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1. INTRODUCTION

Coated conductors have recently been used either to protect the con-
ducting surface from the environment or to reduce the radar cross
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section. The electromagnetic scattering from finite coated conducting
surfaces have been extensively studied. Various numerical techniques
and formulations have been used. The most commonly used approach
is the method of moment [1]. However, this approach is computa-
tionally intensive and is unsuitable for solving electrically large coated
surfaces.

Medgyesi-Mitschang, Putnam and Wang [2, 3] proposed the mo-
ment method with an entire domain Galerkin basis for the solution of
a coupled system of electric- and magnetic-field integral equations to
study the EM scattering from electrically large coated flat and curved
strips. Kishk et al. [4] presented the formulation for the coated con-
ductor of the three-dimensional bodies of revolution based on existing
E-PMCHW formulation. This formulation is valid both for thick coat-
ings and for coating thickness that approaches zero. Petre et al. [5,
6] have studied the scattering from one- dimensional periodic coated
strips, in which the integral equations were formulated in the spectral
domain using the Fourier transform of the integrodifferential equations
due to the periodicity of the structure. The generalized biconjugate
gradient-Fast Fourier transform (Bi CG-FFT) method with subdomain
basis functions were applied to solve the EFIE, MEIE and CFIE equa-
tions. Rao et al [7] formulated in terms of a set of the couple integral
equations involving equivalent electric and magnetic surface currents
in order to analyze the electromagnetic field scattered by arbitrarily
shaped, three-dimensional conducting objects coated with lossy dielec-
tric materials of arbitrarily thickness. The conducting structures and
dielectric materials are approximated by planar triangular patches and
the moment method is used to solve the integral equations.

Proper choice of basis functions is important for the moment
method. The basis functions commonly used in solving antenna and
scattering problems are of two types:entire domain functions and sub-
domain functions. The typical entire domain basis functions are
Fourier (sine and cosine) functions, Chebychev polynomial functions,
Legendre, Hermite, Mauclaurin polynomial functions [8, 9]. Typical
subdomain basis functions are pulse, piecewise linear (triangular) func-
tions, piecewise sinusoidal functions etc. [10, 11].

Recently, a new kind of subdomain basis functions have been intro-
duced, that is, the wavelet basis and wavelet-like basis. They have been
applied successfully in many engineering disciplines [12–17]. They have
also been used to analyze electromagnetic scattering problems [18–24].
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A specially tailored wavlet-like basis has also been used for efficient
solution of the differential form of Maxwell’s equations [25, 26]. Be-
cause the wavelet basis and wavelet-like basis have local supports and
vanishing moment properties, the system matrix constructed by the
moment method can be formed as a sparse matrix by filtering many
of the relatively small elements of the matrix through the introduction
of a suitable threshold. This means that one can save CPU-time and
reduce the storage for the solution of matrix equations.

The method of non-uniform grid and the multiscale technique which
generates locally finer grid are usually used when the solutions of the
integral equations or the differential equations has been known to vary
widely in different domains. By non-uniform gridding one can reduce
the size of the problem and improve the accuracy. The multilevel or
the multigrid technique has been widely used in solving the differen-
tial equations and integral equations [27–31]. Kalbasi and Demarest
[32, 33] applied the multilevel concepts to solve the integral equation
by the moment method on different levels, which has been called the
multilevel moment method. No matter what the multigrid technique
is, the basis functions for an improved approximation have to be recon-
structed again. By using the multiscale technique in one dimension, the
basis functions for the new scale have to be reconstructed. Although
for the new approximation grids formed by the multiscale technique is
the same as that for the multilevel technique, however the construction
of the functions are different.

The aim of this paper is to consider the problem of electromagnetic
scattering from perfectly conducting strips coated with thin dielectric
material by use of the adaptive multiscale moment method (AMMM).
In the next section, the basic formulation is presented for analysis
of scattering from coated conducting strips on the basis of a coupled
system of electric- and magnetic-field integral equations. Section 3
outlines the computational methodology of the multiscale basis by use
of the moment method. Section 4 presents AMMM to solve the cou-
pled EM integral equations. Section 5 presents a variety of numerical
examples for different coating strips followed by conclusion.
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2. THE BASIC FORMULATION

Figure 1. Geometry of a coated flat strip L width with E-polarized
incident wave

Consider a time-harmonic electromagnetic wave ( �Ei, �H i) incident on
an infinite thin, perfectly conducting strip coated with a homogeneous
dielectric material as shown in Fig. 1. The permittivity and perme-
ability of the coating (ε2, µ2) can be complex. We assume that the
strip width is larger than the thickness of the coating, i.e., d� L .

