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1. INTRODUCTION

Electromagnetic reciprocal three-ports are used as components of cir-
cuits in a wide range of frequencies. They fulfill different functions
such as dividing and combining. They serve also as elements of fil-
ters and matched circuits. The parameter matrices of three-ports (the
scattering matrix [S], the matrix of impedances [Z] and admittances
[Y]) have been extensively discussed in the literature [1-8].
Three-ports with gyrotropic media fulfill nonreciprocal and control
functions at microwaves and in optics. They are circulators (isocircula-
tors) based on different physical effects, filters, switches, commutators,
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control power dividers, mode convertors and so on [9-20].

The development of nonreciprocal and control devices in recent years
has been directed to the accomplishment of more and more compli-
cated functions. In particular, devices combining several functions
have been developed, for example: dividers/combiners-control phase
shifters, which provide beam-forming with the number of phase shifters
reduced to half the number of elements [18], nonreciprocal impedance
transformers [15] etc. This leads to a greater complexity in the struc-
ture of the devices and makes difficult their calculations.

A matrix analysis of the nonreciprocal three-ports is difficult in gen-
eral case because of the large number of matrix parameters. Among
the papers devoted to this problem one should mention [21], where the
restrictions imposed by the unitary condition on the elements of the
scattering matrix of a three-port were investigated. This paper shows
the difficulties arising in treating 3x 3 nonsymmetric scattering matrix
even in the unitary case. In [9], the conditions for an arbitrary nondis-
sipative three-port under which it can become an ideal circulator, were
considered.

A classification of the three-ports may be accomplished in differ-
ent ways, namely according to the functions, physical effects, types
of waveguides or transmission lines being used. In [22] for example,
a classification of lossless three-ports is based on comparing the [S]-
matrix elements and equality of some of them to zero.

Two important cases of symmetrical three-ports have been consid-
ered in detail in literature. One of them is a three-port with three-fold
axis symmetry C3 (and closely related group C3y )[10]. The second
one is the case of a mirror-symmetry. Two variants of such symme-
try, namely nonreciprocal three-ports with gyrotropic symmetry and
antisymmetry have been investigated in [14]. Their scattering matri-
ces and the number of independent parameters of these matrices have
been determined. Nondissipative three-ports have been analyzed in
the paper [14] using the unitarity condition. Some problems concern-
ing description of the devices with deviations from the ideal symmetry
are discussed in [8].

The application of group theory to the electromagnetic N -ports in
the case of gyrotropic media has been considered in [23, 28]. Symmetry
leads in particularly to reducing the number of independent parameters
of the matrices [S], [Z] and [Y] of the multiports. A complete nomen-
clature of symmetrical two-ports with gyrotropic media which consists
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of eight 2 x 2 scattering matrices has been obtained in [25]. Many
examples of the group theory application to electromagnetic problems
are given in [30].

In this work, a systematical study of symmetrical three-ports with
isotropic and gyrotropic media is fulfilled. A new classification of the
three-ports based on geometrical symmetry with regard to the time re-
versal operator is suggested. Using the magnetic group approach and
Curie principle, all the possible parameter matrices of symmetrical
three-ports and their correspondence to magnetic groups are deter-
mined.

2. PROBLEM DESCRIPTION

Three-ports with linear, time invariable, passive and in general lossy
isotropic and gyrotropic media will be considered in this paper. The
dc magnetic field (and the dc magnetization of the media) may be
nonuniform. Three uniform one-mode waveguides (transmission lines)
are connected to a symmetrical volume. The mode, which propagates
in the waveguide is the lowest one.

The waveguides and/or the volume may be filled with gyrotropic
media. In the case of gyrotropic waveguides, the diagrams of the wave-
guide cross-section field structures for incident and reflected waves may
be different, and it is a problem of bidirectionality.

