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1. INTRODUCTION

Interferometric radiometers measure the correlation between the an-
alytic narrow-band random signals bk(t) and bl(t) collected by the
(k, l) pair of antennas of a sparse array. Each correlation is a sample
of the so called visibility function V (u, v) (units of Kelvin)
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Figure 1. Interferometer geometry and definition of magnitudes.
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where: (ukl, vkl) = (xl − xk, yl − yk)/λ is the normalized spacing be-
tween the antennas (Figure 1)
E[ ] is the expected value operator.
(ξ, η) = (sin θ cosφ, sin θ sinφ) are the direction cosines with respect

X and Y (Figure 1)
TB(ξ, η) is the brightness temperature (units of Kelvin)
Fnk,l(ξ, η) is the normalized antenna voltage pattern (without

units) of the antennas k and l .
r̃kl(t) = rkl(t)e−j2πf0t is the so called fringe-wash function, which

accounts for spatial decorrelation effects

rkl(t) =
∫ ∞

0
Hnk(f)H∗nl(f)e

j2πftdf (2)

where Hn k,l(f) is the normalized frequency response of receivers k
and l , and f0 is their center frequency. In the limiting narrow-band
case, decorrelation effects are negligible and r̃kl ≈ 1 .
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For an ideal interferometer having identical receivers and antennas,
and negligible decorrelation effects r̃(t) ≈ 1 , the visibility function
and the brightness temperature are related by a Fourier transform

V (u, v) F←→ T̆ (ξ, η) ∆=
TB(ξ, η)√
1− ξ2 − η2

|Fn(ξ, η)|2 (3)

In the spatial domain, T̆ (ξ, η) is a function supported by the unit
circle ξ2 + η2 ≤ 1 . In [1–3] it is shown that the optimum sampling
strategy in the (u, v) domain is the hexagonal one, for a determined
alias free field of view (FOV). Hexagonal (u, v) sampling provides a
reduction of a 13.4% of the required visibility samples and the asso-
ciated hardware, with respect to rectangular sampling. This kind of
sampling is achieved by, i.e., Y-shaped arrays, which are the ones that
provide the largest (u, v) coverage and the best angular resolution [4,
5]. In [3] it is shown that standard rectangular FFT routines can be
directly applied to process hexagonally sampled signals provided that
the pixels on the (ξ, η) domain are chosen over the reciprocal hexago-
nal grid of the (u, v) hexagonal grid. This fact is of great importance
since it avoids interpolations that may induce artifacts in the recov-
ered image. It also preserves signal-to-noise ratio and increases the
computational speed.

When there are antenna position errors, and mismatches between
antenna voltage pattems and receivers’ frequency responses, the inver-
sion of Equation 1 has not an analytic solution. Iterative techniques
are then required, which are the object of this paper.

2. THE CLEAN TECHNIQUE

A solution to the inversion of Equation 1 is provided by the CLEAN
algorithm, devised by Hogbom in 1974 [6] for non-coherent radiation
fields generated by independent point sources, such as stars. The start-
ing point of the standard CLEAN algorithm is the so called dirty image
T̂ (ξ, η) , obtained from the inverse Fourier transform of Equation 1

T̂ (ξ, η) = F−1[V (u, v)] =
∫∫

ξ′2+η′2≤1
AF (ξ, ξ′, η, η′)T (ξ′, η′)dξ′dη′ (4)

where T (ξ, η) = TB(ξ, η)/
√

1− ξ2 − η2 and the equivalent array fac-
tor AF (ξ, ξ′, η, η′) , also called dirty beam, is defined as the space-
variant impulse response at (ξ, η) to a point source located at (ξ′, η′) .
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For the hexagonal (u, v) sampling it is given by

AF (ξ, ξ′, η, η′) =
√

3d2

2

NT∑
k=1

NT∑
l=1

W (ukl, vkl)Fnk(ξ
′, η′)F ∗nl(ξ

′, η′)

r̃kl

(
−uklξ

′ + vklη′

f0

)
ej2π[ukl(ξ−ξ′)+vkl(η−η′)]

