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1. INTRODUCTION

The dyadic Green’s function technique [1–4] is a very powerful and
elegant method in the study of electromagnetic wave propagation and
scattering, and has been extensively developed in recent years to solve
many (reciprocal) chiral- and biisotropic-related problems [5–11]. In
many applications such as multi-layered media [2, 12–14] and waveg-
uides [1], [15], the dyadic Green’s function is expanded in terms of vec-
tor wave functions or the eigenfunctions of a particular geometry. For
the last two decades, there have been active discussions regarding the
singularity and the completeness of the eigenfunction representations
of the dyadic Green’s function for isotropic media [16, 17]. There has
also been discussion on the discontinuous behavior of these eigenfunc-
tion expansions across the source point in a isotropic medium [18, 19].
For the case of chiral, biisotropic and even more complex media, the
literature on the singularities of dyadic Green’s functions can be found
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in [12, 20–23]. These singularities have been treated mostly based on
rigorous extraction from integrals or principal-volume method [4, 24].

In this paper, the singularities and discontinuities present in the
eigenfunction expansions of the dyadic Green’s functions for biisotropic
media are revisited and discussed based on the theory of distributions
[25]. These singularities and discontinuities are derived directly from
Maxwell equations cast into dyadic forms prior to explicit determi-
nation of the dyadic Green’s function formula. For both electric and
magnetic dyadic Green’s functions, the source point singular terms are
obtained without any integration and the discontinuities in their tan-
gential and normal components across the source point are determined
in compact forms directly from Maxwell dyadic equations. From the
discontinuity relations, boundary conditions involving the tangential
and normal components of electric and magnetic fields are derived.
Due to the availability of different sets of constitutive relations charac-
terizing a biisotropic medium [26, 11], the source point singular terms
and the discontinuity relations are discussed based on the commonly
used Post-Jaggard (Section 2) and Drude-Born-Federov (Section 3) re-
lations. In view of the possible distinctions between these relations,
particularly when the constitutive parameters and sources do not con-
form to certain transformations [26, 27], the permittivity, permeability,
vectors and dyadics will be augmented with P (for Post-Jaggard) and
F (for Drude-Born-Federov) in the subscripts to avoid any confusion.
Throughout the following analysis, e−iωt time dependence is assumed
and suppressed.

2. POST-JAGGARD RELATIONS

A biisotropic medium can be characterized by Post-Jaggard constitu-
tive relations [26]:

DP = εPEP + (ψ + iξ)BP (1)

HP =
1
µP

BP − (ψ − iξ)EP (2)

where chirality is introduced through ξ and nonreciprocity through
ψ . Incorporating equations (1) and (2) into Maxwell equations and
defining the electric and magnetic dyadic Green’s functions as

EP (r) =
∫∫∫
V ′

dv′GeP (r, r′) · JP (r′) (3)
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HP (r) =
∫∫∫
V ′

dv′GmP (r, r′) · JP (r′), (4)

we obtain the Maxwell dyadic equations

∇×GeP = iωµPGmP + iωµP (ψ − iξ)GeP (5)

∇×GmP = −iω[εP + µP (ψ2 + ξ2)]GeP

− iωµP (ψ + iξ)GmP + Iδ(r′ − r) (6)

∇ ·GeP = − 1
iωεP

∇′δ(r′ − r) (7)

∇ ·GmP =
ψ − iξ

iωεP
∇′δ(r′ − r) (8)

where I is the idemfactor and δ(r′−r) is the three-dimensional Dirac
delta function defined as

JP (r) =
∫∫∫
V ′

dv′ Iδ(r′ − r) · JP (r′). (9)

As it should be, noting that

∇′δ(r′ − r) = −∇δ(r − r′), (10)

the above dyadic equations reduce to those given by Tai [1] for isotropic
media where ψ = ξ = 0 .

