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1. INTRODUCTION

When a radar target is time-dependent, a deterministic scattering ma-
trix does not suffice to describe the target. The elements of the scat-
tering matrix become stochastic variables and one scattering matrix
is related to one statistical representation of the target. Thus a time
average must be performed. Other matrices are used to describe time-
dependent targets: the Kennaugh matrix [1], the target coherency ma-
trix [2] and the covariance matrix [3]. Their elements are linear func-
tions of the time-averaged cross-products of the time-dependent scat-
tering matrix elements 〈ShhShv∗〉 , 〈ShhSvv∗〉 , 〈ShvSvv∗〉 and their
time-averaged modulus square 〈ShhShh∗〉 , 〈ShvShv∗〉 and 〈SvvSvv∗〉
where 〈 〉 indicates a time average and ∗ the complex conjugate. Five
real parameters describe polarimetrically a stationary target when the
scattering matrix with relative phase only is symmetric. The time-
dependent target is now described with nine real elements. In order to
analyze further the time-dependent target, decomposition techniques
are applied.

The purpose of a decomposition in radar polarimetry is to provide
means for interpretation and optimum utilization of polarimetric scat-
tering data. The objective for any decomposition is to combine or
manipulate the scattering matrix elements in order to obtain more
descriptive and discriminative target parameters, which is of decisive
importance in applications of radar polarimetry.

Decomposition techniques have traditionally been related to inco-
herent processing in order to describe time-dependent targets. The
first decomposition was proposed by Huynen in [1]. The Kennaugh
matrix is decomposed into a sum of an average stationary target and a
residual N-target (non-symmetric “noise”-target). Incoherent decom-
positions other than Huynen’s have been presented by notably Cloude
([2, 4]), and Holm and Barnes [5], based on the target coherency ma-
trix. Unlike the Huynen decomposition, decompositions of the target
coherency matrix are usually based on eigenvalue analysis. Other de-
composition approaches exist [6, 7]. They have been developed for SAR
images classification and they focus on the decomposition in different
types of scattering (odd bounce, even bounce, . . . ).

With the Delft Atmospheric Research Radar [8], an experimental
study to search for a polarimetric analysis of time-dependent targets
with a focus on target decomposition theorems is performed at the
Delft University of Technology. For an atmospheric polarimetric radar,
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the dominant type of scattering is less important than for a SAR image
where a lot of different kinds of targets are often present. Therefore
the classical incoherent target decomposition theorems ([1, 9]), [2] and
[5], are first selected. The utility of these decomposition methods for
the purpose of extracting useful “real world information” from the
polarimetric data must be investigated.

For this experimental study, the BSA (BackScatter Alignment) con-
vention is used [10] and the absolute phase of the scattering matrix is
not considered. Assuming reciprocity of the antenna system of the
Delft Atmospheric Research Radar [11], the data used for this analysis
are time-dependent symmetric scattering matrices. The three inco-
herent decompositions differ and they lead to different results at first
sight. In this paper, the decompositions are applied on simple targets
as illustrations: a stationary and a completely random target. Their
results are discussed and compared. This step is important for the in-
terpretation of the decomposition results of partially random targets.

2. OVERVIEW OF THE TARGET DECOMPOSITION
THEOREMS

The Cloude decomposition [2] as well as the Holm and Barnes decom-
position [5] can be easily applied to the target coherency matrix and
to the covariance matrix. The Kennaugh matrix [1] and the target
coherency matrix are straightforward decomposed using the Huynen
decomposition. For convenient comparison, these decomposition theo-
rems are therefore applied to the target coherency matrix 〈[Tc]〉 . The
elements of this target matrix used by Cloude are directly related to
the Huynen parameters A0, B0, Bψ . . . as given in equation (1). The
Huynen parameters are real. It reduces to a 3 × 3 matrix when the
time-dependent scattering matrix is symmetric. This hermitian matrix
consists of three real elements on the diagonal and three complex ele-
ments off-diagonal. The equation (2) relates the elements of the target
coherency matrix to the elements of the time-dependent scattering ma-
trix. The matrix 〈[Tc]〉 is not directly measured but calculated from
the time-averages of the measured scattering matrices.

〈[Tc]〉 =


 2A0 Cψ + jDψ Hψ − jGψ

Cψ − jDψ B0 +Bψ Eψ − jF
Hψ + jGψ Eψ + jF B0 −Bψ


 (1)
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2A0 =
1
4

〈
|Shh(t) + Svv(t)|2

〉
B0 +Bψ =

1
4

〈
|Shh(t)− Svv(t)|2

〉
B0 −Bψ =

〈
|Shv(t)|2

〉
Cψ + jDψ =

1
4

〈
|Shh(t)|2 − |Svv(t)|2 + 2jIm(S∗hh(t)Svv(t))