The total electrical and magnetic field in the region R1 , at a field
point �r can be represented by the following coupled system of inte-
grodifferential equations



θ(�r) �E1(�r) = �Ei(�r)− L1

�J+
1 (�r) +K1

�M+
1 (�r)− L1

�J−0 (�r)

θ(�r) �H1(�r) = �H i(�r)−K1
�J+
1 (�r)− 1

η2
1

L1
�M+
1 (�r)−K1

�J−0 (�r)
(1)

where η1 =
√

µ1
ε1

and �J+
0 (�r), �J−0 (�r) are the equivalent electric surface

current defined on the upper and lower surface of S0,
�J±1 (�r), �M±1 (�r)

are the equivalent electric and magnetic currents defined on the up-
per and lower surface of S1 , where �J+

1 (�r) = −�J−1 (�r) and �M+
1 (�r) =

− �M−1 (�r) .



Electromagnetic scattering from coated strips 177

The fields in the region R2 are expressed as:

θ(�r) �E2(�r) = −L2

�J−1 (�r) +K2
�M−1 (�r)− L2

�J+
0 (�r)

θ(�r) �H2(�r) = −K2
�J−1 (�r)− 1

η2
2

L2
�M−1 (�r)−K2

�J+
0 (�r)

(2)

The integrodifferential operators Li,Ki in the equations (1) and (2)
are defined as


Li �X(�r) = jkiηi

∫
∂Ri

(�X(�r) + k−2
i ∇∇′ · �X(�r′))Φ(ki|�r −�r′|)ds′

Ki
�X(�r) =

∫
∂Ri

�X(�r′)×∇Φ(ki|�r −�r′|)ds′
(3)

where Φ(kit) = 1
4jH

(2)
0 (kit), ki = 2π

λi
, θ(�r) is defined as

θ(�r) =

{
1 �r ∈ Ri

1/2 �r ∈ ∂Ri

0 otherwise

and ∂Ri is the boundary of the region Ri .
By use of the boundary condition (that is, the tangential compo-

nents of the total fields are continuous on S1 , and the tangential com-
ponents of the total electric field is zero on the perfectly conducting
surface), the basic integrodifferential equations can be obtained:

�Ei(�r)
∣∣∣
tan

=
{

(L1 + L2)�J1(�r)− (K1 +K2) �M1(�r)+

L1
�J−0 (�r)− L2

�J+
0 (�r)

}∣∣∣
tan

�r ∈ S1 (4a)

�H i(�r)
∣∣∣∣
tan

=
{

(K1 +K2)�J1(�r)− (
1
η2
1

L1 +
1
η2
2

K2) �M1(�r)+

K1
�J−0 (�r)−K2

�J+
0 (�r)

}∣∣∣∣
tan

�r ∈ S1 (4b)

�Ei(�r)
∣∣∣
tan

=
{
L1
�J1(�r)−K1

�M1(�r) + L1
�J−0 (�r)

}∣∣∣
tan

�r ∈ S−1 (4c)

0 =
{
− L2

�J1(�r) +K2
�M1(�r) + L2

�J+
0 (�r)

}∣∣∣
tan

�r ∈ S+
1 (4d)

where �J1(�r) = �J+
1 (�r) and �M1(�r) = �M+

1 (�r) . The equivalent currents
across the edges of the coating are neglected.
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Our goal is to analyze the electromagnetic scattering from the coated
flat strip, that is, to solve the above coupled integral equations by the
adaptive multiscale moment method and to compute the scattering
fields.

3. THE COMPUTATIONAL FORMULA OF THE MO-
MENT METHOD FOR A MULTISCALE BASIS

3.1 Multiscale Basis functions

The triangular basis functions on a uniform grid on the interval
[0, L] with N + 1 nodes can be noted as

φ0,0(x) = Λ(x)
φ0,N (x) = Λ(x− L)
φ0,i(x) = Λ(x− x0,i) i = 1, 2, ..., N − 1

(5)

where x0,i = iL
N = ih; i = 0, 1, 2..., N, h = L/N

Λ(x) =




1− x

h
for 0 < x < h

1 +
x

h
for −h < x < 0

By multiscale in the interval [0,l], the new increasing nodes are located
at

x1,i =
x0,i−1 + x0,i

2
= (i− 1

2
)h

and the improved basis functions are

φ1,i(x) = Λ[2(x− x1,i)] (6)

By increasing the scale V -times in the interval [0, L] , the newly de-
veloped nodes are located at

xV,i =
(

1
2V

+
i− 1
2V−1

)
h, i = 1, 2, ..., 2V−1N (7)

and the new basis functions are

φV,i(x) = Λ[2V (x− xV,i)] (8)
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Figure 2. Basis functions on different scales for N = 4

{φV,i(x)} are referred to as the V-times multiscale basis functions
which have a compact support. Specially, the 0 -times multiscale basis
functions is the ordinary triangular basis functions.

