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1. INTRODUCTION

The problems of electromagnetic (EM) scattering and absorption by
inhomogeneous, lossy, and arbitrarily shaped scatterers have been ex-
tensively dealt with in the literature because such kinds of models can
simulate many practical situations including the scattering from flight
objects with coated complex materials, the coupling to missiles with
dielectric-filled apertures, and the performance of communication an-
tennas in the presence of electric and magnetic inhomogeneities, etc.

Several well-known numerical techniques have been developed to
solve subclasses of such kinds of EM problems. Among them are the
MoM solutions [1] using either surface integral [2] or volume integral
equations [3], the unimoment method [4], the FEM [5], and so on [6].
Recently, some hybrid techniques [7–11], generally consisting of two
groups of techniques, have been developed for a wide range of EM
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problems. These hybrid methods use a finite method such as the FEM
to treat the bounded, inhomogeneous region and an integral equation
method to handle the unbounded homogeneous region. Although the
FEM requires less CPU time and memory due to its resultant sparse
matrix, the use of traditional basis and weighting functions in the MoM
always results in a full matrix equation. For large-size EM problems
the cost to directly solve the dense matrix equation is very expensive
and formidable.

Recently, wavelets [12–15] have been widely studied and applied by
researchers in various engineering areas. Their applications in elec-
tromagnetics are getting increasing attention [16–18]. More recently,
the wavelet transform has been extended in the form of wavelet ma-
trix transform for effective solutions of electromagnetic problems by
Wagner and Chew [19] and the authors [20]. The wavelet transform
can adaptively fit itself to various level scales by distributing the local-
ized functions near the discontinuities and the more spatially diffused
ones over the smooth expanses of the model. Therefore, the use of the
WTM can result in a sparse moment matrix.

In this work, a hybrid method combining the MoM, the FEM and
the WTM is proposed for efficient solutions of EM problems with ar-
bitrarily inhomogeneous materials. The equivalence principle is used
to divided the original problem into the interior and exterior problems
which are solved by the FEM and the MoM, respectively. The two
problems are coupled together along the shared boundary to repro-
duce the original problem. As mentioned above, the FEM results in a
sparse matrix, but the traditional MoM always results in a fully popu-
lated matrix. To overcome the difficulty solving a full matrix equation,
the hybrid method uses the WTM in the conventional MoM. Instead of
using wavelet expansion method, a more effective wavelet matrix trans-
form method is employed here. An effective wavelet transform matrix is
well constructed by the method in [20]. Using the constructed wavelet
transform matrix, one can transform the dense matrices into sparse
ones, and furthermore, one can overcome the “edge effect” and avoid
a great number of numerical integral operations inevitably existing in
the basis expansion methods.

Uniting the advantages of the EEM, the MoM and the WTM, the
hybrid technique is able to effectively handle unbounded problems in
which complex inhomogeneities are present. For larger-size electro-
magnetic problems, the proposed technique is more effective compared
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with the conventional approaches. Numerical results are presented to
show the effectiveness, versatility and validity of the method.

2. FORMULATION

Consider the scattering from an arbitrarily shaped, inhomogeneous,
and lossy dielectric body under the illumination of an incident field
(Ei,Hi) as shown in Fig. 1. Using the equivalence principle, the origi-
nal problem can be divided into two equivalent problems, i.e., an exte-
rior problem and an interior problem, as shown in Fig. 2. The scatter-
ing body bounded by a fictitious surface S and the interior region is
characterized by a pair of complex functions (ε(r), µ(r)) where ε(r)
and µ(r) denote the permittivity and the permeability, respectively,
and r is the radial position vector in the general 3-D coordinate sys-
tem. The region outside the surface S is the exterior region which
is assumed to be characterized by (ε0, µ0) where ε0 and µ0 are the
permittivity and the permeability in in free space without loss of gen-
erality. The aim is to determine the electromagnetic fields everywhere
in the space.

For the exterior problem, the scattering body is replaced with air
and the equivalent boundary electric or magnetic currents J is intro-
duced on the boundary, shown in Fig. 2(a). The total electric field Eex

and magnetic field Hex in the exterior region are determined by

Eex = Ei + Es(J), Hex = Hi + Hs(J) (1)

where the superscripts i and s mean the incident field and scattering
field, respectively.