〉
Hψ − jGψ =

1
2
〈Shh(t)S∗hv(t) + Svv(t)S∗hv(t)〉

Eψ − jF =
1
2
〈Shh(t)S∗hv(t)− Svv(t)S∗hv(t)〉

(2)

2.1 Cloude Decomposition

Cloude introduces the target vector (3) equivalent to the scattering
matrix. The general term of the target coherency matrix is straight-
forward expressed in (4) as a function of the components of the target
vector kc(t) . This hermitian matrix is diagonalized leading to three
eigenvalues λi and three eigenvectors kci (5) which are orthogonal
when the eigenvalues are different. To each eigenvector corresponds
a scattering matrix [Si] of a stationary target (6), weighted by the
related eigenvalue [2].

kc(t) =




1
2(Shh(t) + Svv(t))
1
2(Shh(t)− Svv(t))

Shv(t)


 (3)

〈[Tc]〉l, m =
〈
kc, l(t)k∗c, m(t)

〉
l, m ∈ {0, 1, 2} (4)

〈[Tc]〉 kci = λikci with |kci| = 1 (5)

[Si] =
√
λi

[
kci, 0 + kci, 1 kci, 2

kci, 2 kci, 0 − kci, 1

]
i = 0, 1, 2 (6)

To measure the statistical disorder of time-dependent targets, the
target entropy Hc is defined from the eigenvalues λi (7). Hc varies
from 0 for a stationary target to 1 for a random target.

Hc =−
2∑
i=0

pi log3 pi

pi =
λi
2∑
i=0

λi

(7)
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2.1.1 Diagonalization

Since the target coherency matrix (8) is hermitian, this matrix can
always be diagonalized.

〈[Tc]〉 =


 〈kc, 0k∗c, 0〉 〈kc, 0k∗c, 1〉 〈kc, 0k∗c, 2〉〈kc, 1k∗c, 0〉 〈kc, 1k∗c, 1〉 〈kc, 1k∗c, 2〉
〈kc, 2k∗c, 0〉 〈kc, 2k∗c, 1〉 〈kc, 2k∗c, 2〉


 (8)

λ0, λ1 , and λ2 are the eigenvalues of the target coherency ma-
trix and

〈[
TDc

]〉
is its diagonal representation in the basis consisting

of the normalized eigenvectors. Each matrix
[
TDci

]
is built with the

normalized eigenvector kci .

〈[
TDc

]〉
= λ0


 1 0 0

0 0 0
0 0 0


 + λ1


 0 0 0

0 1 0
0 0 0


 + λ2


 0 0 0

0 0 0
0 0 1


 (9)

〈[
TDc

]〉
=

2∑
i=0

λi
[
TDci

]
(10)

To come back to the initial basis (h̄, v̄) , an unitary transformation
[Ut] is carried out. The columns of the unitary matrix contain the
eigenvectors written in the basis (h̄, v̄) .

〈[Tc]〉 =
2∑
i=0

λi[Tci] (11)

[Tci] = [Ut]
[
TDci

]
[Ut]

† (12)

2.2 Holm and Barnes Decomposition

The eigenvalues of the target coherency matrix are calculated and
ordered. When λ0 is the largest eigenvalue and λ2 the smallest one,
then the diagonalized target coherency matrix

〈[
TDc

]〉
is decomposed

as follows

〈
[
TDc

]
〉 = (λ0 − λ1)


 1 0 0

0 0 0
0 0 0


 + (λ1 − λ2)


 1 0 0

0 1 0
0 0 0


 + λ2


 1 0 0

0 1 0
0 0 1




(13)
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The only stationary target is weighted by λ0 − λ1 . The same sta-
tionary target is found in the Cloude decomposition but weighted by
λ0 . In the case of a quasi-stationary target where λ1 and λ2 are
very small compared to λ0 , the averaged target obtained from both
decompositions will be the same.

[Ut] =
[
kc0 kc1 kc2

]
(14)

The decomposition in [5] is formulated differently than (13) because of
the ordering of the eigenvectors.

2.3 Huynen Decomposition

A time-dependent target is described by the target coherency ma-
trix 〈[Tc]〉 consisting of nine independent real parameters, whereas
a stationary target is determined by five real parameters. Therefore
Huynen considered the possibility of decomposing the nine-parameter
target coherency matrix, (15), into an average stationary effective tar-
get described by

[
TSc

]
in (16) with five parameters and a residue part

given by
〈[
TNc

]〉
in (17) which contains the four remaining degrees of

freedom ([1, 9]). The core of this decomposition is the choice of the
residue target.

Huynen chooses the N-target for the following reasons. It is deter-
mined by four parameters and it is a roll-invariant target. It means
that if the N-target is rotated around the line of sight through an
angle ψ or equivalently, another linear orthogonal polarization basis
than (h̄, v̄) is used, the target coherency matrix remains of the form
given in (17).