The multiscale basis functions are shown in Fig. 2 for the case of
N = 4, L = 4 , and V = 5 in the interval [0, 4] . Λ(x) is different
for the mother wavelet in wavelet analysis, which does not have the
vanish moment property. The basis functions {φV,i(x)} on [0, L] can
be constructed by means of the shifting and dilating the function Λ(x) .
The derivative of Λ(x) is similar to the Haar wavelet.

For any piecewise continuous function f(x) on [0, L] , the V ’th
approximation function fV (x) is represented by

fV (x) =fV−1(x) +
2V−1N∑
i=1

τV,iφV,i(x)

=
N∑
i=0

τ0,iφ0,i(x) +
V∑
j=1

2j−1N∑
i=1

τj,iφj,i(x)

(9)



180 Su and Sarkar

where

τV,i = f(xV,i)−
1
2

(
f(xV,i −

1
2V

h) + f(xV,i +
1

2V
h)

)

This means that τV,i is the second-order central difference of f(x) at
xV,i on the interval [xV,i − h

2V , xV,i + h
2V ] .

If f(x) possesses the second-order differentiability condition at
xV,i , then

τV,i ≈ −
h2

2V+2
f ′′(xV,i) (10)

If |τj,i| ≤ ε ( ε is the given threshold), τj,i can be set to zero.
Suppose f(x) is the original function, ftria(x) is the approxima-

tion function utilizing the triangular basis functions. fmulti(x) is the
approximation obtained through the use of the multiscale triangular
basis functions on V -scale neglecting the smaller terms.

‖f(x)− fmulti(x)‖ ≡
∫ L

0
|f(x)− fmulti(x)|dx

≤ ‖f(x)− ftria(x)‖+ ‖ftria(x)− fmulti(x)‖

≤ ‖f(x)− ftria(x)‖+
V∑
v=1

∫ L

0
εnv |Λ(2vx)|dx

≤ ‖f(x)− ftria(x)‖+ εV

where nv is the number of the neglected terms for the V -scale.
In the same way, we get the formula

‖f(x)− ftria(x)‖ ≤ ‖f(x)− fmulti(x)‖+ εV

Hence ∣∣∣‖f(x)− ftria(x)‖ − ‖f(x)− fmulti(x)‖
∣∣∣ ≤ εV

This means that we can control the accuracy of the approximation
through the use of a suitable threshold when some terms are omitted.

Thus, if f(x) is almost a linear function on [0, L] , then most of the
coefficients {τj,i} for the current basis functions will be zero.
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3.2 Transverse Electric (TE) Case:

Incident field:
Ei
x = Ei

0 sinϕiejk0(x cosϕi+y sinϕi)

H i
z =

Ei
0

η0
ejk0(x cosϕi+y sinϕi)

The induced electric current on either side of the surface S0 can be
written in the following form

�J±0 (�r) = x̂J±0 (x)

J±0 (x) =
N∑
i=0

τ±0,iφ0,i(x) +
V∑
v=1

2v−1N∑
i=1

τ±v,iφv,i(x)
(11)

The induced electric and magnetic currents on the surface S1 can be
written in the following form

�J1(�r) = x̂J1(x)

J1(x) =
N∑
i=0

τ1
0,iφ0,i(x) +

V∑
v=1

2v−1N∑
i=1

τ1
v,iφv,i(x)

(12)

�M1(�r) = −ẑη0M1(x)

M1(x) =
N∑
i=0

τ2
0,iφ0,i(x) +

V∑
v=1

2v−1N∑
i=1

τ2
v,iφv,i(x)

(13)
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On S1 , we have the following formula:

Ei
x(x, d) =

ωµ1

4

{ ∫ L

0
J1(x′)H

(2)
0 (k1|x− x′|)dx′

+
1
k2

1

∂

∂x

∫ L

0

∂J1(x′)
∂x′

H
(2)
0 (k1|x− x′|)dx′

}

+
ωµ2

4

{ ∫ L

0
J1(x′)H

(2)
0 (k1|x− x′|)dx′

+
1
k2

2

∂

∂x

∫ L

0

∂J1(x′)
∂x′

H
(2)
0 (k2|x− x′|)dx′

}

+
ωµ1

4

{ ∫ L

0
J−0 (x′)H(2)

0 (k1t)dx′

+
1
k2

1

∂

∂x

∫ L

0

∂J−0 (x′)
∂x′

H
(2)
0 (k1t)dx′

}

−ωµ2

4

{ ∫ L

0
J+

0 (x′)H(2)
0 (k2t)dx′

+
1
k2

2

∂

∂x

∫ L

0

∂J+
0 (x′)
∂x′

H
(2)
0 (k2t)dx′

}

H i
z(x, h) =

−η0ωµ1

4η2
1

{ ∫ L

0
M1(x′)H

(2)
0 (k1|x− x′|)dx′

}

+
−η0ωµ2

4η2
2

{ ∫ L

0
M1(x′)H

(2)
0 (k2|x− x′|)dx′

}

+
d

4j

{ ∫ L

0
J−0 (x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k1t)
dt

dx′
}

− d

4j

{ ∫ L

0
J+

0 (x′)
1√

(x− x′)2 + d2

dH
(2)
0 (k2t)
dt

dx′
}

with
t =

√
(x− x′)2 + d2
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On S0 we have the following formula:

