape. Py, Qo,
My, and Ny can be found from the following recurrence relations:




26 Ghosh et al.
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where b, is the outer radius of the pth dielectric tube (Fig. 1b).

With the help of (3)-(6), Po, Qo, Mo, and Ny are obtained in
terms of P,_1, Qn_1,Mp_1,and N,_; which, in turn, are given by:
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It may be seen from (3)-(6) that Py, Qo, Moy, and Ny are each
expressible in terms of P,_1, Qn_1,Mp,_1, and N,_1. However, it
may also be seen from (7)—(10) that the latter each involve Py, Qo,
My, and Ny again. The approach one can follow here is to ignore the
terms containing Py, Qo, Mp, and Ny in the right hand side of (7)—
(10), as a first order of approximation, to obtain the approximate values
of Po_1, Qn-1,M,_1, and N,_1. Using these approximate values
and with the help of (3)—(6) one may then approximately evaluate
Py, Qo, My, and Ny which can be substituted back into (7)—(10) to
obtain more accurate values of P,_1, Qn_1,M,—1,and N,_1. The
latter in turn can again be used in (3)—(6) to evaluate the values of
Py, Qo, My, and Ny, more accurately. The method is iterated till
each of the values of Py, Qo, My, and Ny converges. Subsequently,
these values can be used in the dispersion relation (2) for the desired
dispersion characteristics of the structure. It will be of interest to check
that, as a special case in which the effects of the dielectric support for
the helix are ignored, the dispersion relation (2) would pass on to that
of Uhm and Choe [10].
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2.2 Circuit Impedance

The quality of the structure analyzed in providing the RF electric
field for interaction with an electron beam in a practical device can
be estimated in terms of the interaction impedance of the structure
[13, 14, 17]. For a tenuous annular electron beam, in a fast-wave
device like the gyro-TWT, the effect of the presence of the beam on
the spatial texture of the waveguide may be ignored. One may then
define Ky ,, , the azimuthal interaction impedance of the m th space-
harmonic mode, as [14, 15]:

Ko — E02,m {7beam } 1
0,m = W (11)

where Ep,, {Theam} is the azimuthal component of electric field in-
tensity of the mth space-harmonic mode at the mean beam position
(r = Theam), it being assumed that in such a device the azimuthal
component of electric field intensity is predominantly responsible for
interaction with a thin annular beam of electrons in helical trajecto-
ries. P is the power propagating down the structure, which is found
by taking half of the real part of the integration of the complex Poynt-
ing vector over the cross-sectional area of the structure for all the space
harmonic modes summed up together. Substituting P thus found in
(11), one obtains:

B E92’m {"“beam}
- 2
2/87%1 Z?r?:foo Zzil Gm,p

where G, , are the functions of the structure parameters as given in
Appendix.

(12)

0,m

3. RESULTS AND DISCUSSION

In this paper we present an analytical method to study a general
helix-loaded structure— an inhomogeneously-loaded helix enclosed in
a cylindrical waveguide operating in the fast-wave regime. The tape-
helix model has been used which takes into account the effect of the
space-harmonics, as it is particularly relevant to situations in which the
structure is operated at high voltages and for high helix pitch angles.
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In the analytical model, the structure inhomogeneity has been modeled
by azimuthally smoothing out the discrete supports into a number of
continuous dielectric tube regions of the appropriate permittivity val-
ues (Fig. 1). The number of such simulated continuous homogeneous
dielectric tube regions is increased usually up to ~ 10 or 15, for con-
verging results. The effect of helix tape thickness is taken into account
to add to the practical relevance of the problem. The non-uniformity
in the radial propagation constant in the different structure regions is
considered, particularly for a large structure inhomogeneity caused by
a high-permittivity support for the helix, a large separation between
the helix and the waveguide wall, and for large helix pitch angles [19,
20]. The structured expressions presented, which are amenable to easy
computation with the help of relevant recurrence relations, enable one
to use them easily in an iterative cycle for the desired convergence
accuracy, as discussed following (10). The solution involves the usual
bisection followed by Muller’s method. The entire iteration hardly
took a couple of seconds to obtain a value each of normalized axial
phase propagation constant and interaction impedance, for a given
normalized frequency and a set of input structure parameters, on an
IBM-compatible Pentium based PC-AT.

For the numerical appreciation of the problem, the dispersion and
the impedance versus frequency characteristics are plotted for a homo-
generously-loaded helix (e;.,/€., 1 = 1;p > 3) taking a/r,, the
size of the helix relative to that of the waveguide (Fig. 2a), cot
the cotangent of the helix pitch angle (Fig. 2b), and €.(= €5 =
6;74 = ...), the effective relative permittivity of the support regions
(Fig. 2c) as the parameters. The same characteristics are also plotted
for an inhomogeneously-loaded helix (e, /€., 1 # 1;p > 3) taking
€rp/ €1 p—1 » the structure inhomogeneity factor, considered as uniform
over the support cross-section, (Fig. 2d) as the parameter. For this
purpose, the lowest-order solution for the hybrid-mode relation (2) is
taken.