For the interior problem, as shown in Fig. 2(b), the fields inside
the boundary S are determined by the tangential electric or magnetic
field F on the boundary S , which means that the interior fields are
the functions with variable F , i.e.,

Ein = Ein(F), Hin = Hin(F). (2)

The two problems are coupled by enforcing the continuity conditions
of tangential electric and magnetic fields on the boundary S as follows:

n̂×Eex = n̂×Ein, n̂×Hex = n̂×Hin on S. (3)
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Figure 1. Scattering from a dielectric body in free space.
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Figure 2. The equivalence of the original problem. (a) Equivalent
exterior problem. (b) Equivalent interior problem.
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where n̂ denotes the outward directed unit normal vector to the surface
of the boundary S . Substituting (1) and (2) into (3), we obtain

n̂× [Ein(F)−Es(J)] = n̂×Ei on S,

n̂× [Hin(F)−Hs(J)] = n̂×Hi on S.
(4)

Equations in (4), together with the Maxwell’s equations, are suffi-
cient to determine the equivalent current J and the equivalent tan-
gential electric or magnetic field F .

A. The MoM for the Exterior Problem

Equations in (4) can be reduced to weak-form matrix equations by
the MoM [1]. The unknown J and F are approximated by

J =
Ms∑
j=1

JjΨj , F =
Ms∑
j=1

FjΨj (5)

where {Ψj} is a set of chosen expansion functions, Ms is the number
of functions chosen, and {Jj} and {Fj} are two sets of coefficients to
be determined. A symmetric product is defined by

〈A,B〉 =
∫
s
A ·Bds (6)

where A and B are two vector functions defined on S . After weight-
ing the equations in (4) with a set of weighting functions {Wj} (j =
1, 2, 3, ...,Ms) , the following matrix equation is produced:

AX = B (7)

where

A =
[
Zin Zex

Y in Y ex

]
, X =

[
F
−J

]
, B =

[
V
I

]
(8)

and J and F are Ms× 1 vectors with Jj and Fj as their elements,
respectively. V and I are Ms × 1 vectors whose i th elements are
given by

Vi = 〈Wi, n̂×Ei〉, Ii = 〈Wi, n̂×Hi〉. (9)
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Zex , Zin , Y ex and Y in are Ms×Ms matrices whose ij -th elements
are respectively given as follows:

Zexij = 〈Wi, n̂×Es(Jj)〉 on S, (10)

Zinij = 〈Wi, n̂×Ein(Fj)〉 on S, (11)
Y ex
ij = 〈Wi, n̂×Hs(Jj)〉 on S, (12)

Y in
ij = 〈Wi, n̂×Hin(Fj)〉 on S. (13)

Any combination of current-tangential field can be chosen as (J,F) .
For two-dimensional EM problems, it is more convenient to choose J
and F to stand for the equivalent electric current and the equivalent
tangential magnetic field for the TM (transverse magnetic) case, and
the equivalent magnetic current and the equivalent tangential elec-
tric field for the TE (transverse electric) case, respectively. For three-
dimensional EM problems, however, it is not clear which combination
is a preferred choice. Therefore, one can establish several different
formulations; however, the computational complexity will remain the
same. In this paper, we choose (J and F) to be the equivalent elec-
tric current and the equivalent tangential magnetic field without loss
of generality. The formulations for other kinds of combinations can
be easily derived in the similar procedure. The scattering electric field
produced by the electric current of unit strength, Ψj , in the exterior
region can be determined by [5]

Es(Ψj) = −ik0Z0

∮
S
ΨjG0(r, r′)dS′

−iZ0

k0

∮
S
∇′ ·Ψj∇G0(r, r′)dS′ (14)

where G0(r, r′) , k0 and Z0 are the Green’s function, the wave num-
ber and the intrinsic impedance in the free space, respectively, and a
harmonic time dependence eiωt is assumed and suppressed through-
out the paper. The scattering magnetic field can be obtained from the
Maxwell’s equations. In particular, if the observation point r limits
to the surface S of the boundary, the tangential magnetic field takes
the following form [21]:

n̂×Hs(Ψj) = lim
r→S

n̂×∇×Es(Ψj)
−iωµ0

= Ψj/2 + n̂×
∮
S
Ψj ×∇′G0(r, r′)dS′ (15)
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where r approaches S from the exterior region side of S . Equations
(14) and (15) may be substituted into (10) and (12) to evaluate Zexij
and Y ex

ij . Once the weighting functions {Wi} and the basis functions
{Ψi} are chosen and the incident fields ( Ei,Hi ) are given, Vi and Ii
in (9) can be evaluated. The evaluation of n̂×Hin(Fj) in (13) is easy
since n̂ ×Hin(Fj) on S is simply Ψ itself the tangential magnetic
field. The evaluation of (11) which requires knowledge of Ein(Fj) will
resort to the FEM in the Section 2-C.