Ei
x(x, 0) =

ωµ1

4

{ ∫ L

0
J1(x′)H

(2)
0 (k1t)dx′

+
1
k2

1

∂

∂x

∫ L

0

∂J−0 (x′)
∂x′

H
(2)
0 (k1t)dx′

}

+
η0d

4j

{ ∫ L

0
M1(x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k1t)
dt

dx′
}

+
ωµ1

4

{ ∫ L

0
J−0 (x′)H(2)

0 (k1|x− x′|)dx′

+
1
k2

1

∂

∂x

∫ L

0

∂J−0 (x′)
∂x′

H
(2)
0 (k1|x− x′|)dx′

}

0 = −ωµ2

4

{ ∫ L

0
J1(x′)H

(2)
0 (k2t)dx′

+
1
k2

2

∂

∂x

∫ L

0

∂J1(x′)
∂x′

H
(2)
0 (k2t)dx′

}

+
−η0d

4j

{ ∫ L

0
M1(x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k2t)
dt

dx′
}

+
ωµ2

4

{ ∫ L

0
J+

0 (x′)H(2)
0 (k1|x− x′|)dx′

+
1
k2

2

∂

∂x

∫ L

0

∂J+
0 (x′)
∂x′

H
(2)
0 (k2|x− x′|)dx′

}
By use of the moment method on the multiscale basis, we obtain the
following formula:

〈Ei
x(x, d), φv′,i′(x)〉 =

V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈L1

1[φv,i(x
′)]

+ L1
2[φv,i(x

′)], φv′,i′(x)〉

+
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈L2

1[φv,i(x
′)], φv′,i′(x)〉

−
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈L2

2[φv,i(x
′)], φv′,i′(x)〉

(14a)
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〈H i
z(x, d), φv′,i′(x)〉 = −

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈

η0

η2
1

M1
1 [φv,i(x′)]

+
η0

η2
2

M1
2 [φv,i(x′)], φv′,i′(x)〉

+d
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈K2

1 [φv,i(x′)], φv′,i′(x)〉

−d
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈K2

2 [φv,i(x′)], φv′,i′(x)〉

(14b)

〈Ei
x(x, 0), φv′,i′(x)〉 =

V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈L2

1[φv,i(x
′)], φv′,i′(x)〉

+ dη0

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈K2

1 [φv,i(x′)], φv′,i′(x)〉

+
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈L1

1[φv,i(x
′)], φv′,i′(x)〉

(14c)

0 =−
V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈L2

2[φv,i(x
′)], φv′,i′(x)〉

− dη0

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈K2

2 [φv,i(x′)], φv′,i′(x)〉

+
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈L1

2[φv,i(x
′)], φv′,i′(x)〉

(14d)

where

v′ = 0, 1, 2, ..., V, i′ = B(v′), ...A(v′, N)

A(v,N) =
{
N + 1 v = 0
2v−1N v �= 0 B(v) =

{
0 v = 0
1 v �= 0
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L1
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki|x− x′|)dx′

+
1
k2
i

∂

∂x

∫ L

0

∂X(x′)
∂x′

H
(2)
0 (ki|x− x′|)dx′

}

L2
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (kit)dx′

+
1
k2
i

∂

∂x

∫ L

0

∂X(x′)
∂x′

H
(2)
0 (kit)dx′

}

with t =
√

(x− x′)2 + d2

M1
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki|x− x′|)dx′
}

M2
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki
√

(x− x′)2 + d2)dx′
}

K1
i [X(x′)] =

1
4j

{ ∫ L

0

X(x′)
|x− x′|

dH
(2)
0 (ki|x− x′|)

dt
dx′

}

=
−ki
4j

{ ∫ L

0
X(x′)

H
(2)
1 (ki|x− x′|)
|x− x′| dx′

}

K2
i [X(x′)] =

1
4j

{ ∫ L

0

X(x′)√
(x− x′)2 + d2

dH
(2)
0 (ki

√
(x− x′)2 + d2)
dt

dx′
}

=
−ki
4j

{ ∫ L

0
X(x′)

H
(2)
1 (ki

√
(x− x′)2 + d2)√

(x− x′)2 + d2
dx′

}

Once the above equations are solved, the bistatic radar cross section
can be computed by

