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1. CONCEPT

The solution of scattering by a 2-D trough in an infinite conducting
ground plane may be formulated using any of several approaches, in-
cluding integral equations [1], impedance boundary conditions [2–3],
finite elements [4], Fourier transforms [5–6] and cavity mode coupling
to exterior region cylindrical harmonics [7]. An efficient technique re-
quiring no matrix inversions nor special function evaluations is devel-
oped here for the case of a rectangular groove containing homogeneous,
perhaps lossy, isotropic material.

The 2-D scattering geometry is shown in Fig. 1(a), with a rectan-
gular cavity of width W and depth d in an infinite, perfect electric
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conductor (pec) ground plane. Incident plane wave fields both TM
to z (E-Pol) and TE to z (H-Pol) are considered. Material within
the groove has relative constituent parameters εr1 and µr1 , either or
both of which may be complex under lossy conditions. Scattered fields
in the half-space above the groove are defined as ES = E1 − E2 and
H
S = H1 − H2 where (E1, H1) are the total fields in the presence

of the ground plane containing the groove and (E2, H2) are the total
fields with the infinite ground plane present without the groove.

An exact equivalence for scattering by an open cavity in a ground
plane having any shape and material filling is developed in the Ap-
pendix. According to this equivalence, the previously defined scat-
tered field is generated by an impressed surface current, −JS(x) =
−2ŷ ×H i(x, 0) , placed over the cavity aperture. The fields produced
within the cavity by this equivalent current are the same as those due
to the original incident field. It should be noted that this form of
equivalence is different than the magnetic current approach used to
derive cavity aperture integral equations.

To formulate the equivalent problem solution, we decompose the
cavity fields into combinations of parallel plate waveguide modes (form-
ing cavity modes) and evaluate the coupling into each such mode by
the impressed −JS(x) driving the aperture in place of the original in-
cident field. Once the cavity mode coefficients are found, the far-zone
scattered fields and 2-D radar cross section (RCS) per unit length (also
referred to as scattering width), are evaluated using Green’s function
integrations of Etan modal expansions over the aperture.

A rigorous solution to mode coupling in such a formulation requires
enforcement of correct radiation field behavior in the upper half-space.
This can be accomplished by using: (1) an integral equation; (2) a ter-
minated finite element mess, or; (3) coupling to a radially propagating
cylindrical harmonic expansion.

The mode coupling solution can be simplified by expanding the field
in the local region above the aperture using upward propagating wave-
guide modes bounded by vertical walls, as illustrated in Fig. 1(b).
These modes satisfy Maxwell’s equations, are outbound from the aper-
ture, and provide a basis for expansion of the local field. Such an
approach allows simple mode-by-mode field matching across the aper-
ture without the need for matrix inversion. This provides a very rapid
solution, even for electrically large apertures.
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(a)

(b)

Figure 1. Scattering by a Material Filled Rectangular Groove in a
PEC Ground Plane: (a) Original Configuration with Incident Field;
(b) Approximation with Equivalent Current and Artificial Waveguide
Walls in Upper Half-Space.

However, replacing the upper half-space with a guided wave struc-
ture introduces a physical approximation which ignores interaction of
the driving current −JS(x) with the remainder of the ground plane
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(including upper corners of the groove). Instead, interaction is consid-
ered with the vertical waveguide walls. Resultant TM case field expan-
sions will not experience the field singularity near the upper corners.
As will be demonstrated, for aperture dimensions exceeding about one
wavelength the neglected effects usually produce only small pertur-
bations to the scattered field, the generation of which tends to be
dominated by interactions with the aperture and cavity of the groove.

2. FORMULATION

Fourier sine and cosine series are used to represent JS(x) = 2ŷ ×
H i(x, 0) for respective TM and TE plane wave incident fields, each
having amplitudes |H i| = H0 and |Ei| = E0 = η0H0 , where η0 =
120πΩ . These series match the modal variations in x of the cavity
and waveguide fields in Regions 1 and 2.

