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1. INTRODUCTION

Scattering and attenuation of radio waves by raindrop scatterers have
attracted many researchers worldwide over the past several decades.
The most popular raindrop model for the analysis of rainfall atten-
uation in the published literature usually considers the raindrops as
spheroidal raindrop scatterers. The methods and techniques employed
for the analysis of specific rainfall attenuation are the boundary-per-
turbation and point-matching techniques by Oguchi [1, 2], the least-
squares fitting process of boundary conditions by Morrison and Cross
[3], the sphere-based Taylor expansion by Erma [4–6], the integral
equation technique by Holt et al. [7], the T-matrix method by Wa-
terman [8–10] and the method of extended boundary conditions by
Warner [11, 12].

However, most of the above-mentioned methods are numerical-based
approaches and cannot give an exact formulation of the scattered fields
and the resultant total cross sections. To formulate exactly and cal-
culate accurately the scattered fields by the dielectric spheroid and
its total cross sections, the eigen-expansion method of spheroidal vec-
tor wave functions is a very good choice. This method was applied
earlier by Asano and Yamamoto [13] who determined the expansion
coefficients using the boundary conditions. However, since only the
tabulated values given in the published work were used, Asano and
Yamamoto presented the extinction cross sections which are valid only
for the scattering from the lossless dielectric spheroid. Even with the
modification made later by Asano & Yamamoto [13] and Cooray &
Ciric [14], there is still no available extinction cross section data nec-
essary for the calculation of rainfall attenuation.

In a similar fashion to the work by Asano and Yamamoto [13] ,
a rigorous formulation of the electromagnetic scattering from a lossy
dielectric spheroid is given in this paper. The experimental data col-
lected in the past show that the specific microwave attenuation due to
rainfall in Singapore’s tropic environment are much larger than those
recommended by the CCIR (now known as ITU). With the exact ex-
pressions of the scattered fields and the extinction cross sections in
terms of spheroidal vector wave eigenfunctions, the specific attenuation
is integrated numerically by making use of the distribution of raindrop
sizes in Singapore. The computed results are also compared with the
experimental data collected in Singapore in the last three years and
with the results previously published by Yeo et al. [15] and Li et al.
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Figure 1. Geometry of electromagnetic scattering by oblate spheroidal
raindrops.

[16–18]. Numerical techniques are also used in the data interpolation
and an interpolated three-dimensional model of the extinction cross
sections is established. With this model, the computational speed of
the specific attenuation is increased significantly.

2. SPHEROIDAL COORDINATES

In this paper, an oblate spheroidal coordinates system is chosen. The
oblate spheroidal coordinates are related to rectangular coordinates by
the following transformation:

x =
d

2

√
(1− η2)(ξ2 + 1) cosφ, (1a)

y =
d

2

√
(1− η2)(ξ2 + 1) sinφ, (1b)

z =
d

2
ηξ, (1c)

with
−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ ≤ 2π, (1d)

or
0 ≤ η ≤ 1, −∞ < ξ <∞, 0 ≤ φ ≤ 2π. (1e)
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The electromagnetic fields, Ef and Hf in the (outer and inner) f th

region ( f =1 and 2) as shown in Fig. 1 are expressed by

∇×∇×Ef − k2
fEf = 0, (2a)

∇×∇×Hf − k2
fHf = 0, (2b)

where εf , µf and σf identify the permittivity, permeability and con-

ductivity of the medium, respectively, and kf = ω
√
µf εf (1 + iσf

ωεf
) is

the propagation constant in the f th layer of the multilayered medium.
A time dependence exp(−iωt) is assumed to describe the electro-
magnetic fields throughout the paper. Moreover, the outside region
I ( f = 1 ) is free space with ε1 = ε0 , µ1 = µ1 and σ1 = 0 so that
k1 = k0 .

The solution of the electromagnetic fields Emn and Hmn of the
wave modes mn can be found by using the well-known method of
separation of variables. By assuming Emn = ψemnφ̂ or Emn = ψhmnφ̂ ,
the vector wave equations can be scalarized and the Helmholz scalar
wave equations become separable.