σ(ϕ,ϕi) = lim
r→∞

2πr
|�Hs|2

|�H i|2

=
k1η

2
0

4

∣∣∣∣ξ0,0 1
jk1 cosϕ

[
e
jk1h cosϕ

2 SINC

(
k1h cosϕ

2

)
− 1

]

+ ξ0,N
ejk1L cosϕ

jk1 cosϕ

[
1− e−

jk1h cosϕ
2 SINC

(
k1h cosϕ

2

)]
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+
N−1∑
i=1

ξ0,ie
jk1x0,i cosϕhSINC2

(
k1h cosϕ

2

)
+

V∑
v=1

2v−1N∑
i=1

ξv,ie
jk1xv,i cosϕ h

2v
SINC2

(
k1h cosϕ

2v+1

)∣∣∣∣
2

where
ξv,i = sinϕ(τ1

v,ie
jk1d sinϕ + τ0−

v,i ) +
η0

η1
ejk1d sinϕτ2

v,i

where the SINC function is defined by sinx/x . And the scattered
magnetic field is given as

�Hs(�r) =

√
k1

8π
e
jπ
4
e−jk1r√

r

∫ L

0

[
sinϕ(J1(x′)ejk1d sinϕ + J−0 (x′))

+
η0

η1
ejk1d sinϕM1(x′)

]
ejk1x

′ cosϕdx′ẑ

3.3 Transverse Magnetic (TM) case:

Incident field:

Ei
z = Ei

0e
jk0(x cosϕi+y sinϕi)

H i
x = −E

i
0

η0
sinϕiejk0(x cosϕi+y sinϕi)

The induced electric current on either side of the surface S0 can be
written in the following form

�J±0 (�r) = −ẑJ±0 (x)

J±0 (x) =
N∑
i=0

τ±0,iφ0,i(x) +
V∑
v=1

2v−1N∑
i=1

τ±v,iφv,i(x)
(15)

The induced electric and magnetic currents on the surface S1 can be
written in the following form

�J1(�r) = −ẑJ1(x)

J1(x) =
N∑
i=0

τ1
0,iφ0,i(x) +

V∑
v=1

2v−1N∑
i=1

τ1
v,iφv,i(x)

(16)
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�M1(�r) = x̂η0M1(x)

M1(x) =
N∑
i=0

τ2
0,iφ0,i(x) +

V∑
v=1

2v−1N∑
i=1

τ2
v,iφv,i(x)

(17)

On S1 , we have the following formula:

Ei
z(x, h) =− ωµ1

4

{ ∫ L

0
J1(x′)H

(2)
0 (k1|x− x′|)dx′

}

− ωµ2

4

{ ∫ L

0
J1(x′)H

(2)
0 (k2|x− x′|)dx′

}

− ωµ1

4

{ ∫ L

0
J−0 (x′)H(2)

0 (k1t)dx′
}

+
ωµ2

4

{ ∫ L

0
J+

0 (x′)H(2)
0 (k2t)dx′

}

H i
z(x, h) =

η0ωµ1

4η2
1

{ ∫ L

0
M1(x′)H

(2)
0 (k1|x− x′|)dx′

+
1
k2

1

∂

∂x

∫ L

0

∂M1(x′)
∂x′

H
(2)
0 (k1|x− x′|)dx′

}

+
η0ωµ2

4η2
2

{ ∫ L

0
M1(x′)H

(2)
0 (k2|x− x′|)dx′

+
1
k2

2

∂

∂x

∫ L

0

∂M1(x′)
∂x′

H
(2)
0 (k2|x− x′|)dx′

}

+
d

4j

{ ∫ L

0
J−0 (x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k1t)
dt

dx′
}

− d

4j

{ ∫ L

0
J+

0 (x′)
1√

(x− x′)2 + d2

dH
(2)
0 (k2t)
dt

dx′
}

On S0 , we have the following formula:

Ei
x(x, 0) =

ωµ1

−4

{ ∫ L

0
J1(x′)H

(2)
0 (k1t)dx′

}

+
η0d

4j

{ ∫ L

0
M1(x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k1t)
dt

dx′
}

+
ωµ1

−4

{ ∫ L

0
J−0 (x′)H(2)

0 (k1|x− x′|)dx′
}
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0 =
ωµ2

4

{ ∫ L

0
J1(x′)H

(2)
0 (k2t)dx′

}

+
η0d

−4j

{ ∫ L

0
M1(x′)

1√
(x− x′)2 + d2

dH
(2)
0 (k2t)
dt

dx′
}

+
ωµ2

−4

{ ∫ L

0
J+

0 (x′)H(2)
0 (k1|x− x′|)dx′

}

By use of moment method on the multiscale basis, we obtain the fol-
lowing formula:

〈Ei
x(x, h), φv′,i′(x)〉 = −

V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈M1

1 [φv,i(x′)]

+M1
2 [φv,i(x′)], φv′,i′(x)〉

−
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈M2

1 [φv,i(x′)], φv′,i′(x)〉

+
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈M2

2 [φv,i(x′)], φv′,i′(x)〉

(18a)

〈H i
z(x, h), φv′,i′(x)〉 =

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈

η0

η2
1

L1
1[φv,i(x

′)]

+
η0

η2
2

L1
2[φv,i(x

′)], φv′,i′(x)〉

+d
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈K2

1 [φv,i(x′)], φv′,i′(x)〉

−d
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈K2

2 [φv,i(x′)], φv′,i′(x)〉

(18b)
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〈Ei
x(x, 0), φv′,i′(x)〉 = −

V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈M2

1 [φv,i(x′)], φv′,i′(x)〉

+ dη0

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈K2

1 [φv,i(x′)], φv′,i′(x)〉

−
V∑
v=0

A(v,N)∑
i=B(v)

τ0−
v,i 〈M1

1 [φv,i(x′)], φv′,i′(x)〉

(18c)

0 =
V∑
v=0

A(v,N)∑
i=B(v)

τ1
v,i〈M2

2 [φv,i(x′)], φv′,i′(x)〉

− dη0

V∑
v=0

A(v,N)∑
i=B(v)

τ2
v,i〈K2

2 [φv,i(x′)], φv′,i′(x)〉

−
V∑
v=0

A(v,N)∑
i=B(v)

τ0+
v,i 〈L1

2[φv,i(x
′)], φv′,i′(x)〉

(18d)

L1
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki|x− x′|)dx′

+
1
k2
i

∂

∂x

∫ L

0

∂X(x′)
∂x′

H
(2)
0 (ki|x− x′|)dx′

}

L2
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (kit)dx′

+
1
k2
i

∂

∂x

∫ L

0

∂X(x′)
∂x′

H
(2)
0 (kit)dx′

}

M1
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki|x− x′|)dx′
}

M2
i [X(x′)] =

ωµi
4

{ ∫ L

0
X(x′)H(2)

0 (ki
√

(x− x′)2 + d2)dx′
}
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K1
i [X(x′)] =

−ki
4j

{ ∫ L

0
X(x′)

H
(2)
1 (ki|x− x′|)
|x− x′| dx′

}

K2
i [X(x′)] =

−ki
4j

{ ∫ L

0
X(x′)

H
(2)
1 (ki

√
(x− x′)2 + d2)√

(x− x′)2 + d2
dx′

}

Once the above equations are solved, the bistatic radar cross section
can be computed by

σ(ϕ,ϕi) = lim
r→∞

2πr
|�Es|2

|�Ei|2

=
k1

4

∣∣∣∣ξ0,0 1
jk1 cosϕ

[
e
jk1h cosϕ

2 SINC

(
k1h cosϕ

2

)
− 1

]

+ ξ0,N
ejk1L cosϕ

jk1 cosϕ

[
1− e−

jk1h cosϕ
2 SINC

(
k1h cosϕ

2

)]

+
N−1∑
i=1

ξ0,ie
jk1x0,i cosϕhSINC2

(
k1h cosϕ

2

)

+
V∑
v=1

2v−1N∑
i=1

ξv,ie
jk1xv,i cosϕ h

2v
SINC2

(
k1h cosϕ

2v+1

)∣∣∣∣
2

where
ξv,i = η1(τ1

v,ie
jk1d sinϕ + τ0−

v,i )− η0e
jk1d sinϕτ2

v,i

and the scattered electric field is given by

�Es(�r) =

√
k1

8π
e
jπ
4
e−jk1r√

r

∫ L

0

[
η1(J1(x′)ejk1d sinϕ + J−0 (x′))

− η0e
jk1d sinϕM1(x′)

]
ejk1x

′ cosϕdx′ẑ
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4. ADAPTIVE ALGORITHM FOR LINEAR EQUATIONS
USING THE MULTISCALE BASIS

In this section, we discuss how to solve the linear equations of (14a–
14d) or (18–18d) by use of AMMM.