(5)

where NT is the total number of antennas of the Y-array [3], and
W (ukl, vkl) is a weighing function used to taper the visibility samples
to reduce side lobes. A very smooth function such as the standard
Blackmann window, with rotational symmetry, is usually used to re-
duce side lobes, at the expense of a poorer angular resolution [4]. The
standard CLEAN algorithm represents a radio source T (ξ, η) by a
number of point sources -stars- in an empty FOV. An iterative ap-
proach is employed to find the positions and strengths of these point
sources:

i) At each iteration, the position (ξ′, η′) and the strength of the most
brilliant (absolute value) peak is found in the dirty image T̂ (ξ, η)
(Equation 4). In some cases it is interesting to search only in a re-
stricted area, as it will become apparent in the next section.

ii) The dirty beam centered at the point (ξ′, η′), AF (ξ, ξ′, η, η′) (Equa-
tion 5), is subtracted from the dirty image T̂ (ξ′, η′) multiplied by the
peak strength and a damping factor, usually in the range [0.1, 0.25].
Note that this process subtracts not only the main lobe of AF , but
also the side lobes that are responsible of most of the artifacts in the
dirty image.

iii) The process is repeated until any remaining peak is below an spec-
ified threshold.

Finally, the “cleaned” image is found as the sum of a set of point
sources at the positions where they were detected with their corre-
sponding strength. The “cleaned” image is finally convolved with a
beam, usually a Gaussian one -without secondary lobes-, with the same
half-power beam-width as AF . This process low-pass filters the high
frequency components that have been extrapolated, which are usually
very noisy. More sophisticated versions of the standard CLEAN algo-
rithm, such as the Clark or the Cotton-Schwab algorithms [7, 8], can
be found in the literature.
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From its principles it is clear that, in this form, the CLEAN algo-
rithm is very well suited to recover quasi-point sources. However, it
must be extended to the Earth observation case, in which the Earth
appears as an extended thermal source filling almost completely the
FOV.

3.EXTENSION OF THE CLEAN TECHNIQUE TO THE
MICROWAVE IMAGING OF EXTENDED THERMAL
SOURCES

This section describes a proposed inversion algorithm suitable to large
two-dimensional interferometric radiometers devoted to Earth obser-
vation. It is supposed that receiver errors and antenna coupling errors
are calibrated by other means [9, 10]. Hence, the visibility samples
used by the algorithm are mainly corrupted by antenna voltage pat-
tem mismatches and antenna position errors, which must be accurately
measured.

3.1 The use of “a priori” information: The processing of dif-
ferential visibililies

In order to avoid conditions that cannot be met in a real situation,
only the following “a priori” information is used: i) the average sky
brightness temperature Tsky ≈ 2.7 K at 1.4 GHz — provided that nei-
ther the sun, the moon, the center of the galaxy or any other radiation
source enters directly in the antenna beam or by a reflection over the
Earth-, and ii) the Earth-sky horizon as seen from the satellite at a
given altitude with a given tilt angle (Equation 10, Figure 2). With
this data, the set of visibility samples to be processed can be expressed
as

∆V (u, v) = V (u, v)− TSKY VSKY (u, v)− TEARTHVEARTH(u, v) (6)

where VSKY (u, v) and VEARTH(u, v) are the contributions from the
Sky, and for a uniform brightness temperature Earth. VSKY (u, v) and
VEARTH(u, v) are computed from Equation 1, which includes the in-
formation of antenna voltage patterns Fn k,l(ξ, η) , antenna positions
(ukl, vkl) = (xl−xk, yl−yk)/λ and receiver frequency responses (Equa-
tion 2).
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VSKY (k,l)(ukl, vkl)
∆=

∫∫
ξ2+η2≤1−earth(ξ,η)