The solutions of the wave equations are expressed in the following
scalar wave functions for prolate spheroidal coordinates:

ψe,hmn = Smn(−ic, η)Rmn(−ic, iξ)
cos
sin

mφ. (3)

The angular and radial spheroidal functions, Smn(−ic, η) and
Rmn(−ic, iξ) , satisfy the ordinary differential equations given as fol-
lows [19, 20]:

d

dη

[
(1− η2)

d

dη
Smn(−ic, η)

]

+
[
λmn + c2η2 − m2

1− η2

]
Smn(−ic, η) = 0, (4a)

d

dξ

[
(ξ2 + 1)

d

dξ
Rmn(−ic, iξ)

]

−
[
λmn + c2ξ2 − m2

1− ξ2

]
Rmn(−ic, iξ) = 0, (4b)

where m and n identify the eigenvalue parameters. For the fields
inside the spheroid, the first kind of radial function ( i = 1 ) is taken;
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and for the fields outside the spheroid, the third kind is used. For the
intermediate region between the two spheroidal interfaces, both the
first and third kind of the radial functions are used in the construction
of the dyadic Green’s functions, but this case will not be discussed here.
The angular function is a function of the associate Legendre functions
while the radial functions can be expressed as in terms of spherical
Bessel functions.

3. ELECTROMAGNETIC FIELD REPRESENTATIONS

In this analysis, the incident, scattered, and transmitted wave fields
( Ei & Hi , Es & Hs , and Et & Ht ) are expanded in terms of the
spheroidal vector wave eigenfunctions Mr(i)

e
o
mn

and Nr(i)
e
o
mn

. By match-
ing the boundary conditions, the expansion coefficients of the series
have been determined. Two types of polarized waves, i.e., the TE-
mode (denoted as Case I) and TM-mode (denoted as Case II) excited
waves, are considered.

3.1 Incident Wave Expressions in Rectangular Coordinates

Following the method described in [1, 3], the incident waves of par-
allel (I) and perpendicular (II) polarizations are given as follows:

Ei
I = (cosαx̂− sinαẑ) exp[ik0(x sinα+ z cosα)], (5a)

Hi
I =

k0

ωµ0
ŷ exp[ik0(x sinα+ z cosα)]; (5b)

and
Ei
II = −ŷ exp[ik0(x sinα+ z cosα)], (6a)

Hi
II =

k0

ωµ0
(cosαx̂− sinαẑ) exp[ik0(x sinα+ z cosα)]. (6b)

3.2 Expansions of Incident Fields Using Vector Eigenfunctions

For the ease of boundary matching, we expand the incident wave
fields in terms of oblate spheroidal vector wave eigenfunctions. The
expressions of the incident waves expanded are given below:
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[
Ei
I

Hi
II

]
=

[
1
−k0
ωµ0

] ∞∑
n=1

n∑
m=0

in
[
gimnM

r(1)
emn(k0) + if imnN

r(1)
omn(k0)

]
, (7a)

[
Ei
II

Hi
I

]
=

[
1
k0
ωµ0

] ∞∑
n=1

n∑
m=0

in
[
f imnM

r(1)
omn(k0)− igimnNr(1)

emn(k0)
]
, (7b)

where the oblate spheroidal vector wave eigenfunctions are given in
terms of the scalar wave functions as follows:

Mr(l)
e
o
mn

(ka, ζ)=∇×
[
Smn(−ic, η)R(l)

mn(−ic, iξ)
cos
sin

mφr̂
]
, (8a)

Nr(l)
e
o
mn

(ka, ζ)=
1
k
∇×∇×

[
Smn(−ic, η)R(l)

mn(−ic, iξ)
cos
sin

mφr̂
]
; (8b)

and the expansion coefficients are expressed below:

f imn =
4m∑∞

r=0,1
′ 2(dmnr )2(r+2m)!

(2r+2m+1)r!

∞∑
r=0,1

′
dmnr Pmm+r(cosα)/ sinα
(r +m)(r +m+ 1)

, (9a)

gimn =
2(2− δm0)∑∞

r=0,1
′ 2(dmnr )2(r+2m)!

(2r+2m+1)r!

∞∑
r=0,1

′
dmnr Pmm+r(cosα)/ sinα
(r +m)(r +m+ 1)

. (9b)

In Eq. (9), Pmn (x) stands for the associated Legendre function, the
coefficient dmnr is given in [19], and the prime over the summation
sign indicates that the summation is carried out over only the even
values of r when n −m is even, and over only the odd values of r
when n − m is odd. Explicit forms of the oblate spheroidal vector
wave functions are detailed in [19], and hence will not be presented
here.