Following the notations in [19], let the electric and magnetic dyadic
Green’s functions be written in general forms as

GeP =G0
eP δ(p

′ − p) +G>
ePU(p− p′) +G<

ePU(p′ − p) (11)

GmP =G0
mP δ(p

′ − p) +G>
mPU(p− p′) +G<

mPU(p′ − p). (12)

Here, we have expanded each dyadic Green’s function into three parts
weighted by different distributions: δ(p′ − p) is the one-dimensional
Dirac delta function and U(±p∓ p′) are the Heaviside unit step func-
tions. The ‘ 0 ’ part together with δ(p′ − p) gives the singular dyadic
term required in biisotropic source region, while the ‘> ’ and ‘< ’ parts
correspond to p̂ -propagating solenoidal eigenfunction expansion for
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p > p′ and p < p′ respectively [19]. Substituting (11) and (12) into
the Maxwell dyadic equations (5)–(8) and taking the derivatives in the
sense of distributions using [30]

∇× [G
>
<U(±p∓ p′)] = (∇×G

>
< )U(±p∓ p′)± (p̂×G

>
< )δ(p− p′) (13)

∇ · [G
>
<U(±p∓ p′)] = (∇ ·G

>
< )U(±p∓ p′)± (p̂ ·G

>
< )δ(p− p′) (14)

∇× [G0δ(p′ − p)] = (∇×G0)δ(p′ − p) +∇δ(p′ − p)×G0 (15)

∇ · [G0δ(p′ − p)] = (∇ ·G0)δ(p′ − p) +∇δ(p′ − p) ·G0, (16)

we are able to deduce directly the singularities and discontinuities
present in the eigenfunction expansions of GeP and GmP .

For p = p′ , we have the following equations corresponding to
∂
∂p′ δ(p

′ − p) :

p̂×G0
eP = 0 (17)

p̂×G0
mP = 0 (18)

p̂ ·G0
eP =

1
iωεP

δtp̂
′ (19)

p̂ ·G0
mP = −ψ − iξ

iωεP
δtp̂
′ (20)

where δt is the transverse delta function which together with δ(p′−p)
forms the three-dimensional Dirac delta function, i.e. δtδ(p′ − p) =
δ(r′ − r) . From the above, it follows immediately that

G0
eP δ(p

′ − p) =
1

iωεP
δ(r′ − r)p̂p̂′ (21)

G0
mP δ(p

′ − p) = − ψ − iξ

iωεP
δ(r′ − r)p̂p̂′. (22)

Hence, we have obtained in a simple manner the explicit expressions
of the source point dyadic delta function terms for GeP and GmP as
given by (21) and (22) respectively. These singular terms are obtained
directly from Maxwell equations, prior to explicit determination of the
dyadic Green’s function formula — which for the unbounded case can
be expressed in terms of two isotropic ones with parameters k+ and
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k− respectively [20], and also prior to thorough investigation of the
eigenfunction properties in biisotropic media — where the fields are
known to be decomposable in terms of left- and right-circularly polar-
ized components [7, 9]. Moreover, the delta function singularities have
been surfaced without an apparent need to specify the shape of an ex-
clusion volume and this approach thus avoids the (sometimes tedious)
task of integration over the surface of the exclusion volume as required
by the principal-volume method [29, 31]. From these expressions, it is
noteworthy that in contrast to the isotropic case, the magnetic dyadic
Green’s function features an extra delta function term in addition to
its solenoidal eigenfunction expansion, in accordance with [21] using
Tellegen constitutive relations. The presence of Post-Jaggard chirality
and/or nonreciprocity does not affect the source point term for elec-
tric dyadic Green’s function but it introduces one for magnetic dyadic
Green’s function.

Employing (21) and (22), we obtain the following equations for p =
p′ corresponding to δ(p′ − p) in the Maxwell dyadic equations:

p̂× (G>
eP −G<

eP ) = − 1
iωεP

∇tδt × p̂p̂′ (23)

p̂× (G>
mP −G<

mP ) = Itδt +
ψ − iξ

iωεP
∇tδt × p̂p̂′ (24)

p̂ · (G>
eP −G<

eP ) = − 1
iωεP

∇′tδt (25)

p̂ · (G>
mP −G<

mP ) =
ψ − iξ

iωεP
∇′tδt. (26)