Fnk(ξ, η)F
∗
nl(ξ, η)

r̃kl

(
−uklξ + vklη

f0

)
e−j2π(uklξ+vklη)dξdη (7)

VEARTH(k,l)(ukl, vkl)
∆=

∫∫
earth(ξ,η)

Fnk(ξ, η)F
∗
nl(ξ, η)

r̃kl

(
−uklξ + vklη

f0

)
e−j2π(uklξ+vklη)dξdη (8)

Note that VSKY (u, v) and VEARTH(u, v) are normalized visibilities
(without units), while V (u, v) and ∆V (u, v) have the units of Kelvin.
The value of TEARTH is selected to force that ∆V (0, 0) = 0 in Equa-
tion 6, that is, its inverse Fourier transform is a zero mean function.

TEARTH
∆=
V (0, 0)− TSKY

∫∫
ξ2+η2≤1−earth(ξ,η) |Fn0(ξ, η)|2dξdη∫∫

earth(ξ,η) |Fn0(ξ, η)|2dξdη
(9)

In Equations 7, 8 and 9, the Earth-Sky horizon is defined by [3]

earth(ξ, η) =

{
1 for

(
ξ
a

)2
+

(η+η0
b

)2 ≤ 1,
0 elsewhere

(10)

with a = 0.888 , b = 0.760 and η0 = 0.234 , for a 790 Km height
orbit with a tilt angle of β = 31.2◦ with respect to nadir. The func-
tion |Fn0(ξ, η)|2 in Equation 9 stands for the radiation pattern of the
radiometer antenna that measures the antenna temperature V (0, 0) .
In the MIRAS case, an extra antenna, named 0, is devoted to this
purpose.
TB(ξ, η) in Equation 1 will be recovered now from its average value

TEARTH and the deviations from the mean value given the differential
visibilities ∆V (u, v) (Equation 6). It is important to point out two
important features of the proposed algorithm: i) the alias free FOV
(Figure 2) is expanded by removing the sky brightness temperature,
and it is now limited by the periodic repetition of the Earth-sky hori-
zon, not by the periodic repetition of the unit circle. ii) on the other
hand, by removing the average value of the brightness temperature of
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Figure 2. Earth and Sky contours, Earth and Sky aliases and Alias-
Free Field of View.

the Earth, TEARTH the error introduced by the Gibbs phenomenon
of the six Earth aliases is significantly reduced.

3.2 Description of the proposed method

The proposed algorithm proceeds in a similar way as the “CLEAN”
algorithm does, with the following differences:

i) The inversion must be limited to the extended alias free FOV (Figure
2), since the brightness temperature can not be recovered in regions
where two or even three pixels are overlapping. A guard-pixel is left
at the border of the alias free FOV to minimize the errors introduced
by the truncation of the tails of the equivalent array factors (Equation
5) of pixels lying in the aliased zone that enter in the alias free FOV
and vice-versa.

ii) on the other hand, since the thermal source is continuous, the di-
rect application of the search method used in the standard CLEAN
(step (i), section 2) leads to bumpy brightness temperature maps. To
overcome this problem, all the pixels lying in the alias free FOV are
“cleaned” simultaneously at each iteration (Equations 14–15).
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Once the contributions of the Sky and a constant brightness temper-
ature Earth have been removed from V (u, v) , Equation 1 is solved for
the differential visibilities ∆V (u, v) (Equation 6) discretized according
the (u, v) sampling grid and its (ξ, η) reciprocal one [3, 4]

∆T raw(ξ, η) = F−1
H [W (u, v)∆V (u, v)]./

∣∣∣Fn(ξ, η)
∣∣∣2 (11)

where ∆T raw(ξ, η) corresponds to the discretization of the approxi-
mated brightness temperature map T̂ (ξ, η) − TEARTH (Equation 4)
truncated to the alias free FOV and compensated by the average an-

tenna radiation pattern
∣∣∣Fn(ξ, η)