4. EXPANSION OF SCATTERED AND TRANSMITTING
ELECTROMAGNETIC FIELDS

To determine the scattered and transmitting electromagnetic fields (in
the outer and inner regions of the raindrop-divided oblate spheroidal
structure, we use vector wave eigenfunction expansion to express them.
In a form similar to the expanded incident wave fields, the scattered
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electromagnetic fields ( Es and Hs ) for parallel (I) and perpendicular
(II) polarizations are represented as follows:

[
Es
I

Hs
II

]
=

[
1
−k0
ωµ0

] ∞∑
n=1

n∑
m=0

in
[
g
sIII
mnMr(1)

emn(k0) + if
sIII
mnNr(1)

omn(k0)
]
,

(10a)[
Es
II

Hs
I

]
=

[
1
k0
ωµ0

] ∞∑
n=1

n∑
m=0

in
[
f
sIII
mnMr(1)

omn(k0)− igs
II
I
mnNr(1)

emn(k0)
]
;

(10b)

while the transmitting fields ( Et and Ht are given below

[
Et
I

Ht
II

]
=

[
1

−k0
√
εr

ωµ0

] ∞∑
n=1

n∑
m=0

in
[
g
tIII
mnMr(1)

emn(k0) + if
tIII
mnNr(1)

omn(k0)
]
,

(11a)[
Et
II

Ht
I

]
=

[
1

k0
√
εr

ωµ0

] ∞∑
n=1

n∑
m=0

in
[
f
tIII
mnMr(1)

omn(k0)− igt
II
I
mnNr(1)

emn(k0)
]
.

(11b)

It is seen that we have four sets of unknown coefficients ( fs
II
I
mn , g

sIII
mn ,

f
tIII
mn and g

tIII
mn ) to be determined.

4.1 Boundary Conditions at ξ = ξ0 in Scalar Form

To determine the aforementioned four unknown coefficients, we need
to apply the boundary conditions at ξ = ξ0 . In vector form, the
boundary conditions can be expressed as follows:

ξ̂ ×





 Ei

I
II

Hi
I
II


 +


 Es

I
II

Hs
I
II





 = ξ̂ ×


 Et

I
II

Ht
I
II


 . (12)

As mentioned earlier, both parallel and perpendicular polarizations are
considered. To detail the tangential components of the electromagnetic
fields on the surface ξ = ξ0 , the subsequent two subsections address
the boundary conditions in the component form.
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4.2 TE-Mode Excitation

For the parallel polarized waves (or TE-mode excitation), we express
the boundary conditions in the explicit component form as follows (the
term before the colon symbol specifies the boundary condition for that
component):

EI
η :

∞∑
n=m

in
[
V (3),t
mn (c1)fsImn + U (3),t

mn (c1)gsImn

−V (3),t
mn (c1)f tImn + U (3),t

mn (c1)gtImn
]

= −
∞∑
n=m

inV (3),t
mn (c1)f imn + U (3),t

mn (c1)gimn, (13a)

EI
φ :

∞∑
n=m

in
[
Y (3),t
mn (c1)fsImn +X(3),t

mn (c1)gsImn

−Y (3),t
mn (c1)f tImn +X(3),t

mn (c1)gtImn
]

= −
∞∑
n=m

inY (3),t
mn (c1)f imn +X(3),t

mn (c1)gimn, (13b)

HI
η :

∞∑
n=m

in
[
U (3),t
mn (c1)fsImn + V (3),t

mn (c1)gsImn

−√εrU (1),t
mn (c2)f tImn −

√
εrV

(1),t
mn (c2)gtImn

]

= −
∞∑
n=m

in
[
U (1),t
mn (c2)f imn + V (1),t

mn (c2)gimn
]
, (13c)

HI
φ :

∞∑
n=m

in
[
X(3),t
mn (c1)fsImn + Y (3),t

mn (c1)gsImn

−√εrX(1),t
mn (c2)f tImn −

√
εrY

(1),t
mn (c2)gtImn

]

= −
∞∑
n=m

in
[
X(1),t
mn (c2)f imn + Y (1),t

mn (c2)gimn
]
, (13d)

(m = 0, 1, 2, · · · ; t = 0, 1, 2, · · ·)
where U

(1,3),t
mn (c1,2) , V (1,3),t

mn (c1,2) , X(1,3),t
mn (c1,2) , and Y

(1,3),t
mn (c1,2) are

four known coefficients given in (A-1a)–(A-1d) and (A-2a)–(A-2c) in
Appendix A.
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4.3 TM-Mode Excitation

For the perpendicular polarized waves (or TM-mode excitation),
similarly the boundary conditions are expressed in the component form
below:

EII
η :

∞∑
n=m

in
[
U (3),t
mn (c1)fsIImn + V (3),t

mn (c1)gsIImn

−U (3),t
mn (c1)f tIImn + V (3),t

mn (c1)gtIImn
]

= −
∞∑
n=m

inU (3),t
mn (c1)f imn + V (3),t

mn (c1)gimn, (14a)

EII
φ :

∞∑
n=m

in
[
X(3),t
mn (c1)fsIImn + Y (3),t

mn (c1)gsIImn

−X(3),t
mn (c1)f tIImn + Y (3),t

mn (c1)gtIImn
]