It is known [26], that the symmetry of the properties of the mul-
tiport (i.e., the group of symmetry of the [S]-matrix) must include
the operation of the point group of physical symmetry of this multi-
port. Therefore, we are to investigate the symmetry of the system:
waveguides + interconnecting volume + dc¢ magnetic field. In order
to find all the possible scattering matrices of such a system and the
correspondence of these matrices to magnetic groups of symmetry, i.e.,
to find the complete solution, we shall come from the highest possible
symmetry of the system under consideration.

3. DETERMINATION OF THE HIGHEST POSSIBLE
GROUP OF SYMMETRY OF THE THREE-PORTS

Let us apply first to the symmetries of the three-ports with nongy-
rotropic media. The symmetry of the interwaveguide volume and the
waveguides themselves may be different. In this situation, one uses the
Curie principle in order to find the resulting symmetry. In general, the
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Figure 1. Cross-sections of rectangular waveguides with different
symmetries.

geometrical symmetry of the complex system differs from the symme-
try of its components. In order to find the highest possible symmetry of
the system “interconnecting volume + waveguides”, we may consider
without loss of generality, the interconnecting volume in the form of a
sphere. In this case, the resulting symmetry will be determined only
by the symmetries of the waveguides and their mutual orientation.

As models of different uniform one-mode waveguides (transmission
lines), there will be further considered rectangular waveguides with
Hjp modes (or quasi- H1p modes). The highest symmetry of the rect-
angular waveguide cross section is Coy (in Schoenflies notation, the
systems of group notation will be explained in Section 4). The other
possible symmetries of the waveguide section are Cy, Cs (two variants
of the symmetry plane orientation are possible) and Cy. The exam-
ples of such waveguides are given in Fig. 1 where additional insertions
define the symmetry of rectangular waveguide.

It should be emphasized that the given figures are only spatial mod-
els of the symmetries. The real em structures with such symmetries
may be infinitely diverse.

The highest symmetry of the section of a one-mode uniform rectan-
gular waveguide is Dsp . The highest possible geometrical symmetry
of the system interconnecting volume + waveguides of the three-ports
is Dgj, . It corresponds to the symmetry of Y -junction of three rectan-
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gular waveguides. All the other possible symmetries of the three-ports
are subgroups of the group Ds, . Notice, that in particular case, the
interconnecting volume may be absent.

The consideration of the coaxial line with lowest T -mode which has
the symmetry Cooy does not give new symmetries.

In order to find the symmetry of the physical system: geometrical
structure + dc magnetic field, the Curie principle will also be used [23].

4. NOTATIONS OF MAGNETIC POINT GROUPS AND
THEIR ELEMENTS

Two different systems of notation for the operations, elements and
the groups of symmetry themselves will be used in the paper: the
Schoenflies and the Shubnikov systems. The Schoenflies notation is as
follows:

E  -identity,

C,, -rotation about an axis through an angle 27 /n,

o -reflection in a plane passing through the axis C, (o is the
plane passing through the axis (), and i, 0;; is the plane passing
through C),, and midway between the axes i and j),

op, -reflection in a plane perpendicular to the axis C,,,

S, -improper rotation, i.e. a rotation C,, and then a reflexion oy,

U, -two-fold rotation about an axis lying in the plane perpendicular
to the axis C,, .

In the Shubnikov notation, an n-fold rotation axis is indicated by
the symbol n. A plane of symmetry is denoted by the letter m. A
single dot is used to indicate that two symmetry elements are parallel,
for example the group Coy in the Schoenflies notation would be 2em
Shubnikov one. A double dot is used to indicate that two symmetry
elements are perpendicular. For example, the symbol 3 : m indicates
that there is a plane of symmetry perpendicular to the three fold axis,
it is (3 in Schoenflies notation. The bar below a symbol means that
one should take the product of the corresponding element with the
time reversal operator 1.

The Shubnikov notation is convenient in order to obtain generators
of the group. Using generators, one can find all the elements of the
group. From the Schoenflies notation, on the other hand, one may see
the division of the group on the elements with 7' and without 7.

The crystallographic magnetic point groups are divided into three
categories [29]:
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1. The 32 point groups including the time reversal operator T itself.
These groups describe nonmagnetic media.