The target coherency matrix
[
TSc

]
consists of five real independent

parameters like the scattering matrix. There are thus four real de-
pendent relations between its elements shown in (18). The first two
equations are real and the third one is complex. Using the eigenvalues
formalism in the preceding paragraphs, only one eigenvalue different
from 0 corresponds to a stationary target which means that the deter-
minant of

[
TSc

]
as well as the determinant of its 2× 2 minors equals

zero. The relations (18) are derived from the determinant of some of
the 2×2 minors. The scattering matrix related to the target coherency
matrix

[
TSc

]
is calculated using (2) without the average symbol 〈 〉 .

〈[Tc]〉 =
[
TSc

]
+

〈[
TNc

]〉
(15)
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[
TSc

]
=


 2A0 Cψ + jDψ Hψ − jGψ

Cψ − jDψ BS
0 +BS

ψ ES
ψ − jFS

Hψ + jGψ ES
ψ + jFS BS

0 −BS
ψ


 (16)

〈[
TNc

]〉
=


 0 0 0

0 BN
0 +BN

ψ EN
ψ − jFN

0 EN
ψ + jFN BN

0 −BN
ψ


 (17)

BS
0 +BS

ψ =
C2
ψ +D2

ψ

2A0

BS
0 −BS

ψ =
G2
ψ +H2

ψ

2A0

ES
ψ − jFS =

(CψHψ −DψGψ)− j(CψGψ +DψHψ)
2A0

(18)

2.3.1 Decomposition of the N-target

The N-target described by the target coherency matrix
〈[
TNc

]〉
can

be decomposed (19) to obtain a stationary N-target (20) and a so-called
“unpolarizing” N-target (21), [12]. The dependency equation (22) is
easily retrieved, calculating the determinant of the appropriate 2 × 2
minor of

[
TNc S

]
and using the property B′0

N ≥ 0 . The Kennaugh
matrix

〈[
KN
u

]〉
related to

〈[
TNc u

]〉
when applied to the Stokes vector

of a linear polarized wave, fully depolarizes this pure polarization, from
which the name of “unpolarizing” N-target for this matrix (23). This
second step in the Huynen decomposition mentioned in [12] leads to
an additional scattering matrix allowing an easier comparison with the
Cloude decomposition.

〈[
TNc

]〉
=

[
TNc S

]
+

〈[
TNc u

]〉
(19)

[
TNc S

]
=


 0 0 0

0 B′N0 +BN
ψ EN

ψ − jFN

0 EN
ψ + jFN B′N0 −BN

ψ


 (20)

〈[
TNc u

]〉
=


 0 0 0

0 BN
0 −B′N0 0

0 0 BN
0 −B′N0


 (21)

B′N0 =

√(
BN
ψ

)2
+

(
EN
ψ

)2
+ (FN )2 (22)
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BN

0 −B′N0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 BN

0 −B′N0




︸ ︷︷ ︸
Kennaugh matrix

〈[
KN
u

]〉




A2

A2 cos 2θ
A2 sin 2θ

0




︸ ︷︷ ︸
Stokes vector

linear polarization

=BN
0 −B′N0



A2

0
0
0




︸ ︷︷ ︸
Stokes vector

unpolarized wave

(23)

2.3.2 Definition of the N-target

The classical Huynen decomposition is based on the choice of the
N-target. The N-target is mathematically defined as follows

〈[
TNc

]〉
q̄ = 0 (24)

with

q̄ =


 1

0
0


 (25)

The vector q̄ belongs to the null space of the N-target and the relation
(24) is roll invariant, which means

[UN ]†
〈[
TNc

]〉
[UN ] q̄ = 0 (26)

where the unitary matrix [UN ] is a rotation matrix. The matrix [UN ]
is transposed and conjugated (hermitian adjoint) on the left side of the
equation since

〈[
TNc

]〉
is expressed in the reference basis (h̄, v̄) .

[UN ] =


 1 0 0

0 cos 2ψ sin 2ψ
0 − sin 2ψ cos 2ψ


 (27)

The elements of the vector q̄ are a combination of the components
of the transmitted polarization vector et and the receiving polarization
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vector er (28). The vector q̄ is obtained with a left-handed circular
polarization (L) for transmission and a right-handed circular polariza-
tion (R) for reception or conversely. Any target with a LR or RL null is
thus a Huynen N-target. This is the physical definition of the Huynen
N-target.

q̄ =


 erheth + ervetv
erheth − ervetv
erhetv + erveth



∗

(28)

This kind of decomposition is not unique. Two other Huynen-like
decompositions can be defined keeping the roll-invariant property of
the residue target [5]. The two other possibilities lead to respectively
a residue target LL null and RR null. Summarizing, choosing for the
roll-invariant property for the residue target is choosing for targets
with circular polarization nulls.

2.3.3 ψ -Dependency of the Target Coherency Matrix

When the linear polarization orthonormal basis (h̄, v̄) is rotated
through an angle ψ around the line of sight, which means a change of
linear basis, then the scattering matrix of a stationary target is unitary
transformed by a rotation matrix of angle ψ . The same transformation
occurs when the target is rotated through an angle −ψ around the
line of sight.