∣∣∣2 of all the antennas

∣∣∣Fn(ξ, η)
∣∣∣2 ∆=

1
N

NT∑
k=1

|Fnk(ξ, η)|2 (12)

the F−1
H operator stands for the hexagonal inverse Fourier Transform

operator [3] and the ‘ ./ ’ operator stands for the division element by
element. Equation 1 stablishes a linear relationship between the mea-
sured differential visibility samples ∆V (u, v) and the differential tem-
peratures ∆T dec(ξ, η) , the solution that we are looking for. This re-
lationship can be written as

∆V (u, v) = G[∆T dec(ξ, η)] (13)

where the G operator is the integral operator that generates the set of
visibility samples from a given brightness temperature map, according
to the known antenna radiation voltage patterns, antenna positions
and receivers’ frequency responses (Equation 1). It should be pointed
out that the G defined by Equation 13 does not correspond to the one
used in [11, 12] which includes antenna coupling effects, etc. With this
notation, Equation 11 can be rewritten in the form

∆T raw(ξ, η) = F−1
H [G[∆T dec(ξ, η)]]./

∣∣∣Fn(ξ, η)
∣∣∣2 ∆= H[∆T dec(ξ, η)]

(14)

H[x(ξ, η)] ∆= F−1
H [G[x(ξ, η)]]./

∣∣∣Fn(ξ, η)
∣∣∣2

where the H operator is the system’s impulse response, that is, the
AF of each pixel (Equation 5) compensated by the average antenna
radiation pattem (Equation 12).
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lt has been found that the formulation of the problem over the mod-
ified temperatures (Equation 11) rather than over the visibility sam-
ples (Equation 1) is advantageous because aliasing effects are more
easily removed in the (ξ, η) domain. Note also that the operator
F−1
H { }./

∣∣Fn

∣∣2 acts as a pre-conditioner of the G operator, as used
in some Conjugate Gradient algorithms to improve the speed of con-
vergence [12]. In fact, in the ideal case, when all the antenna pat-
terns are identical and fringe-washing effects are negligible G−1 =
F−1
H { }./

∣∣Fn

∣∣2 , the H operator becomes the identity operator, and
the process stops at the first iteration. In a general case, the speed
of convergence of the method depends on the eigenvalues of the H
operator, which can be improved by selecting an appropriate damping
factor (appendix 1).

The inversion method proceeds as follows
i) Iterations are started for k = 1, 2, 3, . . .

∆T res(k+1) = (I −H)∆T res(k) = (I −H)(k+1)∆T raw → 0 (15)

∆T dec(k+1) = ∆T dec(k) +∆T res(k) =
k∑

n=0

(I−H)n∆T raw → H−1∆T raw

(16)
with the initial values

∆T res(1) = (I −H)∆T raw (17)

and
∆T dec(1) = ∆T raw (18)

where ∆T raw is given by Equation 11, and both ∆T res(k) and ∆T dec(k)

are truncated to the extended alias-free FOV.
ii) Step (i) is repeated until the squared Euclidean norm of the residue
decreases below a determined threshold∥∥∥∣∣Fn

∣∣2∆T res(k)
∥∥∥2

2
≤ ∆T 2 = ∆T 2

noise + ∆T 2
Gibbs (19)

The first term on the right hand side of Equation 19 corresponds
to the thermal noise contribution to the raw brightness temperature
and can be computed with the formulas derived in [7, 8, 11, 12, 14].
The second one corresponds to the ringing due to the limited (u, v)
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coverage (Gibbs phenomenon) and depends basically on the value of
the average brightness temperature of the Earth, TEARTH (Equation
9), and the window used to taper the visibility samples [4, 5].

In fact, the H operator can be easily evaluated (Equation 14) by
computing the intermediate visibilities multiplying, row by row, the
G operator by the modified temperature distribution, taking the two-
dimensional inverse Fourier transform over the hexagonal grids [3] and
dividing the result by the average antenna radiation pattern.