2. The 32 point groups without any form of the time reversal operator.
These groups describe magnetic media, such as ferro-, ferri- and
antiferromagnetics.

3. The 58 magnetic point groups of the third category include the time
reversal operator only in combination with rotation and reflexion
operators. These groups describe also magnetic media.

The Schoenflies (as well as Shubnikov) notations of the groups of
the first and second categories coincide.

The groups of the third category have a particular Schoenflies nota-
tion. If G is a group of unitary and antiunitary operators and H is the
invariant subgroup of unitary operators then the Schoenflies notation
of this magnetic group is G(H).

The first step in finding all the possible magnetic groups for three-
ports is determining the highest group of symmetry for the case of
nonmagnetic media. Beginning with the number of the ports and an-
alyzing the subgroup decomposition of the 32 point groups of the first
category, we have found that for the symmetrical three-ports with three
different waveguides, the highest group is Dgp . Y -junction of three
rectangular waveguides (as well as of the coaxial lines) has such a
group of symmetry. All the other variants are the subgroups of the
group Dsp, .

The subgroup decomposition of the group Ds; is shown in
Fig. 2 [29]. The group tree consists of 9 groups of the first category and
therefore, of 9 groups of the second category. Notice that the param-
eter matrices which are defined by the groups of the first category are
symmetrical about the main diagonal while the parameter matrices of
the groups of the second category in general are not.

Every group is connected by a line to each of its subgroups. Heavy
line indicates that the subgroup is not invariant. If the subgroup is not
of index 2, the line is dotted.

The number of groups of the third category is equal to the number
of lines connecting the groups in Fig. 2, excluding heavy and dashed
lines. Therefore, the number of groups of the third category is 11 and
they are given in Table 1. In this Table, the number of elements of
the groups, the elements themselves and generators of the groups are
written.
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Figure 2. Group tree for the group Dsp . A heavy line indicates that
the subgroup is not invariant, and a dotted line indicates that the

subgroup is not of index 2 under the above group.

Shubnikov | Schoentlies | Number of Elements of the group Generators
notation | notation group elements of the group
Z C2(Cl) 2 E, TCz TCz
m C(Cy) 2 E, To To
2em CzV(Cz) 4 E, Cz, To 1, TO‘z Cz, To;
gom sz(cg) 4 E, TCz, 01, TO’z TCz, (o)1
32 D3(Cs) 6 E C,Co Cs, TU;
TU,, TU, , TU;
3em C3d(Cs) 6 E, s, Ci%, Toy, Toy, Tos | Cs, Toy
3:m Can(Cs) 6 E, C;, Ci’ TSs;, TS, |Cs, Toy
TG}.
E,C,C Uz, Uy,
me3:m Dsn(Ds) 12 U, , Cs, Toy, Ton
To 1, TO'z, TGs,
TS;, TS3%, Ton
E, C;, C5%, 61,02, O3,
me3:m Dan(Csv) 12 TU;, TU, , TU; ", Cs, o1, Ton
TSs, TS3%, Tow
E, C3, C32, S3, Ssz, Oh,
me3:m Disu(Csn) 12 TU;, TU; , TU; , Cs, Toy, On
To,, Top, Tos

Table 1. Magnetic Group of the Third Category Describing Symmet-
rical Three-ports:
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5. COMMUTATION RELATIONS AND SYMMETRY
MATRICES OF THE THREE-PORTS

Symmetry of the [S]-matrices will be understood in a broad mean-
ing, namely in four-dimensional space, which includes the three spatial
coordinates and time [26].

In order to find correlations between some elements of the scattering
matrix, two types of the commutation conditions may be used:

for the case of gyrotropic symmetry (GS)

[R][S] = [S][A], (1)

[R][S] = [SI'[R], (2)

where [R] are generators of the symmetry group [23].