In the above, It is the transverse (to p̂ ) part of idemfactor and ∇t is
the gradient operator taken with respect to the transverse coordinates.
Equations (23)–(26) describe the discontinuities in the eigenfunction
expansions of the dyadic Green’s functions for Post-Jaggard biisotropic
media. These discontinuities have been expressed in compact forms
(not involving summations or integrations of eigenfunctions) for both
tangential (p̂×) and normal (p̂·) components of the dyadics. Note
the additional term weighted by (ψ − iξ) in (24) and (26) compare
to isotropic case. Also, notice that the tangential component of the
electric dyadic Green’s function is not continuous for biisotropic as
well as isotropic (eq. (4.33) in [1]) media. The above discontinuities
have emerged naturally due to the representations (eigenfunction ex-
pansions) of GeP and GmP in the forms of (11) and (12) where a
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point singularity at r = r′ has been modeled by an equivalent layer
of surface singularity at p = p′ [18]. These discontinuity relations can
be verified readily as demonstrated in Appendix A, using the explicit
expressions of G

>
< which depend on the boundary and/or radiation

conditions to be satisfied in a particular interior or exterior boundary
value problem.

3. DRUDE-BORN-FEDEROV RELATIONS

Another set of biisotropic constitutive relations which has been in much
use is that of Drude-Born-Federov (DBF) [26]:

DF = εF [EF + (β − iα)∇× EF ] (27)

BF =µF [HF + (β + iα)∇×HF ] (28)

where now β is the chirality parameter and α is the nonreciprocity
parameter. Following the same token as in the previous section, the
electric and magnetic dyadic Green’s functions are defined as

EF (r) =
∫∫∫
V ′

dv′GeF (r, r′) · JF (r′) (29)

HF (r) =
∫∫∫
V ′

dv′GmF (r, r′) · JF (r′) (30)

with

GeF =G0
eF δ(p

′ − p) +G>
eFU(p− p′) +G<

eFU(p′ − p) (31)

GmF =G0
mF δ(p

′ − p) +G>
mFU(p− p′) +G<

mFU(p′ − p). (32)

Then, the source point dyadic delta function terms are found to be

G0
eF δ(p

′ − p) =
1

iωεF
δ(r′ − r)p̂p̂′ (33)

G0
mF δ(p

′ − p) = 0. (34)

The discontinuity relations can also be determined as

p̂× (G>
eF −G<

eF ) = − 1
iωεF

∇tδt × p̂p̂′ − ωµFk
2
0(α− iβ)
k2
F

Itδt (35)
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p̂× (G>
mF −G<

mF ) =
k2

0

k2
F

Itδt (36)

p̂ · (G>
eF −G<

eF ) = − 1
iωεF

∇′tδt (37)

p̂ · (G>
mF −G<

mF ) = 0 (38)

where

k2
F = ω2µF εF (39)

k2
0 =

k2
F

1− k2
F (α2 + β2)

. (40)

Equations (33)–(34) and (35)–(38) give respectively the singulari-
ties and discontinuities in the eigenfunction expansions of the dyadic
Green’s functions for DBF biisotropic media. Note their differences
compare to those of Post-Jaggard (21)–(26). Due to the solenoidal
property of DBF magnetic field, the source point dyadic delta function
term (34), and the discontinuity relations (36) and (38) for the mag-
netic dyadic Green’s function GmF are analogous to those of isotropic
Gm . For the electric dyadic Green’s function GeF , the source point
term (33) and the discontinuity in the normal component of the dyadic
(37) have the same forms as those of isotropic and Post-Jaggard bi-
isotropic media, while there is an additional term weighted by (α− iβ)
in (35) for the tangential component of the dyadic.

Although the above DBF singularities and discontinuities are seen
to be distinct from those of Post-Jaggard, the two sets are intimately
related to each other. In fact, it can be shown that they both satisfy
the following relations for their singularities

G0
eF = [1− k2

0(α− iβ)2]G0
eP −

ωµFk
2
0(α− iβ)
k2
F

G0
mP (41)

G0
mF =

k2
0

k2
F

[G0
mP + ωεF (α− iβ)G0

eP ], (42)

provided the constitutive parameters are mapped as in [26]. Similarly,
the discontinuities and even the dyadic Green’s functions themselves
will conform to these transformations, i.e. G0 replaced by p̂× (G> −
G<) , p̂·(G>−G<) or G in (41) and (42). With these transformations,
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the Green’s functions derived in one set of constitutive relations can
be translated readily to the other set if desired.