= −
∞∑
n=m

inX(3),t
mn (c1)f imn + Y (3),t

mn (c1)gimn, (14b)

HII
η :

∞∑
n=m

in
[
V (3),t
mn (c1)fsIImn + U (3),t

mn (c1)gsIImn

−√εrV (1),t
mn (c2)f tIImn −

√
εrU

(1),t
mn (c2)gtIImn

]

= −
∞∑
n=m

in
[
V (1),t
mn (c2)f imn + U (1),t

mn (c2)gimn
]
, (14c)

HII
φ :

∞∑
n=m

in
[
Y (3),t
mn (c1)fsIImn +X(3),t

mn (c1)gsIImn

−√εrY (1),t
mn (c2)f tIImn −

√
εrX

(1),t
mn (c2)gtIImn

]

= −
∞∑
n=m

in
[
Y (1),t
mn (c2)f imn +X(1),t

mn (c2)gimn
]
, (14d)

where U
(1,3),t
mn (c1,2) , V (1,3),t

mn (c1,2) , X(1,3),t
mn (c1,2) , and Y

(1,3),t
mn (c1,2) are

the same known coefficients used in (13) and given in (A-1a)–(A-1d)
and (A-2a)–(A-2c) in Appendix A.
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The parameters U (j),t
mn and V

(j),t
mn correspond to the η̂ -components

of the vector wave functions Mr(j)
mn and Nr(j)

mn while the parameters
X

(j),t
mn and Y

(j),t
mn correspond to the φ̂ -components of the vector eigen-

functions, respectively. In the computation, the number t is taken as
large as is needed to achieve the desired accuracy in the computation
of the total cross sections.

5. EXTINCTION CROSS SECTION AND SPECIFIC
RAINFALL ATTENUATION

5.1 Convergence Issues and Comparison of Results

As the analysis involves infinite series summations of the vector
wave eigenfunctions, a detailed checking of the algorithm should be
made to ensure that the program converges well and/or fast before the
needed information is obtained. From the computations, it is found
that truncation numbers depend upon (i) size of spheroids and (ii)
orientation of the scatterers. In general, a small spheroid with a small
ratio of a/b and a small refractive index requires a small value of
convergence number, while a large spheroid with a large ratio of a/b
and a large refractive index requires a large convergence number. The
truncation condition used in [14] is also considered in the computation.

To examine and ensure the correctness of the program, the intensity
function values of forward and backward scattered waves with parallel
polarization incidence for prolate spheroids of various sizes have been
computed and shown in Table 1. Also, these values are compared with
the available data obtained by Asano and Yamamoto [13] in Table 1.
It is seen clearly that the values obtained in this paper are in excellent
agreement with the published data but are more accurate since more
significant digits are provided.

5.2 Size Parameters of Raindrops

After the applicability of the algorithm is confirmed, we can start
to compute the needed quantities. However, we have to set the oblate
spheroidal raindrop parameters first. Therefore, the following equivo-
lumic spherical raindrops are utilized [3]:

4
3
πā3 =

4
3
πab2, and

a

b
= 1− ā; (15)



Microwave specific attenuation by oblate spheroidal raindrops 137

Table 1. Comparison of intensity function values of forward and back-
ward scattered waves at parallel polarization incidence for prolate
spheroids of various sizes.

where a and b stand for the minor and major axes of the oblate
spheroid and a (in cm) denotes the mean radius of the raindrops.

Furthermore, the basic parameters ξ0 and d in oblate spheroidal
coordinates can then be determined from the two equations given as
follows:

a =
d

2
ξ0, (16a)

b =
d

2
(ξ2

0 + 1)
1
2 . (16b)

Based on these relationships shown in Eq. (15) and Eq. (16), we have
computed the needed parameters as showed in Table 2 to be used in
the numerical analysis. Further, the coefficients c1 and c2 for various
mean raindrop radius and operating frequencies are calculated and
shown in Table 3 and Table 4.

It should be pointed out that in Singapore, three experimental links
operating at 15 GHz, 21.225 GHz and 38 GHz have been established
to collect the rain attenuation data. This is why we have chosen the
three specific operating frequencies in the calculations. However, the
parameters at other frequencies can also be obtained in the similar way
as mentioned earlier.

5.3 Extinction (Total) Cross Section

After we have set the parameters for the computation, the total
cross sections are computed shown below.
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Table 2. Spheroidal parameters ξ0 and confocal distance d for various
sizes of raindrops.

Table 3. The spheroidal size parameter c1 of raindrop outer medium
at various frequencies of incident waves.
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Table 4. The spheroidal size parameter c2 of raindrop inner medium
at various frequencies of incident waves.