The linear equations of (11a–11d) or (14a–14d) can be written in
the following matrix form:


A1,1 A1,2 A1,3 O
A1,2 A2,2 O A2,4

A1,3 O A3,3 A3,4

O A2,4 A3,4 A4,4






J−0
J1

M1

J+
0


 =



F1

F2

F3

O


 (19)

where

A1,1 =
{
〈L1

1[φv,i], φv′,i′〉 for TE case
−〈M1

1 [φv,i], φv′,i′〉 for TM case

A1,2 =
{
〈L2

1[φv,i], φv′,i′〉 for TE case
−〈M2

1 [φv,i], φv′,i′〉 for TM case

A1,3 = dη0〈K2
1 [φv,i], φv′,i′〉 for TE and TM

A2,2 =
{
〈(L1

1 + L1
2)[φv,i], φv′,i′〉 for TE case

−〈(M1
1 +M1

2 )[φv,i], φv′,i′〉 for TM case

A2,4 =
{
−〈L2

2[φv,i], φv′,i′〉 for TE case
〈M2

2 [φv,i], φv′,i′〉 for TM case

A3,3 =



−〈

(
η2
0
η2
1
M1

1 + η2
0
η2
2
M1

2

)
[φv,i], φv′,i′〉 for TE case

〈
(
η2
0
η2
1
L1

1 + η2
0
η2
2
L1

2

)
[φv,i], φv′,i′〉 for TM case

A3,4 = −dη0〈K2
2 [φv,i], φv′,i′〉 for TE and TM cases

A4,4 =
{
〈L1

1[φv,i], φv′i′〉 for TE case
−〈M1

2 [φv,i], φv′,i′〉 for TM case

F1 =
{
〈sinφi exp(jk0x cosφi), φv′,i′〉 for TE case
〈exp(jk0x cosφi), φv′,i′〉 for TM case

F2 =
{
〈sinφi exp(jk0x cosφi + d sinφi), φv′,i′〉 for TE case
〈exp(jk0x cosφi + d sinφi), φv′,i′〉 for TM case

F3 =
{
〈exp(jk0x cosφi + d sinφi), φv′,i′〉 for TE case
−〈sinφi exp(jk0x cosφi + d sinφi), φv′,i′〉 for TM case
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Figure 3. The assembly of the coefficient matrices, right-hand arrays
of the known incident field, and the unknowns.

All of elements of the matrix or the array O are zero.
The illustration of these matrices Ai,j , the arrays Fi , and the un-

knowns (J±0 , J1,M1, ) can be arranged on the multiscale (see Fig. 3).
When V = 0 , the linear equation is the same as the equations ob-
tained by standard MOM, which can is solved by LU method or the
iterative methods. The first step is to predict the solution on (V +1) -
scale from the known solution on V -scale by the interpolation method.
Each unknown functions can be denoted simply by XV+1(x) . The
unknown coefficients J±0 , J1,M1 on V -th scale is denoted by Xv =
(τv,1, τv,2, ...τv,2v−1N )T .

Between the unknown approximation function on (V +1) -scale and
the known approximation function, there is the following relation:

XV+1(x) = XV (x) +
2vN∑
i=1

τV+1,iφV+1,i(x)

Hence, the known solution XV (x) on V -scale can be chosen as an
initial guess for the unknown solution XV+1(x) on (V + 1) -scale if
{τV+1,i} are set to be zero. However, τV+1,i can be estimated from
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XV (x) by the interpolation method, noted as X
(0)
V+1 = (τ (0)

V+1,1, τ
(0)
V+1,2,

. . . , τ
(0)
V+1,2V N

)T . Therefore, the initial array (X0, X1, . . . , XV , XV+1)
can be constructed from the known array (X0, X1, .., XV ) by the so-
lution of the function XV (x) and the array X

(0)
V+1 can be estimated

from XV (x) .
The second step is to eliminate the relatively smaller components

of the predicted solution components and omit the corresponding rows
and columns from the system matrix obtained from the moment
method.

If |τ (0)
v,i | ≤ ε (v = 1, 2, ..., V + 1, i = 1, 2, ...2VN, ε is threshold),

we set τ
(0)
v,i = 0 , and omit the corresponding arrays and columns of

the system matrix with respect to (v, i) . This is an important step to
reduce the size of the linear equation.

In actual computation, we choose the following criterion |τ (0)
v,i | ≤ εT

( T = max |τ (0)
v,i | ).

The third step is to solve the modified linear equation after the
above two steps by use of the CG method or other iterative methods.

The final step is to obtain the solution XV+1(x) on the (V + 1) -
scale by adding some of the terms, whose coefficients are zero.

Because the order of the original linear equation is reduced, it will
improve the computational efficiency. The flow chart for the adaptive
multiscale moment method from V -time scale to (V + 1) -time scale
is given in Fig. 4.

5.NUMERICAL RESULTS

Numerical calculations were performed by use of the procedure de-
scribed in the above section to demonstrate the effectiveness of the
adaptive multiscale moment method.

The first example was a 1λ “free-space” coated strip with 0.01λ
thickness with a TM illumination. The orders of the linear equation of
AMMM for different threshold and incident angles are listed in Tables
(I) and (II). The number of the initial division N is taken as 8.
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Figure 4. Flow chart of the adaptive multiscale moment method.
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TABLE (I). Normal incidence

where Σ means the number of total unknowns.