4. APPLICATIONS

While the source point dyadic delta function terms (21)–(22) and (33)–
(34) certainly play an important role in numerical integral equation
approaches, particularly when computing fields inside the source re-
gion [28], the discontinuity relations obtained above can be used to
derive the boundary conditions for the electric and magnetic fields
across a current sheet Js . This current sheet could be fictitious and
might be introduced only to facilitate analysis in dealing with cer-
tain (e.g., diffraction) problems. In general, the current may consist
of tangentially and/or normally (which constitutes a double layer of
charge) directed components. Denoting these tangential and normal
parts as J ts = It · Js and Jps = p̂p̂ · Js respectively, we shall obtain
the boundary conditions involving field components across J ts and/or
Jps directly from the discontinuity relations. In usual practice, one
actually elevates the (field) boundary conditions into the (dyadic) dis-
continuity relations [1, 19].

For Post-Jaggard biisotropic media, we have from (23)–(26),

p̂× (E>
P − E<

P ) = − 1
iωεP

∇× JpsP (43)

p̂× (H>
P −H<

P ) = J tsP +
ψ − iξ

iωεP
∇× JpsP (44)

p̂ · (E>
P − E<

P ) =
1

iωεP
∇ · J tsP (45)

p̂ · (H>
P −H<

P ) = −ψ − iξ

iωεP
∇ · J tsP . (46)

Similarly, for DBF biisotropic media, (35)–(38) yield

p̂× (E>
F − E<

F ) = − 1
iωεF

∇× JpsF −
ωµFk

2
0(α− iβ)
k2
F

J tsF (47)

p̂× (H>
F −H<

F ) =
k2

0

k2
F

J tsF (48)

p̂ · (E>
F − E<

F ) =
1

iωεF
∇ · J tsF (49)
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p̂ · (H>
F −H<

F ) = 0 (50)

Note the manner J ts and Jps contribute to the discontinuous change
in the tangential and normal components of E and H . For the case
of Post-Jaggard media, JpsP can produce discontinuities in the tan-
gential components of EP and HP , while J tsP gives rise to discon-
tinuities in their normal components as well as in the tangential HP

component. For the case of DBF media, JpsF produces discontinuity
in the tangential component of EF only, while J tsF leads to discon-
tinuities in the tangential components of EF and HF in addition to
the normal component of EF . When the medium becomes isotropic,
i.e. ψ = ξ = α = β = 0 and εP = εF = ε , µP = µF = µ , the above
relations coincide with those (particularly the tangential electric field
component) derived in [3] using the conventional integral-and-limiting
approach.

Apart from straightforward derivation of boundary conditions, the
discontinuity relations also find applications in the method of Gm [1]
or method of ∇×Ge [16], where one often encounters the terms such
as p̂×(G>

m−G<
m)δ(p−p′) or p̂×(G>

e −G<
e )δ(p−p′) . These terms can

be determined directly from (23)–(24) and (35)–(36) for Post-Jaggard
and DBF media respectively.

5. CONCLUSION

Based on the theory of distributions, this paper has presented a sim-
ple derivation of the singularities and discontinuities associated with
the eigenfunction expansions of the dyadic Green’s functions for bi-
isotropic media. The approach deals directly with Maxwell dyadic
equations prior to explicit determination of the dyadic Green’s function
formula and also prior to thorough investigation of the eigenfunction
properties in biisotropic media. In obtaining the source point singulari-
ties for electric and magnetic dyadic Green’s functions, there is no need
to specify the shape of an exclusion volume and this avoids any surface
integration as required by the principal-volume method. The discon-
tinuity relations describing the changes in the tangential and normal
components of the dyadics across a source point have been obtained
in compact forms directly from Maxwell dyadic equations. With the
aid of explicit eigenfunction expansions of dyadic Green’s functions,
these discontinuity relations can be verified readily as demonstrated
in Appendix A, where we provide the expressions for the unbounded