Let us apply to formal determination of symmetry matrices [R] of
the three-ports. We consider the matrices of geometrical symmetry
of the three-ports therefore the dimension of these matrices must be
3 x 3. Each row and each column of the [R]-matrix contains only
one element equal to +1 or -1 and the other elements are zeros. These
matrices are 3 x 3 representations of the corresponding elements of
the symmetry groups. The matrices are orthogonal, i.e., they satisfy
the relation

where [E] is the unit matrix.

Our aim in this section is to find formally those [R]-matrices which
will be used for symmetrical three-ports. First of all, it is the unit
matrix

100
[Rli=]0 1 0 (3)
00 1

This matrix, obviously corresponds to the identity operator, which
is in every group. It will be shown later that the use of this matrix can
give some information about the properties of the three-port because
the matrix can describe a covering operation which causes some parts of
the junction to interchange positions, but does not change the positions
of the ports themselves. It is for example a reflection in a plane Cs
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1 plane C,

1 plane C, axis Cz 1
[Rls R]s
f) g

Figure 3. Examples of three-ports with different symmetries.
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passing through all three ports (Fig. 3a, [R] = —[R]1). Notice that
the arrows in Fig. 3 correspond to the electric field orientation.

The second [R]— matrix corresponds to a three-fold axis Cs, i.e. to
a rotation operation with a certain sense of rotation (Fig. 3b):

01 0
[Rl=1{0 0 1 (4)
100

It is possible not to consider the rotation operation with the opposite
sense of rotation because in all of the groups containing the three-fold
axis C3, only one generator can be used for the set of elements FE,
Cs,C3.

The next matrix describes the reflexion operation Cs (Fig. 3c), or
the rotation Cy about an axis passing through one of the ports between
the two others (Fig. 3d). Without loss of generality one can assign the
number 1 to the port which lies in the plane of symmetry or on the
axis of the second order. The matrix has the following form :

1 00
[Rlz=10 0 1 (5)
01 0

Apply now to the question of the signs of the units in the matrices
[R]1,[R]2 and [R]s . Formally the signs plus or minus can be in the
matrices [R]; at every unit, because it is not forbidden by the definition
of these matrices given above. One of the units in the matrix [R]; can
be with the negative sign:

00
[Rla=]0 10 (6)
0 1

An example of such a covering operation is a plane of symmetry in
the Fig. 3e.

The matrix [R]2 can not exist with units having different signs,
because it contradicts to the meaning of this symmetry operation.

For a series junction, the voltage at port 1 will undergo a phase
reversal under reflection operation (Fig. 3g). It means, that the sym-
metry operator [R]sin this case is transformed in

-1 0 O
[Rs=|0 0 1 (7)
0O 1 0
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Symmetry |Number of |Symmetry Groups Which
Matrix [R]; | Independent | Generate this Matrix [S] and
N | Matrix [S] Parameters | Qrientation of their Axes
and Planes
Su Sz Sis C,, the plane passes through
1|2 Sz S» RL: 6 all three ports (Fig.3a)
SIS S23 S33
Sh S S C; or C,, the axis or the
2 [P Sz Sy [R]s 4 plane is between ports 2 and
Si2 S Sp . i
3 (Fig3cd), Cn (Fig.3c
without insertions)
S. 0 0 C,, the plane passes through
3 (|0 52 Sa [R]s 4 |all three ports (Fig.3e, Fig 3f
0 S23 S. 33 . . . .
with insertions of Fig.1¢)
Sy S-S, C,, C,, the axis or plane is
4|52 Sn S» [R]s 4 between ports 2 and 3
_SIZ S23 S22 . .
(Fig.3f,g), Cxu((Fig.3g
without insertions)
Sh 0 0 Coy, the axis C, is between
5119 52 S» [RL, [R]s 3 ports 2 and 3 (Fig3ef|
0 S23 S. 22 . .
without insertions)
Su S12 S12 CS, D3, C3V9 C311, D3h (Flg3b
6 |52 Su S R] 2 with corresponding
Sl2 S12 Sll .
insertions of Fig.1).
To obtain the matrix [S], it
is sufficient to use only [R],

35

Table 2. Description of Symmetrical Scattering Matrices of the First

Category:
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with [R]11 = —1. The matrix (7) describes also reflexion operation in
Fig. 3f.