J
TM
S (x) = 2H0ẑ cos θi e−k0x sin θi .= H0ẑ

N∑
n=1

aTMn sin
(nπ
W
x
)

(1a)

J
TE
S (x) = 2H0x̂ e

−k0x sin θi .= H0x̂

N∑
n=0

aTEn cos
(nπ
W
x
)

(1b)

Fourier sine and cosine series integrations yield

aTMn =[1− (−1)n e−k0W sin θi ]
2nπ cos θi

(nπ)2 − (k0W sin θi)2
for n ≥ 1

(2a)

aTEn =[1− (−1)n e−k0W sin θi ]
εnk0W sin θi

(nπ)2 − (k0W sin θi)2
for n ≥ 0

(2b)

with ε0 = 1 and εn = 2 for n ≥ 1 .
Region 1 cavity modes are formed from pairs of ±y directed parallel

plate waveguide modes [8] to satisfy Etan(x,−d) = 0 on the groove
bottom. Field components parallel to the aperture are given for −d ≤
y ≤ 0 by

ETMz (x, y) .= E0

N∑
n=1

bTMn sin
(nπ
W
x
)

sinh[γn(y + d)] (3a)
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HTM
x (x, y) .=

H0

k0µr1

N∑
n=1

bTMn γn sin
(nπ
W
x
)

cosh[γn(y + d)] (3b)

HTE
z (x, y) .= H0

N∑
n=0

bTEn cos
(nπ
W
x
)

cosh[γn(y + d)] (3c)

ETEx (x, y) .=
−E0

k0εr1

N∑
n=0

bTEn γn cos
(nπ
W
x
)

sinh[γn(y + d)] (3d)

where γn =
√

(nπ)/W )2 − k2
0µr1εr1 .

Region 2 fields are expanded for y ≥ 0 using +y directed waveguide
modes,

ETMz (x, y) .= E0

N∑
n=1

cTMn sin
(nπ
W
x
)
e−νny (4a)

HTM
x (x, y) .=

−H0

k0µr2

N∑
n=1

cTMn νn sin
(nπ
W
x
)
e−νny (4b)

HTE
z (x, y) .= H0

N∑
n=0

cTEn cos
(nπ
W
x
)
e−νny (4c)

ETEx (x, y) .=
E0

k0εr2

N∑
n=0

cTEn νn cos
(nπ
W
x
)
e−νny (4d)

where νn =
√

(nπ/W )2 − k2
0µr2εr2 .

A small amount of loss may be introduced into Region 2 by using
εr2 = 1 − ε′′r2 and µr2 = 1 − µ′′r2 to improve the solution accuracy
when W ≈Mλ0/2 , with M an integer. This loss acts to inhibit reso-
nant standing waves produced by the artificial parallel plate waveguide
section which bounds Region 2. Values of ε′′r2 = µ′′r2 = 0.01 are used
in the validations of Section 3. For W not close to multiples of λ0/2
this small loss has virtually no effect on the solution.

Field expansion coefficients are found by enforcing continuity con-
ditions at the aperture boundary between Regions 1 and 2,

lim
δy→0+

ŷ × [H(x, δy)−H(x,−δy)] = −JS(x) (5a)

lim
δy→0+

ŷ × [E(x, δy)− E(x,−δy)] = 0 (5b)
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Mode-by-mode substitution from appropriate expansions in (1), (3),
and (4) yields two linear equations for each pair of modal expansion
coefficients, whose solutions are

cTMn = bTMn sinh(γnd) =
2k0µr1µr2 sinh(γnd)

µr1νn sinh(γnd) + µr2γn cosh(γnd)
aTMn (6a)

and

cTEn = −γnεr2
νnεr1

bTEn sinh(γnd) =
−2εr2γn sinh(γnd)

εr2γn sinh(γnd) + εr1νn cosh(γnd)
aTEn

(6b)
With identical material in both regions, where εr1 = εr2 and µr1 =
µr2 , the above simplifies to cTMn = k0µr1