The main advantages of the Neumann iteration, formulated in this
way, is that it avoids large matrix products, it does not require to
store huge matrices and it can be easily parallelized by computing each
visibility sample G[∆T dec] separately. In the MIRAS case, having
an Y-array with NT = 130 antennas, 43 in each arm spaced 089λ
and one at the center, the maximum vector size to be processed is
[N2

T × 1] = [16.900× 1] and the size of the 2D-FFT is [130× 130] .
Depending on the magnitude of the errors and the number of anten-

nas of the array (that affect ∆Tnoise for the same integration time),
convergence is usually achieved in up to 2 to 7 iterations for an Y-
interferometer with 10 to 43 antennas per arm for the system toler-
ances of present MIRAS design and the available integration time [15].
Simulation results of this method are shown in the next section.

4. SlMULATlON RESULTS

Figures 3 and 4 show two examples of the results obtained with the
proposed inversion algorithm corresponding to the Mediterranean sea
and the North of Europe brightness temperature scenes. Figures 3a
and 4a show two computed L-band brightness temperature maps as
they would appear from a 790 Km height satellite in a 98◦ inclined
sun-synchronous orbit [15]. In both cases antennas are assumed to be
cup-dipoles [15] oriented in the along-track direction. It means that
the brightness temperature that will be measured along the line ξ = 0
will be the vertical one, and, since the array is tilted, the brightness
temperature that will be measured along the line η = 0 , will be a lin-
ear combination of the vertical and the horizontal ones. Vertical and
horizontal brightness temperatures are computed from the following
physical parameters: soil and snow albedos, snow depth, soil rough-
ness, vegetation albedos, soil moisture, soil surface temperature, ocean
salinity, zonal and meridional winds over the oceans, vegetation height,
ocean surface temperature and ocean ice cover. These parameters have
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Figure 3. Mediterranean sea test scene: a) Original brightness tem-
perature scene, b) Ideal brightness temperature scene in the alias-free
FOV, c) Deconvolved brightness temperature in the alias-free FOV
(7 iterations), d) Raw brightness temperature in the alias-free FOV,
e) Error in the deconvolved brightness temperature map ( σdec = 4.97
K), f) Error in the raw brightness temperature map ( σraw = 15.81
K).
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Figure 4. North Europe test scene: a) Original brightness temper-
ature scene, b) Ideal brightness temperature scene in the alias-free
FOV, c) Deconvolved brightness temperature in the alias-free FOV (4
iterations), d) Raw brightness temperature in the alias-free FOV, e)
Error in the deconvolved brightness temperature map ( σdec = 6.07 K),
f) Error in the raw brightness temperature map ( σraw = 12.76 K).
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been extracted from the CD set [16, 17] and have been introduced in
the brightness temperature models [18]. The data contained in these
CD are mapped in a 1◦ × 1◦ grid with a monthly temporal resolution
(the data used corresponds to December 1988). This grid corresponds
to a pixel’s size of 110 Km × 110 Km over the Equator, which is
larger than MIRAS’ spot (30-50 Km). To overcome this problem, the
loss of high frequency contents coming from the coast contrast, the
computed brightness temperature pixels are interpolated bi-linearly
and re-gridded to a thinner 1/12◦ × 1/12◦ grid (9.26 Km × 9.26
Km) given by the NOAA ETOPOS 5 minutes resolution global digital
elevation model.

Figures 3b and 4b show the alias-free FOV of the brightness tem-
perature maps obtained by an hexagonal inverse Fourier transform [3]
of the visibilities that would be measured by an ideal error-free in-
terferometric radiometer of MIRAS size. Note the smoothing of the
contours caused by the low-pass filtering due to the finite (u, v) cov-
erage. These images correspond to the maximum fidelity that can be
achieved with the instrument and are used as a reference to test the
proposed technique.