A consideration of the matrices —[R];(i = 1,...5) does not give any
new information, because the matrices [R]; are multipliers on both
sides of identities (1) and (2), i.e. the use of [R]|; and —[R]; gives the
same results. Hence, from the point of view of symmetry one should
consider [R]; and —[R]; as equivalent.

Notice that a change in the numbering scheme of the ports leads
outwardly to a different matrix [R], and consequently to different [S].
Of course, the numerical values of the elements in this case are not
changed, but their positions in the matrix are different. Such matrices
with renumbered ports may be transformed one into another using the
similarity transformation

[S]" = [G)[S1[G] (8)

where [G] is so called renumbering matrix which is analogous to the
matrix [R]. The matrices corresponding the same structure with dif-
ferent numbering schemes will be considered as equivalent.

6. SOLUTION OF THE PROBLEM

It would require too much space in order to give all the solution of
the problem for three- ports. Let us describe a method of finding
the scattering matrices considering several examples. The cases with
only one (anti)plane or one (anti)axis are rather simple. It is only
necessary to take into account a possibility of different orientations of
these elements. The groups, which include the three-fold axis C5, do
not cause difficulties as well because this axis may be oriented uniquely.
It should be noted a peculiarity of the 3-ports which are described by
the groups with symmetries C3, D3, Csy, Csp, D3, having 3-fold axis.
In order to find the matrix [S] in isotropic case, it is sufficient to
use only one generator [R]y The matrix [S] in this case has minimal
number of elements, namely 2, and the use of other possible generators
does not give new information. In the gyrotropic case, the use of the
generator [R]e gives the matrix with 3 independent parameters, and
application of other possible generators may reduce the number of
parameters, for example in matrix [S]7, Table 3.

The group C3 is not represented in the Table 4 because this group
can not be of the third category.
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Symmetry |Number of |Symmetry Groups Which
N | Matrix [S] Matrix [R}; |Independent |Generate this Matrix and
Parameters | Orientation of their Axes
and Planes
Sy S Sis C, the plane passes
1| 52 S» [R]: 9 through all three ports
SSI S. 32 S33
Su Siz Si, C, or C,, the axis or the
2 | [ S S Rl 5 plane is between ports 2
Sy Sy Sy
and 3, sz
S, 0 0 C,, the plane passes
3 (|9 S2 S [R]s 5 through all three ports
Y S32 S 33
Sy S =S C,, C,, the axis or plane is
4 ||S2 Sn Sx R]s 5 between ports 2 and 3
—SZI S23 S, 22
S, 0 0 Ca, the axis C; is between
511 52 s | Ry, RIS 3 ports 2 and 3
0 S23 S 22
Sy S S C;, D5, Cyy, Can, Day; to
6 |5 Su Su R 3 obtain the matrix [S], it is
S12 Sl3 Sll .
sufficient to use only [R];
S]l SIZ S 12
S, S;p S
7 12 11 12 2 D C
s, S, S Rl R} 3, Cav, Dan

Table 3. Description of Symmetrical Scattering Matrices of the Second
Category:
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Let us apply to the case of the group Cay (C32) (2em in Shubnikov
notation). In this group (see Table 1), there is one two-fold axis of
symmetry and two antiplanes of symmetry. The antiplanes are perpen-
dicular to each other and pass through the axis of symmetry. The only
possible orientation of the axis C5 in the 3-ports under consideration
is passing through one port and between the two others (for example,
Fig. 3d, g, without insertions). The orientation of the (anti)planes Cj
may be different: passing between two ports or through all the three
ports.