When the scattering matrix is unitary transformed by a rotation of
angle ψ , then the target coherency matrix is unitary transformed by
a rotation matrix of angle 2ψ as can be seen in (27).

3. EXPERIMENTAL SET-UP

The time-dependent scattering matrices are measured by the “roof-
based” FM-CW polarimetric research radar of the Delft University of
Technology, operating in the S-band [8]. The target coherency ma-
trix is calculated from the time-dependent scattering matrices. The
bandwidth of the radar can be adjusted from 1 MHz up to 50 MHz
corresponding to range resolutions of 150 to 3 meters. The polarimetric
calibration of the radar was performed with a rotatable dihedral corner
reflector [11] where the reciprocity of the antenna system has been as-
sumed and justified. The measurements are copolar. The polarization
is linear and varies sinusoidally between ±90o as a function of time
with a periodicity of 40 ms. A N-point discrete Fourier transform of
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the target signal is performed per sweep or measurement. There are
typically 32 sweeps during a polarizer period of 40 ms. The measured
signal of the target is given by a linear combination of the three el-
ements of the scattering matrix and at least three measurements are
needed to retrieve the scattering matrix [8].

To reduce noise influence on the determination of the scattering
coefficients, the calculation, described in [8] and [11], is made over a
complete polarizer period (40 ms). This calculation is valid as soon
as the decorrelation time of the target is much larger than 40 ms.
Each scattering matrix is the least squares solution of a system of 32
linear equations in 3 unknowns. In this way the scattering matrix of a
stationary target is calculated each 40 ms.

To calculate the scattering matrix of a random target, three consec-
utive sweeps are used. Then the scattering matrix is measured within
3.75 ms. If this measurement time is still too long, the minimum sweep
time available of 0.625 ms is selected.

3.1 Example of a Random Target

The noise signal U of the radar is used to build artificially time-
dependent scattering matrices. The polarizers are not active, there is
no transmission of power and the frequency excursion is set to 0 MHz.
The elements of the scattering matrix consist of the noise signal of the
frequency cell 25 contained in three consecutive sweeps. The choice of
the frequency cell as well as the sweeps is arbitrary. Calibration data
were not used. The phase of each element of the scattering matrices
typically follows an uniform distribution between −π and +π . These
elements are equal in power after sufficient averaging (29) and not
correlated. In this example, the average is performed on 12.8 s (320
scattering matrices). The averaged relative power of the elements of
the scattering matrices tends to −7 dB and there is a weak correlation
of 10−2 left (30).

〈
|Shh(t)|2

〉
≈

〈
|Shv(t)|2

〉
≈

〈
|Svv(t)|2

〉
≈

〈
|U(t)|2

〉
≈ −7 dB

(29)

〈Shh(t)S∗hv(t)〉 ≈ 〈Shh(t)S∗vv(t)〉 ≈ 〈Shv(t)S∗vv(t)〉
≈ 10−2(1 + j)

〈
|U(t)|2

〉 (30)
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3.1.1 Decomposition Results

When the phase of the elements of the scattering matrices is ran-
dom for a time-dependent target, the target coherency matrix is ex-
pressed by (31). The element B0 +Bψ tends to 2A0 and the elements
Dψ, Eψ, F, Hψ, and Gψ tend to zero.

〈[Tc]〉 ≈


 2A0 Cψ 0
Cψ 2A0 0
0 0 B0 −Bψ


 (31)

In the chosen example, the copolar elements of the scattering ma-
trices have about the same averaged power (29) which implies Cψ
tending to zero (see definition of Cψ in (2)). Therefore the target
coherency matrix tends to a diagonal matrix with two elements on the
diagonal equal and the third one two times larger.

〈[Tc]〉 ≈


 2A0 0 0

0 2A0 0
0 0 4A0


 (32)

The calculated target coherency matrix is given in Table 1.

Target coherency matrix

(0.1029, 0.) (0.0007, 0.0017) (−0.0031, −0.0035)

(0.0007, −0.0017) (0.1051, 0.) (0.0117, −0.0083)

(−0.0031, 0.0035) (0.0117, 0.0083) (0.2254, 0.)

Table 1. The Target Coherency Matrix of the Random Target (Noise).

The results of the Cloude decomposition are the scattering matri-
ces [Si] (6). The results of the Huynen decomposition are the two
scattering matrices respectively related to

[
TSc

]
(16) and

[
TNc S

]
(20)

plus the target coherency matrix
〈[
TNc u

]〉
(21). In order to compare

the energy contribution of each scattering matrix, resulting from the
decomposition, the following quantity is defined

Span ([S]) = |Shh|2 + 2|Shv|2 + |Svv|2 (33)

When there is an unique relation between the target coherency matrix
and the scattering matrix, i.e. in the case of a stationary target, it is
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found that
Trace ([Tc]) =

1
2
Span ([S]) (34)

Therefore the energy contribution of the target coherency matrix is
quantified using the trace of the matrix.