The structure loading increases giving a larger value of Gy, as the
helix is moved farther from or closer to the waveguide wall depend-
ing on whether the helix has a dielectric support or not (Fig. 2a) and
for a higher permittivity helix support (Fig. 2¢). Furthermore, for an
inhomogeneously-loaded structure, the loading increases with the inho-
mogeneity if the permittivity increases radially outward (Elhp / e;7p_1 >
1), while it decreases if the permittivity decreases radially outward
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Figure 2(a). Dispersion characteristics — kry,, a normalized fre-
quency, versus f(r, , a normalized phase propagation constant of the
fundamental mode (m = 0), plotted for a homogeneously-loaded

structure taking the following parameters: a/r, (a), cotty (b), and
€3 (c); and the same characteristics plotted for an inhomogeneously-
loaded structure taking € /€., 1, considered as uniform, as the pa-
rameter (d) — the solid line referring to the permittivity increasing
radially outward, the solid line with crosses to the permittivity increas-
ing radially inward, and the broken line with circles to the homogeneous
dielectric loading, the thickness of the tape being ignored (by = a),
thought its width considered at a normalized value 6/p = 0.3, the

broken line referring to the dielectric-free (€].3 =1) structure [9], [10]

in (a)—(d).

(erp/€rp—1 < 1) (Fig. 2d). It may be noted that the effects of the prox-
imity of the helix (Fig. 2a), the permittivity value of the helix support
(Fig. 2c), and the inhomogeneity parameter (Fig. 2d) are each found
to be more pronounced at higher operating frequencies. The structure
loading is also found to increase with the value of cotangent of the
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Figure 2(b).

helix pitch angle, an effect which becomes more pronounced at lower
operating frequencies (Fig. 2b). It may also be noted that the dielectric
parameters become less effective as the helix is brought closer to the
waveguide wall and also that these parameters become more effective
than the helix parameters in shaping the dispersion (w-/3) plot.

The azimuthal interaction impedance, for the fundamental mode
m = 0, Kyyg, is plotted in Fig. 3 for a preliminary estimate of the
usefulness of the structure when considered for its application in a fast-
wave electron beam device such as the gyro-traveling-wave amplifier.
It is observed that the value of the interaction impedance decreases as
the operating frequency is increased (Fig. 3). Also, its value decreases
as the helix is moved farther form the waveguide wall (Fig. 3a). The ef-
fect of the controlling parameters (namely, a /7y, €., €.,/¢€., 1(p > 3),
etc.) on Kp g is also found to be less as the helix is brought closer to the
waveguide wall (Fig. 3). Furthermore, there exists an optimum range
of helix pitch angles to get a reasonable value of interaction impedance
over a wide band of frequencies (Fig. 3b). The presence of the di-
electric not only enhances the value of the interaction impedance but
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Figure 3(a). Interaction impedance characteristics of the structure
K (= Kyy), for the fundamental (m = 0) space-harmonic mode, ver-
sus frequency f, (a)—(d) referring to the same parameters and situa-
tions as in Fig. 2, the thickness of the tape being ignored (by = a),
though its width considered as finite at a normalized value 6/p = 0.3,
and the waveguide-wall radius taken as 7, = 0.60cm .

also reduces the rate of its fall with the increase of frequency. When
the structure is dielectric loaded, the interaction impedance is found
to decrease with the increase in the value of relative permittivity, the
effect, however, being not discernible at higher values of the operat-
ing frequency (Fig. 3c). For an inhomogeneously-loaded structure, it
is found that, if the inhomogeneity increases (€. ,/€,, 1(p > 3) de-
viating from unity), the interaction impedance increases significantly
or decreases— though not so significantly, depending on whether the
permittivity of the dielectric in the structure increases rapidly inward
(erp/€rp_1(p>3) <1) or outward (e ,/€,., 1(p>3)>1).

In this paper the field analysis of a helix-loaded cylindrical wave-
guide operated in the fast-wave regime is developed in the tape-model
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taking care to include the effects of a generalized inhomogeneous dielec-
tric support for the helix. The results, though it is presented here for
the fundamental space-harmonic tape-helix mode and it refers to fun-
damental solution of the hybrid-mode, is rather general. For instance,
it can be extended to the study of other space harmonic modes of inter-
est which could be useful either in the design of a space-harmonic device
of interest or in the control of undesirable space-harmonic modes. It
is hoped that the present analysis should be relevant to the context of
broadbanding a fast-wave electron beam device, like the gyro-TWT.
The beam-wave interaction mechanism is, however, kept out of scope
of the present study.
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APPENDIX: Functions G,,, (1 <p <n+2) occurring in the
expression (12) for interaction impedance

Functions Gy, p(1 < p < n+ 2) occurring in the expression (12) for
interaction impedance, in terms of the definite integrals defined later,
are:

™ WEeEQ 0
Gm1 = ﬂmiz <A$n,1 + M—Cg@,l) X
Tm €0

/0 a(J;g {fymr}+72 . m{’mﬁ})rdr

T w
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bo 2 m? 2
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and, for 3<p<n+2:

: 2 7"pAg%p + “chw,p) X
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where
Am,l = CIJH,m
and
Cma = Q|| m;
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The definite integrals occuring in the above expressions for G, s
are:
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