5.3.1 TE-Mode Excitation

For TE-excited wave illumination, the total (extinction) cross sec-
tion is given below:

QIext = −λ
2

π
Re

∞∑
n=1

n∑
m=0

[
α1,mnm

Smn(cos ζ)
sin ζ

+ β1,mn
dSmn(cos ζ)

dζ

]
,

(17a)
where λ = πd/c(i) , different from the eigenvalue λmn in Eq. (4),
stands for the wavelength in free space, and Re denotes the real part.

5.3.2 TM-Mode Excitation

Similarly, the total (extinction) cross section for TM-excited wave
illumination is given by:

QIIext = −λ
2

π
Re

∞∑
n=1

n∑
m=0

[
α2,mnm

Smn(cos ζ)
sin ζ

+ β2,mn
dSmn(cos ζ)

dζ

]
.

(17b)
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5.3.3 Special Case: ζ = 0◦

For parallel incidence, ζ = 0◦ , the total cross sections for both TE
and TM modes reduce to

QIext = QIIext = −λ
2

π

∞∑
n=1


 ∑
r=0,1

′ (r + 1)(r + 2)
2

d1n
r


Re[α1n + β1n],

(17c)
where α1n and β1n are either α1,1n and β1,1n or α2,1n and β2,1n ,
respectively, as these two sets are the same in this case.

Using the above formulas in Eq. (17) for both TE-mode and TM-
mode excited waves, we have computed the total cross sections at the
specific frequencies of 15 GHz, 21.225 GHz, and 38 GHz. The to-
tal cross sections calculated in this paper using the full-wave analysis
and vector wave eigenfunction expansion are then compared with the
data obtained using the T-Matrix Method in [21], as shown in Fig. 2.
It is apparent that the two results obtained using different methods
are very close with reasonably small errors. Although Asano and Ya-
mamoto [13] had implemented the similar procedure in the calculation
of scattering cross sections, they did not give any data of total cross
sections.

5.3.4 Specific Rainfall Attenuation

After obtaining the total (extinction) cross sections Q
I
II
ext for the

TE-mode (I) or TM-mode (II) excitations, we can compute the specific
attenuations using the following formula:

A I
II

= 4.343× 103

∫ ∞
0

N(D)Q
I
II
extdD, dB/km, (18)

where N(D) is the raindrop size distribution (DSD).
The randrop size distribution in Singapore’s tropical environment

has been obtained in 1993 by Yeo et al. [15] and then revised by Li et
al. [16]. Following the similar procedure in [17, 18], we have obtained
the specific attenuation at the three frequencies, 15 GHz, 21.225 GHz,
and 38 GHz. The same procedure in [18] is followed to feed the total
cross section data into Eq. (18). The TCS data obtained in this pa-
per are found very close to those from the T-matrix approach [21] and
the boundary point matching method [17]. The results of the specific
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Figure 2. Comparison between the results obtained from the exact
spheroidal function analysis and the Waterman’s T-matrix method.



142 Li et al.

attenuation obtained are also very close to those of [17]. To avoid rep-
etition, this paper has not included the results of specific attenuation.

6. CONCLUSIONS

In this paper, electromagnetic wave scattering from the oblate sphe-
roidal randrops of various sizes is studied using a full-wave technique
that expands the incident waves, scattered waves, and transmitting
waves into a series of oblate spheroidal vector wave eigenfunctions.
The boundary conditions are then invoked to determine the scattering
coefficients of the expanded fields. Exact and analytical results have
been obtained in terms of the oblate radial and angular spheroidal har-
monics. Both TE-mode and TM-mode incident plane waves are con-
sidered in the analysis. The raindrop is considered as a lossy medium
having a permittivity which can be calculated using the Ray’s fortran
algorithm. As no commercial program exists so far for computing the
oblate radial and angular spheroidal harmonics with complex argu-
ments, an algorithm has been developed in this work under the soft-
ware Mathematica TM . This algorithm is shown to be an accurate and
efficient package by comparing the current results with the published
data available in the public domain. Also, a comparison between the
results obtained using the exact full-wave analysis and the T-matrix
approach has been made and a very good agreement has been achieved.