3.1.1.1 Huynen Decomposition

The decomposition of the approximated theoretical target coherency
matrix is given below.

〈[Tc]〉 ≈


 2A0 0 0

0 0 0
0 0 0




︸ ︷︷ ︸[
TSc

]
+


 0 0 0

0 0 0
0 0 2A0




︸ ︷︷ ︸[
TNc S

]
+


 0 0 0

0 2A0 0
0 0 2A0




︸ ︷︷ ︸〈[
TNc u

]〉
(35)

The corresponding theoretical results are given in Table 2 and the
experimental ones in Table 3.

Stationary Target and Stationary N-target

Huynen Stationary target Stationary N-target

Span 4A0 4A0

Shh
√

2A0 0

Shv 0
√

2A0

Svv
√

2A0 0

Unpolarizing N-target

Huynen Unpolarizing N−target
target coherency matrix

2× trace 8A0

BN
0 −B′N0 2A0

Table 2. Theoretical Estimation of the Huynen Decomposition of the
Random Target (Noise).
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Stationary Target and Stationary N-target

Huynen Stationary target Stationary N-target

Span(dB) −6.8 −6.0

Shh(dB, deg) −9.8, 0 -27.7, 0

Shv(dB, deg) −36.7, 133 −9.1, 35

Svv(dB, deg) −9.9, 2 −27.7, −180

Unpolarizing N-target

Huynen Unpolarizing N−target
target coherency matrix

2× trace (dB) −3.8

BN
0 −B′N0 (dB) −9.9

Table 3. Results of the Huynen Decomposition of the Random Target
(Noise).

The span of the obtained scattering matrices, in theory 4A0 , is ex-
pected to be about −7 dB . The copolar elements of the stationary
target scattering matrix, the crosspolar element of the stationary N-
target scattering matrix and the only element different from zero of
the unpolarizing N-target coherency matrix are expected to be equal
to −10 dB . They are equal respectively to −9.8, −9.9, −9.1 and
−9.9 dB . There is no phase difference between the copolar elements
of the stationary target scattering matrix theoretically and experimen-
tally 2 degrees are found.

Summarizing, with the Huynen decomposition, the noise signal leads
to the scattering matrices of a trihedral and a dihedral rotated
through 45◦ , and a target coherency matrix of an unpolarizing N-
target.

3.1.1.2 Cloude Decomposition

The approximate theoretical target coherency matrix is already di-
agonal. Thus the eigenvalues are λ0 = 4A0 and λ1 = λ2 = 2A0 . The
corresponding eigenvectors are expressed in (36).
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kc, 0 =


 0

0
1


 kc, i =

1√
|a|2 + |b|2


 a
b
0


 i = 1, 2 ∀ a, b complex

(36)
In this case where two eigenvalues are identical, the condition of

orthogonality of the corresponding eigenvectors is not fulfilled. There-
fore a whole plane (dimension 2) instead of one direction (dimension
1) contains the possible eigenvectors.

Using (6) and knowing that the eigenvectors kci are normalized
to 1, it is straightforward to derive that the span of the scattering
matrices resulting from the Cloude decomposition equals two times
the corresponding eigenvalue.

The theoretical results of the decomposition are given in Table 4
and the experimental ones in Table 5.

The entropy equals 0.93. The eigenvalues with the corresponding
stationary targets are sorted in descending order, i.e. the target 0
described by the scattering matrix [S0] (6) corresponds to the largest
eigenvalue λ0 , etc ... The crosspolar element Shv is estimated to
be −7 dB for the stationary target 0 and is found to be −6.5 dB .
Concerning the stationary targets 1 and 2 , the energy tends to split
up into the copolar elements Shh and Svv . The scattering matrix
element Svv is about half Shh in power for the stationary target 1
and it is vice versa for the stationary target 2, ( a = c and b = −d ).

Cloude Stationary
target 0

Stationary
target 1

Stationary
target 2

Eigenvalues 4A0 2A0 2A0

Span 8A0 4A0 4A0

Shh 0
√

2A0
a+b√
|a|2+|b|2

√
2A0

c+d√
|c|2+|d|2

Shv
√

4A0 0 0

Svv 0
√

2A0
a−b√
|a|2+|b|2

√
2A0

c−d√
|c|2+|d|2

Table 4. Theoretical Estimation of the Cloude Decomposition of the
Random Target (Noise).
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Cloude Stationary
target 0

Stationary
target 1

Stationary
target 2

Eigenvalues 0.2273 0.1055 0.1006

Span(dB) −3.4 −6.8 −7.0

Shh(dB, deg) −25.0, 0 −8.6, 0 −11.7, 0

Shv(dB, deg) −6.5, 53 −33.4, −172 −29.8, −87

Svv(dB, deg) −24.5, −146 −11.5, 99 −8.8, −80

Table 5. Results of the Cloude Decomposition of the Random Target
(Noise).