310 Tan and Tan

dyadic Green’s functions expanded in terms of rectangular, cylindrical
and spherical vector wave functions. As an application for the dis-
continuity relations, boundary conditions involving various field com-
ponents are derived directly from them. Although these boundary
conditions are meant for general biisotropic media, the special case
for isotropic media has helped to reassert the fact that the tangential
components of both electric dyadic Green’s function and electric field
will undergo discontinuous changes across a surface containing source
point or normally directed current. Due to the availability of differ-
ent sets of constitutive relations characterizing a biisotropic medium,
the singularities and discontinuities have been discussed using Post-
Jaggard and Drude-Born-Federov relations. Between these two sets
of relations, the transformations for their singularities, discontinuities
and the dyadic Green’s functions themselves have been given. With
these transformations, the Green’s functions derived in one set of con-
stitutive relations can be translated readily to the other set if desired.
As a final note, the approach described above is seen to be very ver-
satile and its applications to more complex media are currently under
investigation.

APPENDIX A

To verify the discontinuity relations in (23)–(26) and (35)–(38), let us
choose p̂ = ẑ and consider the eigenfunction expansion of unbounded
(for simplicity) dyadic Green’s functions in terms of rectangular vector
wave functions, which are defined as [4]

M(r; kx, ky, kz) = [x̂iky − ŷikx]eikxx+ikyy+ikzz (A1)

N(r; kx, ky, kz) =
1
k
[− x̂kzkx − ŷkzky + ẑ(k2

x + k2
y)]e

ikxx+ikyy+ikzz,

k2 = k2
x + k2

y + k2
z . (A2)

The Post-Jaggard and DBF dyadic Green’s functions can be expanded
as

GeP =
1

iωεP
δ(r′ − r)ẑẑ − ωµP

8π2(k+ + k−)

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
1

k2
x + k2

y{[
k+

kz+
V >V

′> +
k−
kz−

W>W
′>

]
U(z − z′)
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+
[
k+

kz+
V <V

′< +
k−
kz−

W<W
′<

]
U(z′ − z)

}
(A3)

GmP = −ψ − iξ

iωεP
δ(r′ − r)ẑẑ +

i

8π2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
1

k2
x + k2

y{[(1
2
− iωµPψ

k+ + k−

) k+

kz+
V >V

′>

−
(1

2
+

iωµPψ

k+ + k−

) k−
kz−

W>W
′>

]
U(z − z′)

+
[(1

2
− iωµPψ

k+ + k−

) k+

kz+
V <V

′<

−
(1

2
+

iωµPψ

k+ + k−

) k−
kz−

W<W
′<

]
U(z′ − z)

}
(A4)

GeF =
1

iωεF
δ(r′ − r)ẑẑ − ωµFk

2
0

8π2(k+ + k−)k2
F

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
1

k2
x + k2

y{[(
1 + ik+(α− iβ)

) k+

kz+
V >V

′>

+
(
1− ik−(α− iβ)

) k−
kz−

W>W
′>

]
U(z − z′)

+
[(

1 + ik+(α− iβ)
) k+

kz+
V <V

′<

+
(
1− ik−(α− iβ)

) k−
kz−

W<W
′<

]
U(z′ − z)

}
(A5)

GmF =
ik2

0

8π2(k+ + k−)k2
F

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
1

k2
x + k2

y{[
k2

+

kz+
V >V

′> − k2
−

kz−
W>W

′>
]
U(z − z′)

+
[
k2

+

kz+
V <V

′< − k2
−

kz−
W<W

′<
]
U(z′ − z)

}
(A6)

where

V
>
< = M(r; kx, ky,±kz+) +N(r; kx, ky,±kz+) (A7)
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V
′>
< = M(r′;−kx,−ky,∓kz+) +N(r′;−kx,−ky,∓kz+) (A8)

W
>
< = M(r; kx, ky,±kz−)−N(r; kx, ky,±kz−) (A9)