B. The WTM for Sparse Moment Matrices

As mentioned above, using traditional basis and weighting functions
the MoM always generates a full matrix. One can see from (10), (12)
and (13) that both submatrices Y ex and Zex are full matrices. How-
ever, Y in is a diagonal matrix since the electric (or magnetic) current
expansion function resides only on a single segment of the contour.
Therefore, the inversion of Y in is trivial. we carry out a simple ma-
trix manipulation of (7) to reduce it into an only Ms ×Ms matrix
equation as follows:

A1J = B1, (16)

where A1 = ZinY in−1
Y ex − Zex and B1 = V − ZinY in−1

I . Once J
is solved, F can be obtained by

F = Y in−1(I + Y exJ). (17)

Since the property of A1 in (16) is completely determined by both
Zex and Y ex , A1 is a full matrix. We employ the wavelet transform
method (WTM) to overcome the difficulty in solving a dense matrix
equation. One can directly use wavelets as the basis and weighting
functions in the MoM. However, a difficulty is encountered that the
wavelet expansion for a given function of finite support requires that
some of the wavelet functions reside outside that support, thus re-
sulting in the so-called “edge effect”. Since the equivalent current
on the fictitious boundary under analysis is defined on the finite sur-
face, the wavelets in the wavelet expansion of the equivalent current
are truncated at the boundary points. Hence, non-physical solutions
at the boundary points are produced. Furthermore, a great number
of wavelet integrations are required to evaluate both Zex and Y ex .
Since few wavelets can be solved in closed form, it is an exhaustive
task to directly carry out such kinds of wavelet integrations.
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In this work, an effective wavelet matrix transform method is em-
ployed. The point-matching method is used in the MoM to rapidly
produce both Zex and Y ex matrices. A general wavelet transform
matrix is well constructed for our problem according to the method in
[20]. Here non-orthonormal cardinal spline wavelets (NCSW) [14, 15]
are used. Note that the singularities of the integral kernels in (10) and
(12) are determined by the basic Green’s function G0 or the normal
derivative of basic Green’s function G0 , and A1 consists of the linear
combination of Zex and Y ex . Therefore, in order to obtain a satisfac-
tory compression rate to A1 and a rapidly convergent solution by the
wavelet transform for the considered problem, the number of vanishing
moments of the wavelets is chosen to be 8 as recommended in [20].

Let Ũ be the Ms ×Ms wavelet basis matrix constructed by the
method in [20]. Applying the constructed wavelet matrix Ũ to trans-
form (16), one can obtain a completely sparse matrix equation as fol-
lows:

A′J ′ = B′ (18)

where A′ = ŨA1Ũ
T , J ′ = (ŨT )−1J and B′ = ŨB1 . Note that A′

in (18) is a non-similarity transform due to Ũ ŨT 	= I . Furthermore,
A′ is a sparse matrix for a given threshold value. Therefore, J ′ can
be efficiently solved by a sparse solver. Once J ′ is solved, one can use
the reconstruction algorithm of the wavelet transform to solve J by
J = ŨTJ ′ . Finally, F can be obtained from (17).

C. The FEM for the Interior Problem

As seen above, we have to evaluate Ein(Fj) before solving (7).
Since F is used to denote the equivalent tangential magnetic field on
S , Ein(Fj) stands for the electric field due to the equivalent tangential
magnetic field Fj = FjΨj defined everywhere on S . Hence, to find
Ein(Fj) is to solve a pure boundary value problem. A traditional
method to solve the fields in the interior region is to consider the
functional [5]

F (Ein) =
1
2

∫∫∫
V
{ 1
µr

(∇×Ein) · (∇×Ein)

− k2
0εrE

in ·Ein}dV − ik0Z0

∮
S
Ein · FdS (19)

via enforcing δF (Ein) = 0 where δ means the variation of order one.
To discretize the functional F , we subdivide the volume V into small
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volume elements and with each element we expand the electric field as
follows:

Ee =
n∑
j=1

Ee
jN

e
j (20)

where n is the number of expansion terms, {Ee
j} denote the unknown

expansion coefficients, and {Ne
j} stand for the chosen vector basis

functions for the e -th element. Within each surface patch, the surface
field can be expanded as

ẑ ×Es =
ns∑
j=1

Es
jS

s
j (21)

where dominantly Ssj = ẑ×Ns
j on S . Taking the partial derivative of

F (Ein) with respect to each Ej and setting the resultant expression
to zero, we obtain the finite element matrix equation

KEin = F0 (22)

where K is a square, sparse, banded, and nonsingular M×M matrix,
and Ein and F0 are M × 1 column vectors where M denotes the
total number of the nodes. The detailed form of K and F0 can be
found in [5]. Ein(Fj) can be obtained by evaluating the right-hand
side of (22) by replacing F in (19) with tangential magnetic field of
unit strength, i.e., Ψ and solving the matrix equation (22). Ms such
solutions are required, but the matrix K needs to be carried out LU
decomposition only once. Finally, substitute the Ms resultant Ein(Fj)
( j = 1, 2, 3, ...,Ms ) into (11) to evaluate Zinij . Equation (7) can be
solved by the WTM to obtain F and J . Hence, the electromagnetic
fields at any point in the space can be obtained by (1), (2) and (5); (14)
and (15) for the exterior solution, and (22) for the interior solution.