3.1.1.3 Holm and Barnes Decomposition

The following decomposition of the target coherency matrix is ex-
pected

〈[Tc]〉 ≈


 0 0 0

0 0 0
0 0 2A0




︸ ︷︷ ︸[
TSc H

]
+


 2A0 0 0

0 2A0 0
0 0 2A0




︸ ︷︷ ︸〈[
TDc H

]〉
(37)

It can be performed straightforward in the (h̄, v̄) basis since the
matrix 〈[Tc]〉 can be assumed diagonal. The stationary target resulting
from the Holm and Barnes decomposition is the stationary Huynen
N-target (dihedral rotated through 45◦ ). The theoretical expected
results are given in Table 6 and the experimental ones in Table 7.

Stationary Target

Holm and Barnes stationary target

Span Shh Shv Svv

4A0 0
√

2A0 0

Diagonal Target Coherency Matrix

Holm and Barnes diagonal target coherency matrix

2× trace 12A0

diagonal element 2A0

Table 6. Theoretical estimation of the Holm and Barnes decomposi-
tion of the Random Target (Noise).
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Stationary Target

Holm and Barnes stationary target

Span(dB) Shh(dB, deg) Shv(dB, deg) Svv(dB, deg)

−6.1 −27.7, 0 −9.2, 53 −27.2, −146

Non-Stationary Target Coherency Matrices

Target coherency matrix
〈[
T Ic H

]〉
2× trace = −17.1 dB

(0.0021, 0.) (0.0008, 0.0022) (−0.0003, −0.0002)

(0.0008, −0.0022) (0.0028, 0.) (0.0003, −0.0002)

(−0.0003, 0.0002) (0.0003, 0.0002) (0.0048, 0.)

Target coherency matrix
〈[
TDc H

]〉
2× trace = −2.2 dB

(0.1006, 0.) (0., 0.) (0., 0.)

(0., 0.) (0.1006, 0.) (0., 0.)

(0., 0.) (0., 0.) (0.1006, 0.)

Table 7. Results of the Holm and Barnes Decomposition of the Ran-
dom Target (Noise).

The cross-polar element of the Holm and Barnes scattering matrix,
expected to be −10 dB , equals −9.2 dB . The span, estimated to be
−7 dB , is found to be −6.1 dB . The trace of the calculated diagonal
target coherency matrix leads to the expected power of −2.2 dB . The
other target coherency matrix, neglected in theory, is present with a
power of −17.1 dB .

3.1.2 Discussion

There is a good agreement between theoretical estimates and mea-
surements. The differences are caused by a weak correlation left be-
tween the elements of the time-dependent scattering matrices (30).
The average of these elements and their averaged power are tending
(but are not equal) respectively to zero and −7 dB . A larger averag-
ing time may decrease these differences. Results of the decomposition
were also investigated for an averaging time of 1 s (25 scattering ma-
trices). The results of the average on 12.8 s (320 scattering matrices)
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are much nearer to the theoretical predictions. For such a random
target, 25 averages are not sufficient.

The Huynen scattering matrices differ from the Cloude ones. Nev-
ertheless both decompositions show a decomposition in copolar and
cross-polar elements. There is no predominance of one scattering ma-
trix. The three Cloude scattering matrices or the two Huynen scatter-
ing matrices with the target coherency matrix of the “unpolarizing”
N-target are needed to describe the noise signal. The Cloude scattering
matrix related to the largest eigenvalue is comparable to the stationary
N-target scattering matrix even though they differ in span.

The scattering matrix obtained by the Holm and Barnes decompo-
sition is identical, relatively, to the Cloude decomposition scattering
matrix corresponding to the largest eigenvalue. They differ in span.
The Holm and Barnes scattering matrix has a span equivalent to the
stationary N-target obtained with the Huynen decomposition.

In [2] and [4] the Cloude decomposition is performed on a target
coherency matrix 4× 4 since the scattering matrix is considered non
symmetric (general case). Therefore the energy is split up equally into
the 4 scattering matrices obtained after decomposition of a random
target. The span of each scattering matrix would be −7 dB in this
example. Concerning the target coherency matrix 〈[Tc]〉 , instead of
having 4 eigenvalues identical, there are 3 with one being two times
larger than the two equal other ones.

3.2 Example of a Stationary Target

3.2.1 Measurement

The chimney of a power plant was measured in presence of light rain
during a period of 58 s . The range is 1186 m and the range resolution
is 15 m . The main lobe of the antenna system illuminates a surface
of 30 × 30 m2 at this range. About 15 × 30 m2 of the top of the
chimney is illuminated by the main lobe. The signal to noise ratio is
50 dB . The processed data supply a scattering matrix each 40 ms .
The copolar elements of the scattering matrices of the chimney are
correlated. The scattering matrices are calibrated [11]. The averaged
calibrated scattering matrix of the chimney is given in Table 8. The
average is performed on 1450 scattering matrices which is equivalent
to 58 s of measurement.
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Calibrated scattering matrix
Span(dB) 25.4

Shh(dB, deg) 23.5, 0

Shv(dB, deg) −7.4, 14

Svv(dB, deg) 20.9, 1

Table 8. The Calibrated Scattering Matrix of the Chimney (Station-
ary Target).