APPENDIX A: INTERMEDIATE COEFFICIENTS
U

(j)t
mn (−ic) , V (j)t

mn (−ic) , X(j)t
mn (−ic) , AND Y

(j)t
mn (−ic)

A The Coefficients for m ≥ 1

In the case where m ≥ 1 , the intermediate coefficients, U (j)t
mn (−ic) ,

V
(j)t
mn (−ic) , X(j)t

mn (−ic) , and Y
(j)t
mn (−ic) , are expressed in closed form

as follows:

U (j)t
mn (−ic) =mξ0R(j)

mn(−ic(h); iξ0)

×
[
(ξ2

0 + 1)2Bmn
t (−ic(h))− 2(ξ2

0 + 1)2Amnt (−ic(h))

+ Emn
t (−ic(h))

]
, (A-1a)
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V (j)t
mn (−ic) =

i

c(h)

{
− m2

ξ2
0 + 1

R(j)
mn(−ic(h); iξ0)

×
[
(ξ2

0 + 1)2Dmn
t (−ic(h))

− 2(ξ2
0 + 1)2Cmnt (−ic(h))

+ Fmnt (−ic(h))
]

+R(j)
mn(−ic(h); iξ0)

×
[
λmn(−ic(h))− (c(h)ξ0)2 −

m2

ξ2
0 + 1

]

×
[
(ξ2

0 + 1)Cmnt (−ic(h))− Fmnt (−ic(h))
]

+ ξ0(ξ2
0 + 1)

[
dR

(j)
mn(−ic(h); iξ0)

dξ0

]

×
[
−2Cmnt (−ic(h)) + (ξ2

0 + 1)Gmnt (−ic(h))

−Imnt (−ic(h))
]

+R(j)
mn(−ic(h); iξ0)

×
[
(ξ2

0 + 1)2Gmnt (−ic(h))

− (3ξ2
0 + 1)Imnt (−ic(h))

]}
, (A-1b)

X(j)t
mn (−ic) =ξ0R(j)

mn(−ic(h); iξ0)Gmnt (−ic(h))

+ Cmnt (−ic(h))
[
dR

(j)
mn(−ic(h); iξ0)

dξ0

]
, (A-1c)

Y (j)t
mn (−ic) =

im

c(h)

{
−(ξ2

0 + 1)−1R(j)
mn(−ic(h); iξ0)

×
[
Amnt (−ic(h)) +Hmn

t (−ic(h))
]

+Bmn
t (−ic(h))

×
[
R(j)
mn(−ic(h); iξ0)

+ ξ0

(dR(j)
mn(−ic(h); iξ0)

dξ0

)]}
, (A-1d)

where m = 1, 2, 3, · · · and t = 0, 1, 2, · · · .

B The Coefficients for m = 0

In the case that m = 0 , the intermediate coefficients, U (j)t
0n (−ic) ,
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V
(j)t
0n (−ic) , X

(j)t
0n (−ic) , and Y

(j)t
0n (−ic) , are further simplified and

given as follows:

U
(j)t
0n (−ic) =Y 0n

(j)t(−ic) = 0, (A-2a)

V
(j)t
0n (−ic) =

i

c(h)

{
+R(j)

0n (−ic(h); iξ0)
[
λ0n −

(
c(h)ξ0

)2
]

[(
ξ2
0 + 1

)
C0n
t (−ic(h))− F 0n

t (−ic(h))
]

+ ξ0
(
ξ2
0 + 1

) [
dR

(j)
0n (−ic(h); iξ0)

dξ0

]

×
[
−2C0n

t (−ic(h)) +
(
ξ2
0 + 1

)
G0n
t (−ic(h))

− I0n
t (−ic(h))

]
+R

(j)
0n (−ic(h); iξ0)[(

ξ2
0 + 1

)2
G0n
t (−ic(h))

−
(
3ξ2

0 + 1
)
I0n
t (−ic(h))

]}
, (A-2b)

X
(j)t
0n (−ic) =ξ0R

(j)
0n (−ic(h); iξ0)G0n

t (−ic(h))

+

[
dR

(j)
0n (−ic(h); iξ0)

dξ0

]
C0n
t (−ic(h)) (A-2c)

APPENDIX B: INTERMEDIATE COEFFICIENTS
Amnt TO Imnt

A Special Relations Used in the Derivation

The following special relations are used in the derivation of the
scattering coefficients.

The first is the normalized factor Nmn of the angular spheroidal
functions Smn(ka, cos θ) , given by:

Nmn = 2
∞∑

l=0,1

′
(l + 2m)!

(2l + 2m+ 1)l!
(dmnl )2. (B-3)

The second and third relations used in the derivation are provided
as follows:
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∫ +1

−1
Pmµ (η)Pmν (η)dη =

2
2µ+ 1

(µ+m)!
(µ−m)!

δµν , (B-4a)

and ∫ +1

−1
Pm+2
µ (η)Pmν (η)dη =




0, ν > µ;
− 2

2µ+1
(µ+m)!

(µ−m−2)! , ν = µ;

2(m+ 1) (µ+m)!
(µ−m−2)! , ν < µ.