W
′>
< = M(r′;−kx,−ky,∓kz−)−N(r′;−kx,−ky,∓kz−) (A10)

k2
z± = k2

± − k2
x − k2

y (A11)

k± = ±ωµP ξ +
√
ω2µP εP + (ωµP ξ)2 = ±k2

0β + k0

√
1 + k2

0β
2

(A12)

From these expressions, the G
>
< parts in (11)–(12) and (31)–(32) can

be identified easily. Furthermore, the transverse delta function can be
expanded as

δt = δ(x− x′)δ(y − y′)

=
1

4π2

∫ ∞
−∞

dkx

∫ ∞
−∞

dkye
ikx(x−x′)+iky(y−y′) (A13)

Itδt =
1

4π2

∫ ∞
−∞

dkx

∫ ∞
−∞

dkye
ikx(x−x′)+iky(y−y′)

[
k̂tk̂t + (k̂t × ẑ)(k̂t × ẑ)

]
(A14)

where kt = kxx̂ + kyŷ and k̂t is the unit vector of kt . Employ-
ing (A3)–(A6) and recognizing (A13)–(A14), we can prove readily the
discontinuity relations (23)–(26) and (35)–(38) for rectangular coordi-
nate system. Similarly, one can verify these relations for other Dupin
coordinate systems [1]. For convenience, we will provide the explicit
expressions for the unbounded dyadic Green’s functions expanded in
cylindrical and spherical coordinate systems.

In terms of cylindrical vector wave functions defined as [4]

M
H
J
n (r;λ, h) =

[
ρ̂
in

ρ
Z
H
J
n (λρ)

− φ̂
∂

∂ρ
Z
H
J
n (λρ)

]
einφ+ihz (A15)

N
H
J
n (r;λ, h) =

1
k

[
ρ̂ih

∂

∂ρ
Z
H
J
n (λρ)− φ̂

hn

ρ
Z
H
J
n (λρ)

+ ẑλ2Z
H
J
n (λρ)

]
einφ+ihz, k2 = λ2 + h2

(A16)
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Z
H
J
n (λρ) =

{
H

(1)
n (λρ)

Jn(λρ)
(A17)

the Post-Jaggard and DBF dyadic Green’s functions expanded using
p̂ = ρ̂ are

GeP =
1

iωεP
δ(r′ − r)ρ̂ρ̂′ − ωµP

8π(k+ + k−)

∫ ∞
−∞

dh
∞∑

n=−∞{[
k+

λ2
+

V >V
′> +

k−
λ2
−
W>W

′>
]
U(ρ− ρ′)

+
[
k+

λ2
+

V <V
′< +

k−
λ2
−
W<W

′<
]
U(ρ′ − ρ)

}
(A18)

GmP = −ψ − iξ

iωεP
δ(r′ − r)ρ̂ρ̂′ +

i

8π

∫ ∞
−∞

dh
∞∑

n=−∞{[(1
2
− iωµPψ

k+ + k−

)k+

λ2
+

V >V
′>

−
(1

2
+

iωµPψ

k+ + k−

)k−
λ2
−
W>W

′>
]
U(ρ− ρ′)

+
[(1

2
− iωµPψ

k+ + k−

)k+

λ2
+

V <V
′<

−
(1

2
+

iωµPψ

k+ + k−

)k−
λ2
−
W<W

′<
]
U(ρ′ − ρ)

}
(A19)

GeF =
1

iωεF
δ(r′ − r)ρ̂ρ̂′ − ωµFk

2
0

8π(k+ + k−)k2
F

∫ ∞
−∞

dh

∞∑
n=−∞{[(

1 + ik+(α− iβ)
)k+

λ2
+

V >V
′>

+
(
1− ik−(α− iβ)

)k−
λ2
−
W>W

′>
]
U(ρ− ρ′)

+
[(

1 + ik+(α− iβ)
)k+

λ2
+

V <V
′<

+
(
1− ik−(α− iβ)

)k−
λ2
−
W<W

′<
]
U(ρ′ − ρ)

}
(A20)
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GmF =
ik2

0

8π(k+ + k−)k2
F

∫ ∞
−∞

dh

∞∑
n=−∞{[

k2
+

λ2
+

V >V
′> − k2

−
λ2
−
W>W

′>
]
U(ρ− ρ′)