νn
[1 − exp(−2νnd)]aTMn and

cTEn = −[1− exp(−2νnd)]aTEn .
Far-zone scattered fields can now be evaluated using Green’s func-

tion integrations of the tangential electric fields in the aperture [9]
using

E
TM
S (ρ, θ) = ẑ

√
k0

2πρ
e−k0ρ cos θ

∫ W

0
ETMz (x, 0)ek0x sin θdx (7a)

H
TE
S (ρ, θ) = − ẑ

η0

√
k0

2πρ
e−k0ρ

∫ W

0
ETEx (x, 0)ek0x sin θdx (7b)

Substituting expansions for ETMz (x, 0) and ETEx (x, 0) into (7), us-
ing (4a) and (4d), gives

E
TM
S (ρ, θ) .= E0Wẑ

√
k0

2πρ
e−k0ρ

N∑
n=1

cTMn In(θ) (8a)

H
TE
S (ρ, θ) .= H0Wẑ

√
k0

2πρ
e−k0ρ

N∑
n=0

cTEn Ln(θ) (8b)

where In(θ) and Ln(θ) represent far-field Fourier integrations of
modal aperture fields

In(θ) =
cos θ
W

∫ W

0
sin

(nπx
W

)
ek0x sin θdx
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= [1− (−1)nek0W sin θ]
nπ cos θ

(nπ)2 − (k0W sin θ)2
(9a)

Ln(θ) =
−νn
k0Wεr2

∫ W

0
cos

(nπx
W

)
ek0x sin θdx

=
−νn
k0εr2

[1− (−1)nek0W sin θ]
k0W sin θ

(nπ)2 − (k0W sin θ)2
(9b)

Bistatic RCS is then computed using

σTM (θ) = lim
ρ→∞

2πρ
|ETMS (ρ, θ)|2
|E0|2

.= k0W
2

∣∣∣∣∣
N∑
n=1

cTMn In(θ)

∣∣∣∣∣
2

(10a)

σTE(θ) = lim
ρ→∞

2πρ
|HTE

S (ρ, θ)|2
|H0|2

.= k0W
2

∣∣∣∣∣
N∑
n=0

cTEn Ln(θ)

∣∣∣∣∣
2

(10b)

For lossless media in the groove, the solution converges rapidly with
increasing n for n ≥ 2Wλ0

√
εr1µr1 , wherein evanescent modes are be-

ing encountered in Region 1. Using this as a guide for the general
case, a series truncation of N = 2Wλ0

√
|εr1µr1| has provided excellent

convergence for RCS under all conditions tested.

3. VALIDATIONS

Comparisons are made here with other published results in [2–6] and
with direct computations performed using a multi-region cylindrical
harmonic expansion formulation [7]. Since f = 300 MHz (λ0 = 1m)
in all computations, the 2-D RCS, given in dB-meters, can also be
considered as wavelength normalized σ/λ0 , expressed dB.

Since no matrix inversions are required, computed time is extremely
brisk. Bistatic scattering from a W = 10.2m by d = 16.0m groove for
91 incident angles and 181 scattering angles requires only 3.0 seconds
(with 20.7 Mflops) to compute using MatLab 4.2 on a 90MHz Pentium
personal computer.

Figure 2 displays TE case bistatic RCS when θi = 60◦ for a rectan-
gular groove with W = 2m and d = 0.5m , filled with lossy material
having εr = 2.5 − 0.2 and µr = 1.8 − 0.1 . RCS computed using
the waveguide mode (WGM) method and an aperture integral equa-
tion solution given in [2] are overlaid. The WGM approach provides
good overall accuracy, with increasing dB errors appearing only at low
relative values
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Figure 2. Bistatic 2-D RCS for TE Incidence at θi = 60◦ on a Groove
with W = 2m, d = 0.5m, εr = 2.5 − 0.2 and µr = 1.8 − 0.1 .
Comparing calculations using Waveguide Modes (WGM) to that from
an Integral Equation in [2] at f = 300 MHz.

