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1. INTRODUCTION

Recent research in computational electromagnetics has been widely fo-
cused on the development of general-purpose solution methods for elec-
tromagnetic problems such as scattering, dielectric cavity resonators,
dielectric waveguides, integrated optical waveguides, EMI and EMC
studies, VLSI chips and packages, and computer-aided design [1–4].
According to Maxwell’s equations, all of the propagating modes within
an inhomogeneous structure are hybrid. Therefore, it is necessary to
perform full-wave analysis for such structures.

Many numerical methods have been developed in the literature.
Typical methods are the mode-matching method [5], the boundary ele-
ment method [6], the various finite element method [7–9], and frequency-
domain finite-difference method [10]. The finite element method is
the most generally applicable and most versatile in modeling non-
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orthogonal and/or non-uniform grid problem. It is possible to fit any
polygonal shape by choosing triangular element shapes and sizes and
to increase the accuracy of the solution by using high-order polyno-
mial approximation functions. It is also very suitable for computing
electromagnetic fields in inhomogeneous media.

More recently, it was suggested that the edge-elements whose de-
grees of freedom are associated with the fields along the six edges of a
tetrahedron should replace the conventional nodal-based elements [1],
with the functional formulation of full magnetic or electric fields to
cure the spurious modes problem [11]. In contrast to the node-based
elements, edge elements can treat geometries with sharp edges and
divergenceless. In the analysis of the modes of inhomogeneous prob-
lems using edge-elements, the continuity of electric or magnetic field
intensities is imposed across the material interfaces and the continu-
ity of the flux density in the normal direction is satisfied through the
natural boundary conditions in the variational process. The reason
for the edge-elements to overcome the spurious modes is the improved
modeling of the undesired gradient field at zero frequency.

The computational methods of electromagnetic problems in high-
speed analog and digital integrated circuits require electromagnetic
analysis of the distributed system. A distributed electromagnetic anal-
ysis results in a large number of degrees of freedom in the tangential
vector finite element model. Consequently, it is necessary to develop
a more efficient technique for the solution of the large matrices re-
sulting from numerical methods, but also to develop a reduced-order
model which substitutes the mathematical model of the problem with
a substantially lower-order but sufficiently accurate model.

More recently, the complex frequency hopping method which has
been used efficient in the simulation of large circuits including both
lumped elements and transmission lines [12–14] was used in conjunc-
tion with the finite element modeling of electromagnetic problems [15,
16]. This paper discusses the extension of a model reduction method
[15, 16] based on the tangential vector finite element and complex fre-
quency hopping methods to compute the resonant frequencies of cavity
resonators and the characteristic impedance of stripline shielded in a
rectangular cavity.

Complex frequency hopping is a technique recently developed in the
circuit simulation area, which yields a speed-up factor of 10–1000 over
conventional circuit simulators. It has been extended to the solution of



Model-reduction method for electromagnetic problems 95

static fields in VLSI interconnects, in ground/power planes and ther-
mal equations [14, 17]. CFH uses the concept of moment matching [18]
to obtain both frequency- and time-domain responses of large linear
networks through a lower-order multipoint Pade approximation. It ex-
tracts a relatively small set of dominant poles to represent a large net-
work that may contain hundreds to thousands of actual poles. CFH is
particularly suitable for solving large sets of ordinary differential equa-
tions obtained from the FEM analysis of electromagnetic problems.
The main advantages of the proposed model-reduction technique can
be summarized as follows: (1) 10-1000 times faster than the conven-
tional FEM solution techniques; (2) produces simultaneously both the
frequency- and the time-domain results; (3) can handle general cases of
electromagnetic problems; both nodal and edge element formulations;
(4) the solution algorithm does not suffer from the instability prob-
lems associated with conventional methods; (5) problems consisting of
Dirichlet, Neumann and combined boundary conditions can be solved
and the proposed model-reduction technique can be easily integrated
with conventional electromagnetic simulators.

The following sections describe the steps involved in this method:
the field formulations of the problem are given in Section 2; in subsec-
tions A, B, and C the tangential vector finite element method, complex
frequency hopping, and moment generation are discussed. In Section 3,
computational results are presented; finally a brief conclusion is given
in Section 4.