(B-4b)

In addition, the following pair of equations is also used

1
(2m+ 2t− 1)(2m+ 2t+ 1)

+
1

(2m+ 2t− 3)(2m+ 2t− 1)

− 2
(2m+ 2t− 3)(2m+ 2t+ 1)

= 0, (B-5a)

and

(2m+ t− 2)
(2m+ 2t− 5)(2m+ 2t− 3)(2m+ 2t− 1)

− (4m+ t− 1)
(2m+ 2t− 5)(2m+ 2t− 1)(2m+ 2t+ 1)

− (t− 2m)
(2m+ 2t− 3)(2m+ 2t− 1)(2m+ 2t+ 3)

+
(t+ 1)

(2m+ 2t− 1)(2m+ 2t+ 1)(2m+ 2t+ 3)
= 0. (B-5b)

For simplicity of the representation of the intermediates, the fol-
lowing two notations for the normalized coefficients N1 and N2 are
assumed:

N1 = Nm−1,m−1+t =
2

2m+ 2t− 1
(2m+ t− 2)!

t!
, (B-6a)

N2 = N1,1+t =
2

2t+ 3
(t+ 2)!
t!

. (B-6b)

B The Coefficients for m ≥ 1

In the case m ≥ 1 , the intermediates Amnt and Imnt are expressed
in closed form as follows:
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Amnt = [N1]−1
∑
r=0,1

′
dmnr

∫ +1

−1
η(1− η2)1/2Pmm+r(η)P

m−1
m−1+t(η)dη

=
(2m+ t)(2m+ t− 1)

2m+ 2t+ 1
dmnt − t(t− 1)

2m+ 2t− 3
dmnt−2, (B-7a)

Bmn
t = [N1]−1

∑
r=0,1

′
dmnr

∫ +1

−1
(1− η2)−1/2Pmm+r(η)P

m−1
m−1+t(η)dη

= (2m+ 2t− 1)
∑
r=t

′
dmnr , (B-7b)

Cmnt = [N1]−1
∑
r=0,1

′
dmnr

∫ +1

−1
η(1− η2)1/2Pmm+r(η)P

m−1
m−1+t(η)dη

=
(2m+ t− 1)(2m+ t)

2m+ 2t+ 1

[
2m+ t+ 1
2m+ 2t+ 3

dmnt+1 +
t

2m+ 2t− 1
dmnt−1

]

− t(t− 1)
2m+ 2t− 3

[
2m+ t− 1
2m+ 2t− 1

dmnt−1 +
t− 2

2m+ 2t− 5
dmnt−3

]
, (B-7c)

Dmn
t = [N1]−1

∑
r=0,1

′
dmnr

∫ +1

−1
η(1− η2)−1/2Pmm+r(η)P

m−1
m−1+t(η)dη

= tdmnt−1 + (2m+ 2t− 1)
∑
r=t+1

′
dmnr , (B-7d)

Emn
t = [N1]−1

∑
r=0,1

′
dmnr

∫ +1

−1
(1− η2)3/2Pmm+r(η)P

m−1
m−1+t(η)dη

=
(2m+ t− 1)(2m+ t)(2m+ t+ 1)(2m+ t+ 2)

(2m+ 2t+ 1)(2m+ 2t+ 3)

·
[

dmnt
(2m+ 2t+ 1)

− dmnt+2

(2m+ 2t+ 5)

]

− 2t(t− 1)(2m+ t)(2m+ t− 1)
(2m+ 2t− 3)(2m+ 2t+ 1)

·
[

dmnt−2

(2m+ 2t− 3)
− dmnt

(2m+ 2t+ 1)

]

+
t(t− 1)(t− 2)(t− 3)

(2m+ 2t− 5)(2m+ 2t− 3)

·
[

dmnt−4

(2m+ 2t− 7)
− dmnt−2

(2m+ 2t− 3)

]
, (B-7e)
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Fmnt = [N1]−1
∑
r=0,1

′
dmnr

∫ +1

−1
(1− η2)3/2Pmm+r(η)P

m−1
m−1+t(η)dη

=
(2m+ t− 1)(2m+ t)(2m+ t+ 1)(2m+ t+ 2)

(2m+ 2t+ 1)(2m+ 2t+ 3)

· 2m+ t+ 3
2m+ 2t+ 5

[
dmnt+1

2m+ 2t+ 3
− dmnt+3

2m+ 2t+ 7

]

− t(t− 2m)(2m+ t− 1)(2m+ t)(2m+ t+ 1)
(2m+ 2t− 3)(2m+ 2t+ 1)(2m+ 2t+ 3)

·
[

dmnt−1

2m+ 2t− 1
− dmnt+1

2m+ 2t+ 3

]