3.2.2 Decomposition Results

The target coherency matrix is presented in Table 9.

Target coherency matrix

(169.83, 0.) (24.51, 1.53) (5.42, −1.32)

(24.51, −1.53) (3.56, 0.) (0.77, −0.24)

(5.42, 1.32) (0.77, 0.24) (0.19, 0.)

Table 9. The Target Coherency Matrix of the Chimney (Stationary
Target).

The Huynen and Cloude decomposition results are given respec-
tively in Table 10 and 11. The entropy Hc is 3.4× 10−4 . As said the
entropy quantifies the randomness of the target. It tends to 0 for a
stationary target and to 1 for a random target. This parameter can
be used as a classifier of randomness in SAR images [13].

The averaged scattering matrix of a stationary target like the chim-
ney is identical to the Huynen stationary target scattering matrix and
to the Cloude scattering matrix related to the largest eigenvalue after
decomposition. So the largest span scattering matrix that results after
the decomposition is the averaged scattering matrix of the target when
the target is stationary.
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Stationary Target and Stationary N-target

Huynen Stationary target Stationary N-target

Span(dB) 25.4 −31.7

Shh(dB, deg) 23.5, 0 −37.1, 0

Shv(dB, deg) −7.4, 14 −38.4, 148

Svv(dB, deg) 20.9, 1 −37.1, −180

Unpolarizing N-target

Huynen Unpolarizing N-target
target coherency matrix

2× trace(dB) −19.8

BN
0 −B′N0 (dB) −25.9

Table 10. Results of the Huynen Decomposition of the Chimney (Sta-
tionary Target)

Cloude Stationary
target 0

Stationary
target 1

Stationary
target 2

Eigenvalues
(dB)

173.56
(0)

0.0029
(−47.8)

0.0025
(−48.3)

Span(dB) 25.4 −22.4 −23.0

Shh(dB, deg) 23.5, 0 −29.6, 0 −30.7, 0

Shv(dB, deg) −7.4, 14 −28.4, 153 −29.0, −31

Svv(dB, deg) 20.9, 1 −27.5, 184 −27.7, −182

Table 11. Results of the Cloude Decomposition of the Chimney (Sta-
tionary Target).

The other scattering matrices resulting from the decomposition have
a span much lower (40 to 50 dB less). The Huynen decomposition leads
to a target coherency matrix of the stationary target

[
TSc

]
nearly equal

to the input target coherency matrix 〈[Tc]〉 (Table 9). The N-target
coherency matrix

〈[
TNc

]〉
is therefore negligible.
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Stationary Target

Holm and Barnes stationary target

Span(dB) Shh(dB, deg) Shv(dB, deg) Svv(dB, deg)

25.4 23.5, 0 −7.4, 14 20.9, 1

Non-Stationary Target Coherency Matrices

Target coherency matrix
〈[
T Ic H

]〉
2× trace = −28.5 dB

(0.0003, 0.) (0., 0.) (0., 0.)

(0., 0.) (0.0002, 0.) (−0.0002, 0.)

(0., 0.) (−0.0002, 0.) (0.0002, 0.)

Target coherency matrix
〈[
TDc H

]〉
2× trace = −18.2 dB

(0.0025, 0.) (0., 0.) (0., 0.)

(0., 0.) (0.0025, 0.) (0., 0.)

(0., 0.) (0., 0.) (0.0025, 0.)

Table 12. Results of the Holm and Barnes Decomposition of the Chim-
ney (Stationary Target).

The Huynen and Cloude decompositions lead to the same largest
span scattering matrix. The other scattering matrices (having a span
much smaller) are also comparable. Looking at the Cloude scatter-
ing matrices related to the small eigenvalues, each of them tends to a
N-target scattering matrix (the copolar elements of the N-target scat-
tering matrix are equal in modulus and have a phase difference of ±π ).
Huynen’s idea to obtain the “averaged” target plus the “noise” target
represented by a N-target is verified with this measurement when ap-
plying the Cloude decomposition to a stationary target.

To be complete, the results of the Holm and Barnes decomposition
are given in Table 12. Like expected, the Holm and Barnes scattering
matrix is the averaged scattering matrix of the chimney.

4. CONCLUSION
When symmetric scattering matrices are measured, assuming reci-

procity of the antenna system of the radar, a random target is described
by three scattering matrices in the Cloude decomposition or two scat-
tering matrices plus a coherency matrix containing one parameter in
the Huynen decomposition. None of these matrices is predominant in
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energy and one of them has a N-target behavior in both decomposi-
tions. The entropy of a random target tends to 1 . The decompositions
proposed by Huynen and Cloude show both a decomposition in copolar
and cross-polar elements.