2. BASIC FORMULATIONS

Efficient three-dimensional full wave analysis (FWA) of electromag-
netic problems becomes more important when one needs to accurately
characterize the dispersive properties of high-speed digital or analog
devices at higher frequencies. FWA takes into account all field compo-
nents and related boundary conditions. TVFEM is nowadays a basic
technical instrument for electrical engineers; its rapid success is due
to a steadily increasing availability of computer programs that can be
used without any difficulties.

An electromagnetic wave propagation phenomenon can be expressed
by the Maxwell’s coupled curl equations as

1
µr
∇×E = −ωµoH (1a)
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∇×H = ωεE + Ji (1b)

where the harmonic variation exp(ωt) is assumed. H denotes the
magnetic field vector, E the electric field, Ji the current density, µ
the permeability, ε the permittivity of the material, and ω the angular
frequency of the electromagnetic phenomenon. Eliminating H from
equations (1a) and (1b) yields the following TVFEM’s equations

∇× 1
µr
∇×E− k2

oεrE = −ωµoJi in Ω (2a)

n×E = 0 on Γe (2b)
n×∇×E = 0 on Γh (2c)
∇×E = koE on Γs (2d)

where Γe , Γh are perfect electric and magnetic surfaces, respectively,
inside Ω , Γs is the truncation boundary, n is the unit vector normal
on these surfaces, k2

o = ω2µ0ε0 , µo and εo are the permeability and
permittivity of the free space, respectively, and εr = ε

εo
. For the sake

of simplicity, the first-order absorbing boundary condition on Γs is
selected to truncate the infinite domain into a finite region. Using
Galerkin’s method [19], the bilinear functional for the electric field is

F (Et, E) =
∫
V

(
1
µr
∇×Et) • (∇×E)− k2

oεrEt •E + ωµoEt • Ji)dv

+ ko

∫
Γs

Et • (E× n)ds

=0
(3)

where Et is a testing function.

2.1 Vector Finite Element Formulation

The formulation based on the tangential vector finite element
method and absorbing boundary condition is presented. The entire
problem domain is discretized into a finite number of subregions called
elements. The Galerkin’s finite element procedure is applied to for-
mulate the bounded region. The extension of a finite element to open
boundaries is carried out by imposing Sommerfeld’s radiation condi-
tion.

In the tangential vector finite element formulation, the problem do-
main, V, is subdivided into tetrahedral elements, V e(e = 1, 2, · · · , M ),
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Figure 1. Node and edge numbering of the tetrahedral element.

where M denotes the total number of tetrahedral elements. The three-
dimensional edge-based, W e

j , the Whitney 1-form vector shape func-
tion associated to the j -th edge between nodes j1 and j2 is defined
in the tetrahedrons as

We
j = lej(L

e
j1∇Lej2 − Lej2∇Lej1) (4)

where Lj1 and Lj2 are the barycentric functions [20] of node j1
and j2 and lj is the length of a tetrahedron edge. The edge and
node numbering scheme used is shown in Fig. 1 and Table I. Over
each tetrahedral element of the problem domain, V , the E− field is
expressed in terms of the linear basis function as

E =
6∑
i=1

Ee
iW

e
i (5)

where Ei represents the tangential E− field on the element edges. The
basis functions used in this analysis have zero divergence and constant
curl.



98 Kolbehdari

Edge j Node j1 Node j2

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

Table I. Edge numbering order on a tetrahedral element

Applying the Galerkin’s method results in the weak form formula-
tion which can be written as a matrix equation

[A + koB− k2
oεrC][E] = −ωµoD (6a)

Equation (6a) can be re-written as

Y(s)X(s) = R(s) (6b)

The element matrices in (6a) are defined as

Ae
ij =

∫
V e

(∇×We
i ) • (

1
µr
∇×We

j)dv (7a)

Be
ij =

∫
Se

We
i • (We

j × n)ds (7b)

Ce
ij =

∫
V e

We
i •We

jdv (7c)

De
i =

∫
V e

We
i • Jdv (7d)

where V e is the elemental volume; Se is the elemental surface.