Generators of the group 2 em are for instance the matrix [R]3 and
[R]5 . One of them corresponds to the rotation, and the other to any of
the antireflections. Therefore, 4 combinations of these generators are
possible:

1. [R]3,GS and [R]3,GA, (Fig. 3c);
2. [R]5,GS and [R]5,GA, (Fig. 3g);
3. [R]3,GA and [R]5,GS, (Fig. 3e);
4. [R]3,GS and [R]5,GA, (Fig. 3f),

where Fig. 3 should be considered without insertions. Using the com-
mutation relations (1) and (2), one came to matrices [S]s,[S]s, [S]7
and [S]g of Table 4, respectively (in the following discussion, the sub-
script of a matrix [S]; corresponds to the number of its position in
Tables 2, 3 or 4). Notice that in Table 2, there are indicated the
figures which illustrate the corresponding symmetries.

Similarly, one can find the matrices [S], corresponding to the group
Coy (Cs) which are in Table 4 as well.

7. DISCUSSION OF THE RESULTS

There are 6 matrices [S] describing nonmagnetic symmetrical struc-
tures in Table 2, and also 7 matrices in Table 3 and 11 matrices in Table
4 for magnetic 3-ports. Some of the matrices for magnetic 3-ports are
symmetrical about the main diagonal ([S]s and [S]7 in Table3, and
[S]4, [S]5 and [S]11 in Table 4). Therefore, they describe reciprocal
devices. Because there is no other magnetic groups of symmetry and
all the variants of orientations of (anti)planes and (anti)axis of sym-
metry have been considered, it seems that all the possible solutions for
symmetrical three-ports with three one-mode waveguides filled with
isotropic and gyrotropic media have been found. The correspondence
of the [S]-matrices and the magnetic point groups of symmetry is
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Symmetry |Number of | Symmetry Groups Which
N | Matrix [S] Matrix [R]; |Independent |Generate this Matrix and
Parameters | Orientation of their (Anti)Planes
S Sz Sis Cy(Cy), C«(Cy)-the antiaxis or
1 | S2 S» [R]s, GA 6 antiplane is between ports 2 and
SlZ 8. 32 SZ.Z
3, Co(Cy)- the plane passes
through all three ports
Sn S S C(Cy)-the antiplane passes
2 [[Be %2 5w Ry, GA 6 through all 3 ports
_SI3 823 S33
Sy S Sis Cx(Cy), Ci(Cy)-the antiplane is
3 |[Se S‘” 5 [R]s, GA 6 between ports 2 and 3,
_SIZ ‘SSZ SZZ
C1(C,)- the plane is between
ports 2 and 3
Sn S Sis Cy(C))- the antiplane passes
4 (P2 Sz Ss| Ry, Ga 6 through all 3 ports
SlS SZS S33
S Sz S| |[RL, GS Cx(Cy),
s ([P 52 S8l Ry GA 4 C2(C,)- the plane is between
Siz Sz Si
ports 2 and 3
Sll SlZ —SIZ [R]51 GS
6 ||52 52 S» [R]s, GA 4 Cal(C2)
-S) 12 S32 SZZ
S Sz =Sz [R]S, GA sz(Cz),
7 |2 Sz S» [R]s, GS 4 C2/(C,)- the plane is between
Sll S23 S22
ports 2 and 3
Sy S Su| {[R]s, GS C2{C3), Col(C,)- the plane is
8 ([P %2 S»limy ga 4 between ports 2 and 3
-S12 S Sp ?
S: 0 O [R];, GA C2/(C,)- the plane passes through
0 8, S
9 2 "3 R, GS 4 all 3 ports
0 s, 8y |RM po
S Sz Sis DS(CS),
10 |5 Su Sel |Rp, Ggs 3 CCy),
N 12 N 13 Sl] D (C )
'3h\ \3h,
Su Sz Si [R], GA Can(Cs),
S, S S
11 12 1 12 2 D N
S1. Sz S [R]L as D3h(0C)3))
30(Cav

39

Table 4. Description of Symmetrical Scattering Matrices of the Third

Category:
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given in Tables 2, 3 and 4. These Tables may be considered as a
classification of three-ports based on magnetic symmetry of the struc-
tures in four-dimensional space. In this connection, one can speak
about symmetry of a matrix [S] in space-time coordinates. For exam-
ple, the matrix [S]ip (Table 4) may have the following symmetries:
D3(Cs3),Csy(Cs),and Ds3p,(Csp,) ). Besides, such a matrix (which is
[S]¢ in Table 3) may have the symmetries Cs, D3, Csy, Csp, and Dsy,
of the second category.