3. NUMERICAL RESULTS

Although the formulation given above is general, numerical results are
presented only for the two-dimensional scattering problem.

In the two-dimensional case, the surface boundary S becomes a
contour Γ in xy -plane. The surface equivalent currents become line
currents. The incident field is assumed to be either a TM (Ez -
polarization) or a TE (Hz -polarization) plane wave given by

Ei = ẑEz = ẑ exp[ik0(x cosϕi + y sinϕi)] (23)
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for TM case, and

Hi = ẑHz = ẑ
1
Z0

exp[ik0(x cosϕi + y sinϕi)] (24)

for TE case. Thus, the equivalent electric or magnetic current sources
will also be z -directed.

Note that TE and TM modes are dual to each other. That is, all
the relative submatrices for the TM case can be obtained directly from
those for the TE case.

For our problem, the interested parameter is the radar cross section
(RCS) which is defined by

σ = lim
r→∞

(2πr
|Hs|2
|Hi|2 ) (25)

for the TE case, and

σ = lim
r→∞

(2πr
|Es|2
|Ei|2 ) (26)

for the TM case.
It should be emphasized that to minimize the computation, the

fictitious boundary Γ should be chosen to make the interior region as
small as possible. Furthermore, if the chosen Γ makes the integrals in
(10) and (12) convolutional, one can only need to evaluate one row or
column to form the complete matrices Zex and Y ex , thus reducing
the filling time significantly. For many practical EM problems, such
kinds of choices are suitable and feasible. Furthermore, because of the
localized properties of multiresolution analysis the moment matrices
from the WTM are almost diagonal if the fictitious boundary is chosen
as smooth as possible.

Several examples involving scattering from homogeneous as well as
inhomogeneous circular dielectric cylinders are presented. For the pro-
posed EM problems, the best fictitious boundary Γ is the outer nat-
ural boundary of the dielectric cylinder. First, consider the scattering
from a homogeneous dielectric cylinder. We discretize the interior re-
gion into small elements by dividing the radius direction into 12 equi-
thickness layers and the polar angle direction into 128 equal segments,
i.e., Ms = 128 . Fig. 3 shows the 3-D logarithmic plots of the nor-
malized magnitudes of the entries in matrices A by the MoM/FEM
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and A1 by this technique for TM case. It can be observed from Fig. 3
that if a threshold of 10−5 is set, the matrix A1 from this technique
gives a sparse matrix with only 4.68% of the total elements ( 16384 )
left, while the matrix A from the conventional MoM/FEM turns out
a dense matrix.

In Fig. 4, more details are given to show the sparse distributions
of the elements in matrix A1 with a threshold of τ/m = 10−5 or
τ/m = 10−4.5 for both TM and TE cases, respectively. Here, m
stands for the largest magnitude of elements in A1 and R is defined
as the populated rate (the ratio of the number of remaining nonzero
elements after thresholding to the total number of elements in A1 ). It
can be observed from Fig. 4 that almost all the off-diagonal elements in
the transformed matrix A1 are equal to zeros. We will see later that
the approximate solutions from the equation (16) are of good accuracies
even with so sparse matrices A1 . The advantage of a sparse matrix
over a dense matrix is important since sparse matrix solvers are much
faster and need much smaller storage space than general dense matrix
solvers. The advantage become more profound as a large matrix system
is involved.

Fig. 5 shows the RCS of the circular dielectric cylinder under TE or
TM plane wave incidence. Let the incident angle ϕi = π , the radius
a = 0.3λ , the working frequency f = 300 MHz, εr = 4.0 and µr =
1.0 . The classical eigenfunction solutions are obtained by summing
the Fourier series up to 30 terms. The results by this technique are
solved by setting the threshold values τ/m = 10−4.5 with R = 1.84%
and R = 2.43% for TM and TE cases, respectively. Even with so
sparse matrices the results by this technique show good agreement to
the accurate solutions.