Figures 3d and 4d show the brightness temperature maps obtained
from Equation 11, by means of a simple inverse Fourier transform and
average antenna pattem compensation. The errors that can be appre-
ciated in both images are mainly due to the large errors introduced in
the antenna voltage pattems ( 10◦ rms in phase and 10% in ampli-
tude, a really worst case) for the computation of the visibility samples
(Equation 1). Figures 3c and 4c show the brightness temperature maps
that are recovered after 7 and 4 iterations respectively, at which the
stopping criterion (Equation 19) is reached. As it can be appreciated,
image quality is improved: the large oscillations in Figures 3d and 4d
have almost disappeared and contrasts are sharper.

Figures 3e–4e and 3f–4f show the deconvolved and raw error maps
computed from the substraction of the deconvolved maps (Figures 3c
and 4c) and the ideal ones (Figures 3b and 4b), and the substraction
of the raw maps (Figures 3d and 4d) and the ideal ones, respectively.
Note that, after the inversion process, errors are much smaller, being
concentrated in the regions with high contrasts and in the border of
the alias free field of view, due to the truncation of the tails of the alias
that enter in the alias free FOV.
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Figure 5. RMS value of the ∆T res(k) terms added at each iteration
(- Mediterranean test scene, - · - North Europe test scene)

Finally Figure 5 shows the rms value of the ∆T res(k) terms (Equa-
tion 15) at each iteration. In the Mediterranean scene, the rms error
computed in ξ2 + (η + 0.2)2 ≤ 0.22 decreases from 15.81 K (Fig. 3d)
down to 4.97 K (Fig. 3c) after 7 iterations, while in the North Europe
scene, it decreases from 12.76 K (Fig. 4d) to 6.07 K (Fig. 4c) after 4
iterations. These remaining errors are larger than the stopping bound
(Equation 19), because of the large antenna pattern errors increase the
∆TGibbs term due to the distortion of the aliases’ shape. These sim-
ulations have been performed on a 100 MHz Pentium based personal
computer. The associated computational load is about 80 Gflops to
simulate the system and compute the set of corrupted visibility samples
(Equation 1) and about 20 Gflops per iteration (Equations 6–19).

5. CONCLUSIONS

This work proposes an extension of the CLEAN algorithm suitable
to two-dimensional large interferometric radiometers devoted to Earth
observation. Its main advantages are. i) It is well suited to extended
sources of thermal radiation. ii) The introduction of “a priori” infor-
mation allows the processing of the set of differential visibility samples
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which increases the alias-free FOV and boosts convergence speed. iii)
It deals with uncalibrated instrument imperfections, mainly receiver
frequency responses and antenna voltage pattem phase and amplitude
mismatches. Since the solution is found by an iterative procedure, sys-
tem drifts can be updated at each measurement without computational
overhead. In addition, the use of hexagonal FFTs [3] reduces memory
requirements, avoiding interpolations, signal-to-noise degradation and
other induced artifacts.
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APPENDIX 1. CONVERGENCE OF THE NEUMANN
INVERSION

Using Equations 15 to 19, the values of the residue and deconvolved
temperature at the kth iteration can be expressed as

∆T res(k) = (I −H)k∆T raw (A1.1)

∆T dec(k) =
k−1∑
n=0

(I −H)n∆T raw (A1.2)

The matrix series of Equation A1.2, if it converges, tends to

k−1∑
n=0

(I −H)n → H−1 (A1.3)

provided that |λ′ − 1|max < 1 , where λ′ are the eigenvalues of H .
The residue given by Equation A1.1 shows the rms error committed,
except for the AF tails truncation. The eigenvalues of H do not
need to be computed since, in the case the process is not convergent,
the norm of the residue vector grows at each iteration. In this case, a
damping factor γ < 1 can be found to stabilize the process, as it is
done in the standard CLEAN algorithm

∆T res(k) = (I − γH)k∆T raw (A1.4)
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∆T dec(k) = γ
k−1∑
n=0

(I − γH)n∆T res(0) → H−1∆T raw (A1.5)

This resort is only necessary for very large antenna pattem errors, a
situation which has not been found in simulations with real antenna
pattems [15].
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