Notice that there exists a coincidence of some matrices [S]; in Ta-
bles 2, 3 and 4. For instance, the matrix [S]¢ of Table 2, the matrix
[S]7 of Table 3 and the matrix [S];; of Table 4 are identical (but
they are described by different symmetries). There exist all together
18 different [S]-matrices of symmetrical 3-ports.

We shall not consider the properties of the derived matrices in Tables
2, 3, 4 because these properties are clear from the structure of the
matrices. Notice only, that these results are sufficient for reciprocal
properties of the three-ports and not sufficient for their nonreciprocal.

Investigating the N -ports, one can use further the unitarity con-
dition and the condition of ideal matching. However, it is necessary
to remember that these two conditions may be incomputable. For
example, for the matrix [S]y (Table 4) the unitarity condition gives
|S11] = 1. It means that it is impossible to match ideally such a lossless
three-port.

The suggested in this paper classification of the three-ports based
on symmetry in four- dimensional space has the following advantages:
1. It is applied to many of the existing devices because many of them

exhibit one or another symmetry.

2. The symmetry defines some functional properties of the device be-
cause the symmetry defines the values of some of the [S]-elements.

3. The results of the symmetry theory do not depend on frequency,
physical effects and the types of waveguides being used.

One should also emphasized that all the results obtained in this
paper are valid also for the matrices [Z] and [Y] [23].

8. DEVELOPMENT OF THE THEORY

The above theory may be developed for the cases of three-ports with
multimode waveguides:
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2)

The case of two waveguides which are connected to the inter-
waveguide volume. In one of the waveguides, only one mode prop-
agates. In the second waveguide, two modes propagate. There-
fore, one can treat this structure also as a three-port. The highest
group of symmetry of the cross-section for the two-mode waveg-
uides is Cyy with two orthogonal polarizations of modes. Notice
that the group Cyy is not in the group tree of Dsy . Besides,
we must also consider two variants of the two-mode waveguides
described by the group Chy (with equal and different orientation
of the two ports). If a square and a rectangular waveguide are
connected to each other, the highest possible symmetry of their
common cross-section is Coy (the junction of two waveguides
with different cross-sections can not raise the resulting symme-
try). Here, we must also consider circular and coaxial waveguides
with the symmetry Cyy , and their combination with rectangu-
lar and square waveguides. A new generator will appear here:

0
0
-1

1
[Rls = |0 (9)
0

O = O

The case of one waveguide with three propagating modes. For
a three-mode waveguide, we must consider the group Csy (it
is for example, the symmetry of a triangular waveguide), Coy
and also Cyy . In order to consider such waveguides as three-
ports, they must be bounded from one side (if the waveguide
is unbounded it must be treated as a six-port). The waveguide
may be terminated for example, with a resonator or with a load.
Notice that in this case, one can not consider the group Cyy
with polarization degeneracy, because the two orthogonal in space
ports are equivalent and it corresponds to the even number of
propagating modes. In this analysis, several new [S]-matrices
will appear including diagonal ones.

9. CONCLUSIONS

The theory of magnetic groups and the Curie principle allows one to
find all the symmetrical solutions which are possible for the multiports
with isotropic and gyrotropic media. In this paper it has been made
for the three-ports. Using these results, one can define a priory some
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general properties of the three-ports. It must be stressed that all the
properties of the three-ports are a consequence of physical symmetry
alone, i e., of the geometrical symmetry of the three-port and in the
case of gyrotropic media, of dc magnetic field symmetry. The results
of this paper may help to narrow down the range of searching for an
optimal solution for some problems.
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