Figure 3. Bistatic 2-D RCS for Near Grazing Incidence at θi = 80◦

on a Shallow Groove with W = 1.25m, d = 0.0625m, εr = 16 − 5
and µr = 4 − 1.25 . Comparing TE and TM Case computations
using Waveguide Modes (WGM) to those using the “Exact Boundary
Condition” (EBC) solution in [3] at f = 300 MHz.
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Figure 4. Backscattering 2-D RCS for TM Incidence on a Rectan-
gular Groove with W = 1.0m and d = 0.25m . Comparing calcula-
tions using Waveguide Modes (WGM) to those from a Finite Element
Boundary Integral (FEBI) Approach in [4] at f = 300 MHz for two
cases: εr = 1 (vacuum) and εr = 4− 1 (lossy dielectric).

Bistatic RCS is also compared in Fig. 3 for the case of near-grazing
(θi = 80◦) TE and TM incidence on a shallow rectangular groove with
W = 1.25m and d = .0625m . The groove is filled with dense lossy
material having εr = 16−5 and µr = 4−1.25 . The WGM approach
provides good agreement with an “exact boundary condition” (EBC)
method developed in [3].

Figure 4 overlays backscattered RCS for TM incidence on a rect-
angular groove having W = 1.0m and d = 0.25m filled with both a
vacuum (εr = 1) and with lossy dielectric (εr = 4 − 1) . Excellent
comparisons are observed for data obtained using the WGM and a
finite element-boundary integral (FEBI) technique implemented in [4].

Computed RCS using the WGM and a Fourier transform represen-
tation developed in [5] and [6] are shown in Fig. 5 for the case of TE
polarization on a deep groove having W = 8.7m and d = 16m , filled
with εr = 1.5 lossless dielectric. The 3-D bistatic plot in Fig. 6(a)
displays the main specular reflection ridge centered about θ = θi and
the smaller backscattering ridge running along θ = −θi . Strong mul-
tiscattering effects within the deep groove are evidenced by undulating
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Figure 5. Backscattering 2-D RCS for TE incidence on a deep rect-
angular groove having W = 8.7m and d = 16m filled with lossless
dielectric (εr = 1.5) . Comparing calculations using Waveguide Modes
(WGM) to that from an “Exact” Fourier Transform Approach in [6]
at f = 300 MHz.

amplitudes along both the specular and backscattering ridges. Intro-
duction of a slight loss (εr = 1.5− 0.1) , with skin-depth δ = 3.901m ,
is considered in Fig. 6(b). This loss effectively absorbs the fields that
penetrate the aperture and cancels interactions with the groove sides
and bottom, resulting in virtually no backscattered field and a specular
ridge primarily due to surface reflection at the aperture.

Further validation trials were performed for a range of aperture and
depth dimensions, aspect angles and material constants, with compar-
isons made between the waveguide mode method and the more an-
alytically rigorous (but more computationally intensive) multi-region
cylindrical harmonic approach. An example is presented in Fig. 7,
which overlays TE and TM specular and backscatter RCS versus θi
for a W = 10.2m and d = 5.1m groove loaded with εr = 4 lossless
dielectric. Excellent agreement is shown except for backscattering near
grazing incidence of the TE case, where the WGM approximation in-
duces surface wave reflections from the artificial waveguide walls and
neglects upper corner diffraction.
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(a)

(b)

Figure 6. WGM computation of bistatic 2-D RCS (linear scale) for
TE incidence on a deep rectangular groove having W = 8.7m and
d = 16m for a full range of incident and scattering angles at f = 300
MHz. Two cases of material filling: (a) Lossless dielectric (εr = 1.5)
and (b) Lossy dielectric (εr = 1.5− 0.1) .
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(a)

(b)

Figure 7. Specular and backscattered 2-D RCS for a rectangular
groove with W = 10.2m and d = 5.1m filled with lossless dielectric
(εr = 4, µr = 1) . Comparing TE (a) and TM (b) Case calculations
using Waveguide Modes (WGM) to those from a multi-region coupled
cylindrical harmonic expansion solution in [7] at f = 300 MHz.
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Many additional validations for a wide range of groove dimensions
and incidence angles have shown that the WGM solution for RCS has
converging accuracy not only for electrically large aperture (W 	 λ0)
but also for quasi-static low frequencies (W 
 λ0/2) . This is exem-
plified by Fig. 8, which compares WGM and cylindrical harmonic so-
lutions versus frequency for specular and backscattered TM case RCS
(θi = 45◦) with a free-space filled groove having W = 1.0m and
d = 0.25m . In this comparison from 10 MHz to 2500 MHz, 522 fre-
quency steps are computed. As a point of reference on efficiency, the
WGM approach required 29.27 sec while the cylindrical harmonic so-
lution (which requires matrix system inversions) took 49,550 sec (13.76
hours).