+
[
k2

+

λ2
+

V <V
′< − k2

−
λ2
−
W<W

′<
]
U(ρ′ − ρ)

}
(A21)

where

V
>
< = M

H
J
n (r;λ+, h) +N

H
J
n (r;λ+, h) (A22)

V
′>
< = M

J
H
−n(r

′;−λ+,−h) +N
J
H
−n(r

′;−λ+,−h) (A23)

W
>
< = M

H
J
n (r;λ−, h)−N

H
J
n (r;λ−, h) (A24)

W
′>
< = M

J
H
−n(r

′;−λ−,−h)−N
J
H
−n(r

′;−λ−,−h) (A25)

λ2
± = k2

± − h2 (A26)

In terms of spherical vector wave functions defined as [4]

M
h
j
nm(r; k) =

√
(2n+ 1)(n−m)!

4π(n+m)!
z
h
j
n (kr)[θ̂

im

sin θ
Pm
n (cos θ)

− φ̂
∂

∂θ
Pm
n (cos θ)]eimφ (A27)

N
h
j
nm(r; k) =

√
(2n+ 1)(n−m)!

4π(n+m)!

[
r̂
n(n+ 1)

kr
z
h
j
n (kr)Pm

n (cos θ)

+
1
kr

∂

∂r
(rz

h
j
n (kr))(θ̂

∂

∂θ
Pm
n (cos θ)

+ φ̂
im

sin θ
Pm
n (cos θ))

]
eimφ (A28)

z
h
j
n (kr) =

{
h

(1)
n (kr)

jn(kr)
(A29)

the Post-Jaggard and DBF dyadic Green’s functions expanded using
p̂ = r̂ are
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GeP =
1

iωεP
δ(r′ − r)r̂r̂′ − ωµP

k+ + k−

∞∑
n=1

n∑
m=−n

1
n(n+ 1){[

k2
+V

>V
′> + k2

−W
>W

′>
]
U(r − r′)

+
[
k2

+V
<V
′< + k2

−W
<W

′<
]
U(r′ − r)

}
(A30)

GmP = −ψ − iξ

iωεP
δ(r′ − r)r̂r̂′ +

∞∑
n=1

n∑
m=−n

i

n(n+ 1){[(1
2
− iωµPψ

k+ + k−

)
k2

+V
>V
′>

−
(1

2
+

iωµPψ

k+ + k−

)
k2
−W

>W
′>

]
U(r − r′)

+
[(1

2
− iωµPψ

k+ + k−

)
k2

+V
<V
′<

−
(1

2
+

iωµPψ

k+ + k−

)
k2
−W

<W
′<

]
U(r′ − r)

}
(A31)

GeF =
1

iωεF
δ(r′ − r)r̂r̂′ − ωµFk

2
0

(k+ + k−)k2
F

∞∑
n=1

n∑
m=−n

1
n(n+ 1){[(

1 + ik+(α− iβ)
)
k2

+V
>V
′>

+
(
1− ik−(α− iβ)

)
k2
−W

>W
′>

]
U(r − r′)

+
[(

1 + ik+(α− iβ)
)
k2

+V
<V
′<

+
(
1− ik−(α− iβ)

)
k2
−W

<W
′<

]
U(r′ − r)

}
(A32)

GmF =
ik2

0

(k+ + k−)k2
F

∞∑
n=1

n∑
m=−n

1
n(n+ 1)
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k3

+V
>V
′> − k3

−W
>W

′>
]
U(r − r′)

+
[
k3

+V
<V
′< − k3

−W
<W

′<
]
U(r′ − r)

}
(A33)

where

V
>
< = M

h
j
nm(r; k+) +N

h
j
nm(r; k+) (A34)

V
′>
< = M

j
h
n,−m(r′; k+) +N

j
h
n,−m(r′; k+) (A35)

W
>
< = M

h
j
nm(r; k−)−N

h
j
nm(r; k−) (A36)

W
′>
< = M

j
h
n,−m(r′; k−)−N

j
h
n,−m(r′; k−) (A37)
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