The Holm and Barnes decomposition leads to a scattering matrix
relatively identical to the Cloude scattering matrix corresponding to
the largest eigenvalue. Their span differ when the target is non sta-
tionary. The Holm and Barnes scattering matrix tends to a N-target
scattering matrix when the target is random. One target coherency
matrix, the non diagonal one, can be neglected when the smallest and
middle eigenvalues are nearly the same. This is the case for a random
and stationary target.

A stationary target is described by one scattering matrix and the
three decompositions lead to the averaged scattering matrix of the
target. In this case the entropy tends to 0 . The other matrices,
results of the decomposition, have a span (or trace) comparable to the
noise level of the radar. When resulting from the Huynen or Cloude
decomposition, they show a N-target behavior.

This paper gives a comprehensive overview of three radar target
decomposition theorems. The decompositions are then applied to sim-
ple targets as illustrations. These examples, random (Hc ≈ 1) and
stationary target (Hc ≈ 0) , are limiting statistical cases for time-
dependent targets (0 < Hc < 1) , Hc is the entropy of the target.
The Cloude decomposition, mathematically unique, is appealing since
it leads to three orthogonal stationary targets weighted by the eigen-
values, indicating then which stationary target is predominant. The
Holm and Barnes decomposition results in a scattering matrix rela-
tively identical to the Cloude scattering matrix corresponding to the
largest eigenvalue. Only their span differ. The reason for this decom-
position choice is until now not clear to us. The Huynen decomposi-
tion states that the time-dependent target can be, most of the time,
described by an effective mean target plus a residual target. This de-
composition is based on one hypothesis: the residual target is chosen
to have a LR or RL nul (definition of the N-target). This hypothesis
is a reasonable one. Considering the residual scattering matrices ob-
tained from the Cloude decomposition of the chimney (quasi-stationary
target), they tend to N-targets.

ACKNOWLEDGMENT

The authors would like to express their special thanks to the



66 Unal and Ligthart

Netherlands Technology Foundation for the financial support of this
work.

REFERENCES

1. Huynen, J. R., “Phenomenological theory of radar targets,”
Ph.D. Dissertation, Delft Univ., 1970.

2. Cloude, S. R., “Polarimetry: The characterisation of polarisa-
tion effects in EM scattering,” Ph.D. Dissertation, Birmingham
Univ., 1986.

3. Swartz, A. A., H. A. Yueh, J. A. Kong, L. M. Novak and R. T.
Shin, “Optimal polarizations for achieving maximum contrast in
radar images,” J. Geophysical Research, Vol. 93, No. B12, 15252–
15260, 1988.

4. Cloude, S. R., “Group theory and polarisation algebra,” Optik,
Vol. 75, No. 1, 26–36, 1986.

5. Holm, W. A. and R. M. Barnes, “On radar polarization mixed
target state decomposition techniques,” IEEE 1988 National
Radar Conf., 249–254, 1988.

6. Krogager, E. and Z. H. Czyz, “Properties of the sphere, diplane,
helix decomposition,” Proc. of the Third International Workshop
on Radar Polarimetry, 106–114, Nantes, March 21–23, 1995.

7. Zyl, J. J. van, “Unsupervised classification of scattering behav-
ior using radar polarimetry data,” IEEE Trans. Geosci. Remote
Sens., Vol. 27, No. 1, 36–45, Jan. 1989.

8. Ligthart, L. P. and J. S. van Sinttruyen, “FM-CW radar po-
larimetry,” Direct and Inverse Methods in Radar Polarimetry,
Part 2, W.-M. Boerner et al., Eds. Dordrecht, The Netherlands:
Kluwer academic, 1625–1657, 1992.

9. Huynen, J. R., “Phenomenological theory of radar targets,”
Ch. 11 in Electromagnetic Scattering, P. L. E. Uslenghi, Ed.,
Academic Press, N.Y., 1978.

10. Ulaby, F. T., and C. Elachi, Eds., Radar Polarimetry for Geo-
science Applications, Ch. 2, Norwood, MA: Artech House, 1990.

11. Unal, C. M. H., R. J. Niemeijer, J. S. van Sinttruyen, and L. P.
Ligthart, “Calibration of a polarimetric radar using a rotatable
dihedral corner reflector,” IEEE Trans. Geosci. Remote Sens.,
Vol. 32, No. 4, 837–845, July 1994.

12. Huynen, J. R., “Extraction of target-significant parameters from
polarimetric data,” Report P.Q. Research, No. 103, July 1988.

13. Cloude, S. R., “Symmetry, zero correlations and target decompo-
sition theorems,” Proc. of the Third International Workshop on
Radar Polarimetry, 58–68, Nantes, March 21–23, 1995.