Figure 8 Specular and Backscattered 2-D RCS for θi = 45◦ TM In-
cidence on a Free-Space Filled Rectangular Groove with W = 1.0m
and d = 0.35m . Comparing Frequency Stepping Calculations us-
ing Waveguide Modes (WGM) to those from a Multi-Region Coupled
Cylindrical Harmonic Expansion.
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4. CONCLUSIONS

A simplified approach to scattering by rectangular grooves filled with
homogeneous materials has been developed and validated. As a first
step in this approximate solution, an exact equivalence to the general
groove scattering problem in 3-D is developed which replaces the inci-
dent field by a reversed physical optics current in the aperture. The
numerical solution is then developed by use of waveguide modes to
represent fields in the cavity and in the region above the groove.

The WGM formulation offers a simple alternative which is easy to
implement, gives very rapid computation, and has improved accuracy
with increasing electrical size. Computational efficiency is important
when scattering evaluation is required for numerous cases of electrically
large grooves, such as in a statistical analysis for random surfaces. This
specific problem, in fact, motivated the development of the WGM.

The WGM can be extended to other groove shapes. For the case of
separable coordinates with homogeneous filling, analytic cavity modes
can be used. More general groove shapes and even inhomogeneous
material filling can be considered through use of sparse matrix finite
element solutions.

APPENDIX

A general equivalence principle for 3-D cavity or 2-D trough scattering
can be developed by considering the sequence of illustrations in Fig. 9.
Figure 9(a) depicts the scattering problem, wherein an arbitrary open
cavity in a ground plane containing inhomogeneous material is illumi-
nated by specified sources, J0 and M0 , in the upper region. The total
field in the cavity is denoted by (EC1 , H

C
1 ) while the diffraction field

(E1, H1) in the upper half-space is composed of the known incident
field added to a perturbation field (ES1 , H

S
1 ) .

The scattered field that we seek is defined to be (E1 − E2 , H1 −
H2) where (E2, H2) is the upper half-space diffraction field observed
in the presence of just the ground plane (without the cavity). To
obtain (E2, H2) a hypothetical pec “plug” can be inserted to close the
aperture and create a continuous ground plane. The physical optics
induced current JS = 2n̂ × H i

0 is then excited on the ground plane,
including across the pec section covering the cavity aperture.

Based upon the uniqueness concept [10], the fields will remain ev-
erywhere the same if the pec plug is removed and the induced current is
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Figure 9(a)

Figure 9(b)

Figure 9. Cavity Scattering Equivalence Theorem Development: (a)
Original Scattering Problem; (b) Field Equivalence for PEC Covered
Aperture.
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Figure 9(c)

Figure 9. Cavity Scattering Equivalence Theorem Development: (c)
Scattered Field Equivalence Found From Superposition of (a) Minus
(b).

replaced by an identical impressed sheet current covering the aperture.
This situation is shown in Fig. 9(b), where the impressed current JS3

equals the physical optics JS over the aperture while the induced JS2

equals JS over the remainder of the ground plane. JS2 is induced by
both the original sources, J0 and M0 , and JS3 .

Applying superposition, it is apparent that generation of the scat-
tered field can be accomplished by impressed sources which are the
difference of those in Figs. 9(a) and 9(b). This shown in Fig. 9(c).
Thus, an impressed −JS3 = −2n̂× Ĥ i

0 covering the aperture and ra-
diating in the presence of the cavity generates the scattered field being
sought in the upper half-space while producing the original cavity field.
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