2.2 Complex Frequency Hopping

Complex frequency hopping (CFH) [12–14] is a recently developed
model-reduction algorithm in the circuit simulation area. It has been
successfully and efficiently applied to the solution of large set of ordi-
nary differential equations and it uses moment-matching to obtain a
reduced-order model of a linear system. In general, the moment match-
ing technique approximates the frequency response of a Taylor series
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expansion in the complex s plane. The cost of an expansion is approx-
imately one frequency point analysis. The moments (coefficients of the
expansion) are matched to a lower-order transfer function using a ratio-
nal Pade approximation. This transfer function can be used to obtain
the output response. Single Pade approximations are accurate near the
point of expansion in the complex s plane and decrease in accuracy
with increased distance from the point of expansion. CFH overcomes
this problem by performing multiple Taylor expansions in the complex
plane using a binary search algorithm. With a minimized number of
frequency point expansions, enough information is obtained to enable
the generation of an approximate transfer function that matches the
original function up to a pre-defined highest frequency. The transfer
function or set of transfer functions then acts like the entire network
up to that frequency, in both the time and frequency domains.

Expanding X(s) in (6b) about the complex frequency point s = α
yields,

X(s) =
∑
i

Mn(s− α)n (8)

where Mn is the nth vector of coefficients (moments) of the Taylor
series expansion. A recursive relation for the evaluation of moments
can be obtained in the form

[Y(α)]Mn = −
n∑
r=1

Y(s)(r)|s=αMn−r
r!

(9)

The transfer function of the system is then found by matching a Pade
approximation to the moments of the system in (8). The reduced-order
model which is obtained in terms of approximate dominant poles p̂i
and residues k̂i of the system can be represented as

H(s) = Ĥ(s) = ĉ +
L∑
i=0

k̂i
s− p̂i

(10)

where ĉ is the direct coupling constant between the input and the
output and L is the total number of dominant poles extracted. The
corresponding approximate time-domain impulse response is given by

h(t) = ĥ(t) = ĉδt +
L∑
i=0

k̂ie
p̂i (11)
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In order to compute the moments in (9), we need the derivatives
Y(r)(s) . The computation of Y(r)(s) has been discussed extensively
in the circuit simulation area where the Y(s) matrix comprises cir-
cuit elements such as inductors/capacitors and quasi-TEM intercon-
nect models. However, the computation of these moments in the case
of electromagnetic formulations has not been addressed previously in
the literature. In the following section we propose an efficient method
to compute these derivatives for EM formulations.

2.3 Moments-Generation

To obtain the derivatives of Y(s) in (9), a recursive relationship
has been developed and is summarized below:

[Cα2 + Bα + A]Mo = R(α) (12)

[Cα2 + Bα + A]M1 = −[B + 2αC]Mo + R′(α) (13)

[Cα2 + Bα + A]Mn = −BMn−1 −C[2αMn−1 + Mn−2] +
Rn(α)

n
(14)

for n ≥ 2 . Here (12), (13) and (14) give the system moments recur-
sively at a given expansion point s = α .

3. COMPUTATIONAL RESULTS

Numerical examples involving formulations for the case of homoge-
neous structures are presented in [15]. In this paper three numerical
examples are given to demonstrate the applicability and the speed-up
achieved in the case of inhomogeneous structures arising in electromag-
netic problems. The accuracy and efficiency of the proposed method
were examined for the resonant frequencies of a rectangular cavity and
conical cavity with a dielectric rod filling exciting with a Gaussian
pulse current vector and a stripline shielded in a rectangular cavity.
These examples were performed on Sun Sparc 5 workstation.

Example 1: In this example the resonant frequencies of an empty
rectangular cavity of dimension: a = 1.5m , b = 1.2m , and c = 1.0m
shown in Fig. 2 are evaluated using the proposed model-reduction tech-
nique. This example was discretized with 1912 tetrahedrons, 2431
edges, and 1829 unknowns. Using a similar kind of discretization and
equations (12)-(14), the required moments are generated and the res-
onant frequencies are extracted using the CFH algorithm. In Table II,



Model-reduction method for electromagnetic problems 101

Figure 2. A rectangular waveguide cavity.

the resonant frequencies obtained using the proposed model-reduction
technique and the conventional FEM frequency-domain (FEMFD) ap-
proaches are given and they match accurately. Also, the resonant fre-
quencies obtained using the proposed technique are compared with the
analytical solution and they agree reasonably. The speed-up achieved
using the proposed technique is compared to FEMFD in Table III.