− t(t− 1)(t− 2)(2m+ t− 1)(4m+ t− 1)
2m+ 2t− 5)(2m+ 2t− 3)(2m+ 2t+ 1)

·
[

dmnt−3

2m+ 2t− 5
− dmnt−1

2m+ 2t− 1

]

+
t(t− 1)(t− 2)(t− 3)(t− 4)

(2m+ 2t− 7)(2m+ 2t− 5)(2m+ 2t− 3)

·
[

dmnt−5

2m+ 2t− 9
− dmnt−3

2m+ 2t− 5

]
, (B-7f)

Gmnt = [N1]−1
∑
r=0,1

′
dmnr

∫ +1

−1
(1− η2)1/2

dPmm+r(η)
dη

Pm−1
m−1+t(η)dη

= −t(m+ t− 1)dmnt−1 +m(2m+ 2t− 1)
∑
r=t−3

′
dmnt , (B-7g)

Hmn
t = [N1]−1

∑
r=0,1

′
dmnr

∫ +1

−1
η(1− η2)1/2

dPmm+r(η)
dη

Pm−1
m−1+t(η)dη

= − t(t− 1)(m+ t− 2)
2m+ 2t− 3

dmnt−2 −
dmnt

2(2m+ 2t+ 1)
· [t(t− 1)(2m+ 2t+ 1) + (2m+ t)(2m+ t− 1)]

+m(2m+ 2t− 1)
∑
r=t+2

′
dmnt , (B-7h)

Imnt = [N1]−1
∑
r=0,1

′
dmnr

∫ +1

−1
(1− η2)3/2

dPmm+r(η)
dη

Pm−1
m−1+t(η)dη

=
(m+ t+ 2)(2m+ t− 1)(2m+ t)(2m+ t+ 1)

(2m+ 2t+ 1)(2m+ 2t+ 3)
dmnt+1
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−
[
t(2m+ t− 1)(2m+ t)(m+ t− 1)

(2m+ 2t− 1)(2m+ 2t+ 1)

− t(t− 1)(m+ t)(2m+ t− 1)
(2m+ 2t− 3)(2m+ 2t− 1)

]
dmnt−1

+
t(t− 1)(t− 2)(t+m− 3)

(2m+ 2t− 5)(2m+ 2t− 3)
dmnt−3. (B-7i)

C The Coefficients for m = 0

In the case m = 0 , the intermediates reduce to the following for-
mulae:

C0n
t = [N1]−1

∑
r=0,1

′
d0n
r

∫ +1

−1
η(1− η2)1/2P 0

r (η)P 1
1+t(η)dη

=
1

2t+ 1

[
t+ 1
2t+ 3

d0n
t+1 +

t

(2t− 1)
d0n
t−1

]

− 1
2t+ 5

[
t+ 3
2t+ 7

d0n
t+3 +

t+ 2
(2t+ 3)

d0n
t+1

]
, (B-8a)

F 0n
t = [N1]−1

∑
r=0,1

′
d0n
r

∫ +1

−1
η(1− η2)3/2P 0

r (η)P 1
1+t(η)dη

=
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)

·
[

d0n
1+t

(2t+ 3)(2t+ 5)
− 2d0n

t+3

(2t+ 5)(2t+ 9)

+
d0n
t+5

(2t+ 9)(2t+ 11)

]
+

3t(t+ 3)
(2t+ 1)(2t+ 5)

·
[

d0n
t−1

(2t− 1)(2t+ 1)
− 2d0n

t+1

(2t+ 1)(2t+ 5)

+
d0n
t+3

(2t+ 5)(2t+ 7)

]
− t(t− 1)(t− 2)

(2t− 1)(2t+ 1)

·
[

d0n
t−3

(2t− 5)(2t− 3)
− 2d0n

t−1

(2t− 3)(2t+ 1)

+
d0n
t+1

(2t+ 1)(2t+ 3)

]
, (B-8b)
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G0n
t = [N1]−1

∑
r=0,1

′
d0n
r

∫ +1

−1
(1− η2)1/2

dP 0
r (η)
dη

P 1
1+t(η)dη

= d0n
t+1, (B-8c)

I0n
t = [N1]−1

∑
r=0,1

′
d0n
r

∫ +1

−1
(1− η2)3/2

dP 0
r (η)
dη

P 1
1+t(η)dη

=
1

2t+ 1

[
(t+ 1)(t+ 2)

2t+ 3
d0n
t+1 −

t(t− 1)
2t− 1

d0n
t−1

]

− 1
2t+ 5

[
(t+ 3)(t+ 4)

2t+ 7
d0n
t+3 −

(t+ 1)(t+ 2)
2t+ 3

d0n
t+1

]
.

(B-8d)
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