TABLE (II). Incident angle φ = 45◦

TABLE (III). Normal incidence: TE case

It is seen from Tables (I) and (II) that the size of the moment matrix
can be significantly reduced by utilizing different scales V and setting
different thresholds ε to set the unknowns equal to zero by setting
(τ0±
v,i , τ

1
v,i, τ

2
v,i) . The case ε = 0 would be the standard MOM. For TM

case, the unknowns for the electric currents J±0 , J1, can be reduced
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much more than the unknowns for magnetic current M1 because the
variation of the electric currents on the interval [0, L] which are infinite
at the ends is relatively smaller than that of the magnetic current on the
same interval which is zero at the ends. For TE case, the unknowns for
magnetic currents M1 can be reduced much more than the unknowns
for the electric current J±0 , J1 because the variation of the magnetic
current on the interval [0, L] is infinite at the ends and is relatively
smaller than that of electric currents on the same interval which are
zero at the ends. The magnitude and the phase of the equivalent
electric and magnetic currents (J±0 , J1,M1) for the TE case of the
incident angle φ = 45◦ and ε = 0.01 are plotted in Fig. 5.

The second example is a 5.221λ “free-space” coated strip with
0.01λ thickness. The orders of the linear equation for AMMM for
different threshold with normal incidence are listed in Tables (III) and
(IV) for TE and TM cases, respectively. The number of the initial
division N is taken as 8.

It is seen from Tables (III) and (IV) that the size of the moment
matrix can be significantly reduced by utilizing different scales V and
setting different thresholds ε to set the coefficients (τ0±

v,i , τ
1
v,i, τ

2
v,i) to

zero from the unknowns at (V + 1) -scale .

TABLE (IV). Normal incidence: TM case
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Figure 5(a–d) The magnitude and phase of the equivalent electric .
and magnetic currents
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Figure 5(e)(f). The magnitude and phase of the equivalent electric
currents.

The magnitudes and the phases of the equivalent currents (J±0 , J1,
M1) for the case of the incident angle φ = 22◦ and ε = 0.01 are
plotted in Fig. 6 . These results closely correlate with the results of
reference [2]. The curves for the monostatic RCS for TE and TM cases
are plotted in Fig. 7 and Fig. 8 . For TE polarization, the backscat-
tered field at θ = 0 vanishes for perfectly conducting strip because the
edge of the strip is cross polarized to the incident electric field. The
backscattered radar cross section including only upper equivalent elec-
tric current J+

0 and lower equivalent electric current J−0 is in good
agreement with RCS of the perfectly conducting strip for the same
width (see Fig. 9). For TM case, the results are generally in good
agreement with the perfectly conducting case.
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The effect of reduced numbers of the unknowns (J±0 , J1,M1)
through the threshold ε = 0.01 for TM case for different incident
angles are plotted in Fig. 10.

The third example is a 8.23λ coated strip with a dielectric coatings
(ε2r = 2.) of 0.057λ thickness for the TM case. The orders of the
linear equation of AMMM for different thresholds of normal incidence
are listed in Table V . The number of the initial division N is taken
as 8.

TABLE (V). Normal incidence.

It is seen from Table (V) that the size of the moment matrix for
8.23λ coating strip with dielectric coatings for the TM case can also be
significantly reduced by utilizing different scales V and setting different
thresholds ε for the unknowns equal to zero through (τ0±

v,i , τ
1
v,i, τ

2
v,i) .

Monostatic RCS for TE case is plotted in Fig. 11. The computa-
tional results are very close to the experiment results [2] for all angles.
The number of unknowns (J±0 , J1,M1) for the TE case are different
from the different incident angles.
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Figure 6. The magnitude and phase of the equivalent electric currents.
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Figure 7. The monostatic RCS for TE case.
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Figure 8. The monostatic RCS for TM case.
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Figure 9. RCS of a computed total current on conducting surfaces.
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Figure 10. Effect of reduced numbers of unknowns through the thresh-
old ε = 0.01 on TM case.
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Figure 11. Radar cross sections of coated strip by Adaptive Multiscale
Moment Method.

6. CONCLUSION

Electromagnetic scattering from flat coated conducting strips is solved
using a combination of a wavelet-like basis functions on different scales.
AMMM was presented for analyzing scattering from the coated con-
ducting strip. Many of numerical examples for TM and TE case have
been presented. It is shown that the size of the moment matrix can
significantly be reduced by utilizing different scale and by setting dif-
ferent thresholds. Numerical results have demonstrated that AMMM
is an efficient, adaptive and accurate method.

Application of this approach to the radiating or scattering of the
arbitrary geometry in two- or three-dimension is currently under in-
vestigation.
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