In Fig. 6, the proposed technique is used to compute the RCS of
the circular dielectric shell and the results are compared with the ones
by the MoM/FEM (i.e., R = 100% ) under TM incident waves. Good
approximate solutions can be obtained by this technique even with so
a low populated rate (R = 3.89% and R = 3.41% for lossless and
lossy cases, respectively).

The proposed approach can be also used to analyze scattering from
cylinders with arbitrary inhomogeneities. To demonstrate this we an-
alyze scattering from a four-layered dielectric cylinder with circular
cross section. Results compared with the ones by the MoM/FEM for
the TM scattering are shown in Fig. 7. Even with so sparse matrix
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Figure 3. 3-D logarithmic plots of the magnitudes of the entries in the
moment matrices for a homogeneous dielectric cylinder under TM ex-
citation. (a) A by the MoM/FEM. (b) A1 by the MoM/FEM/WTM.



An effective hybrid method for EM Scattering 317

0 50 100

0

20

40

60

80

100

120

(a) TM case

R=4.68%

0 50 100

0

20

40

60

80

100

120

(b) TM case

R=1.84%

0 50 100

0

20

40

60

80

100

120

(c) TE case

R=3.41%

0 50 100

0

20

40

60

80

100

120

(d) TE case

R=2.43%

Figure 4. The remaining nonzero elements of A1 after setting to zero
each element whose magnitude is smaller than a selected threshold τ .
(a) and (b) for TM case and (c) and (d) for TE case. Also indicated for
each threshold is the population rate R to which a threshold τ/m =
10−5 for (a) and (c), or τ/m = 10−4.5 for (b) and (d) is related. m
is the largest magnitude of elements in A1 .

equations the solutions by this technique show good accuracies.
It is deserved to be emphasized that the proposed hybrid method

can effectively handle other kinds of complex and larger EM problems
which involve boundaries with arbitrary shapes and scattering bodies
with arbitrary inhomogeneities because of the versatility of the WTM
and the FEM. It, of course, will result in less sparse WTM matrices
than the ones in Fig. 4, but a high compression rate of the WTM
matrices can still be obtained. For a large boundary problem, the
effectiveness of the proposed hybrid method is outstanding compared
with the traditional methods which face with solving a large dense
matrix equation.
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Figure 5. RCS of a circular dielectric cylinder ( a = 0.3λ , σ = 0.0 ,
εr = 4.0 , µr = 1.0 , f = 300MHz , ϕi = π ) under TE or TM plane
wave incidence.
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Figure 6. RCSs of a circular dielectric shell ( a = 0.25λ , b = 0.30λ ,
εr = 4.0 , µr = 1.0 , f = 300MHz , ϕi = π ) with lossless ( σ = 0.0 )
or lossy ( σ = 0.25 ) material under TM plane wave incidence.
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Figure 7. RCSs of a four-layered circular inhomogeneous cylinder
( a = 0.15λ , b = 0.20λ , c = 0.25λ , d = 0.30λ , εr1 = 8.0 (innermost
layer), εr2 = 6.0 , εr3 = 4.0 , εr4 = 2.0 (outmost layer), µr = 1.0 ,
f = 300MHz , ϕi = π , and σ is the same in all layers) under TM
plane wave incidence.

4. CONCLUSIONS

In this paper, the hybrid MoM/FEM/WTM method has been pro-
posed. Uniting the advantages of the MoM, the FEM, and the WTM,
the hybrid method employs the MoM and the WTM to handle un-
bounded problems effectively, and the FEM to efficiently solve bound-
ary value problems where arbitrary inhomogeneities are present.

Since the interior and exterior problems are coupled only on the
shared fictitious boundary, the finite element matrix needs to be com-
puted and carried out by LU decomposition only once. Hence, little
extra computations are needed if the incident waves change. Further-
more, the use of the point-matching method and the proposed WTM
avoids a great number of integral operations and always results in a
sparse moment matrix for the exterior problems. Meanwhile, the so-
called “edge effect” has been overcome, thus improving the solution
accuracies significantly.

The versatility of the proposed method is dominant because on one
hand, the radiation properties are naturally included in the MoM and
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the scattering problems involving inhomogeneous medium are easily
and systematically handled by the FEM, and on the other hand, one
can obtain solutions of arbitrary accuracy to the practical EM problems
through choosing the proper fine finite element mesh in the FEM and
the suitable threshold value in the WTM. The validity and accuracy
of the solutions by the proposed hybrid method are confirmed by the
exact analytical series solutions in the two-dimensional environment.
There is no restriction on the shape or inhomogeneity of the scatterer
and absorber to be solved because of the versatilities of the FEM and
the WTM. Future efforts will be directed to the problems involving
perfect conductors and arbitrarily shaped three-dimensional problems.
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