Mode FEM & CFH FEMFD Analytical
GHz GHz GHz

110 159.77 159.34 160.07
101 180.21 180.08 180.11
011 194.29 194.37 195.29
111 219.51 219.67 219.51
210 234.46 234.47 235.76
201 250.38 250.22 250.09
102 317.11 317.23 316.21
120 268.19 268.22 269.39
121 309.21 309.21 308.31

Table II Comparison of resonant frequencies.
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Matrix FEM & CFH FEMFD Speed-up No. of
Size Minutes Minutes Ratio Hops
1829× 1829 7.75 923.8 125 13
2011× 2011 10.61 1126.7 106 15

Table III CPU Time Comparison.

Example 2: In this example a conical cavity with a dielectric rod
filling is considered, as shown in Fig. 3. This was also studied in [21]
chosen to demonstrate the accuracy and CPU speed-up of the proposed
method. The finite element mesh consisted of 3432 tetrahedrons with
4531 edges and 3412 unknowns. The structure is analyzed using the
proposed technique and the resonant frequencies are evaluated. Table
IV gives the accuracy comparison of the proposed technique with the
conventional FEMFD approach and the results reported in [21]. The
results match accurately. The speed-up achieved using the proposed
technique is compared to FEMFD in Table V.

Mode FEM & CFH FEMFD Ref. [21]
GHz GHz GHz

010 1.521 1.520 1.491
110 2.479 2.471 2.430
111 2.511 2.509 2.501
011 3.041 3.031 3.011
210 3.281 3.272 3.211
011 3.399 3.401 3.312
211 3.439 3.428 3.411
020 3.599 3.588 3.571
121 3.841 3.831 3.801

Table IV Comparison of resonant frequencies.
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Figure 3. Cylindrical cavity; a = 1.00075 cm, b = 1.27 cm, L =
1.397 cm, ε = 37.6 .

Figure 4. Stripline shielded in rectangular cavity.
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Matrix FEM & CFH FEMFD Speed-up No. of
Size Minutes Minutes Ratio Hops
3412× 3412 22.01 1534.1 69 19
3721× 3721 26.25 1875.2 58 21

Table V CPU Time Comparison.

Example 3: This example consists of stripline shielded in a rectan-
gular cavity, shown in Fig. 4 chosen [22] for the purpose of demonstrat-
ing the accuracy and CPU speed-up of the proposed model-reduction
technique. The structure is analyzed using the proposed technique
and the characteristic impedances are evaluated. Table VI gives the
accuracy comparison between the proposed technique with the conven-
tional FEMFD approach and the results reported in [22]. The results
match accurately. The speed-up achieved using the proposed technique
is compared to FEMFD in Table VII. The stripline used in packaging
applications typically will not have side walls. Here it is used to illus-
trate the proposed method. The line is excited with the field distri-
bution varying sinusoidally in time at a frequency which is below the
cut-off of the higher order mode in the waveguide. The front and back
of the waveguide are truncated using absorbing boundary conditions.
The voltage and current at a sampling point are calculated from the
field computation following the procedure outlined below. The voltage
is determined by performing a line integral of the dielectric field from
one of the walls to the stripline as

V =
∫ b

a
E • dl (15)

The current is calculated by a closed line integral of the magnetic field
around the strip as

I =
∫
c
H • dl (16)

where the contour, c , is a boundary enclosing the strip.



Model-reduction method for electromagnetic problems 105

Freq. FEM & CFH FEMFD Ref. [22]
GHz Ohm Ohm Ohm

40 35.51 35.51 35.62
50 35.88 35.85 35.90
60 36.11 36.01 36.24
70 36.20 36.13 36.45
80 36.42 36.41 36.67
90 36.62 36.65 36.72
100 37.14 37.16 37.23
110 37.81 37.65 37.92
120 38.25 38.25 38.45

Table VI Comparison of characteristic impedances.

Matrix FEM & CFH FEMFD Speed-up No. of
Size Minutes Minutes Ratio Hops
2412× 2412 15.01 1134.1 75 15
2721× 2721 19.25 1375.2 72 17

Table VII CPU Time Comparison.

4. CONCLUSIONS

An efficient model-reduction technique based on CFH and FEM for
the solution of electromagnetic problems arising in dielectric cavity
resonators and stripline is presented in this paper. Examples were
analyzed using the proposed technique and compared with analytical
and/or other reported results. Reasonable accuracy and a speed-up of
two orders of magnitude are achieved compared to conventional tech-
niques. The proposed model-reduction technique yields both frequen-
cy- and time-responses and can be easily integrated with conventional
electromagnetic simulators.
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