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1. INTRODUCTION

A submarine, made of steel and magnetized in the earth’s magnetic
field, disturbs local magnetic field. Such a disturbance makes the sub-
marine “visible” to magnetic field sensors. To reduce the probability
of the submarine being detected and targeted, it is desired to minimize
the field perturbation. This can be done by a proper placement of de-
gaussing coils on the surface of the submarine. An optimal design of
degaussing system relies on a thorough understanding of the magne-
tization of the submarine. It requires detailed information about the
magnetization current induced on the surface of the submarine and the
magnetic field produced by the surface magnetization current.

In the past, finite element method has been employed to model ship
magnetization [1]. This method is accurate but is time-consuming
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and requires a large computer memory since a large number of meshes
are needed to model a ship. It is well known that steel, which is
used to make a submarine shell, is a nonlinear ferromagnetic material.
Its permeability varies as a function of the magnetic field intensity.
However, under the influence of the earth’s magnetic field which is only
on the order of 10−4 Wb/m 2 [2], the portion of the B-H curve of steel
is approximately a straight line. Therefore, a constant permeability
can be assumed for the whole submarine shell. Under this condition,
boundary element method may be more suitable, comparing to finite
element method, for treating the magnetization of a submarine, since
less CPU time and computer storage are needed. To date, only a simple
two-dimensional square box structure has been investigated using the
boundary element method [3]. This box is assumed to be oriented
in such a way that the external magnetic flux is parallel to its side
walls. Obviously, a square box structure does not match the shape of
a submarine. Also, the submarine may take any orientation relative to
the earth’s magnetic field, resulting in different magnetic signatures.

A three-dimensional (3-D) model of a submarine may best approxi-
mate its actual shape [4]. As a prelude to the 3D modeling, in this pa-
per, we present a two-dimensional (2D) computational model, employ-
ing surface integral equation method, for the analysis of the magneti-
zation of a submarine. The submarine is modeled as a two-dimensional
(2D) magnetizable cylinder of infinite length placed in an external mag-
netic field. The cylinder may be of arbitrary cross section. However,
special attention is given to circular and elliptic cylinders, whose cross
sections are closest to that of a submarine. Realizing that the subma-
rine may be randomly oriented relative to the earth’s magnetic field,
we decompose the earth’s magnetic field into two components: one is
perpendicular and the other is parallel to the cylinder axis. The ef-
fect of each of these two components is considered separately in this
paper. Integral equation is formulated and the method of moments
[5] is employed to solve for the unknown magnetization current on the
cylinder surface. Based on knowledge of the magnetization current,
the magnetic field created by the cylinder is calculated. Numerical
results of the magnetization current and the resulting magnetic field
are presented and discussed.
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Figure 1. Cross section of a cylinder with earth’s magnetic field per-
pendicular to its axis.

2. FORMULATION OF INTEGRAL EQUATION

In Fig. 1 is shown in cross sectional view a magnetizable cylinder, the
axis of which is perpendicular to the earth’s magnetic field. The other
possible case is that the cylinder axis is parallel to the earth’s magnetic
field, which is illustrated in Fig. 2. The permeability of the cylinder
is µrµ0 , and the permeability of the medium surrounding the cylinder
is µ0 . The coordinate system is set up in such a way that the z-axis
coincides with the cylinder axis. The cylinder is magnetized and a
magnetization current �Jms is induced on the surface of the cylinder.
The magnetization current �Jms , in turn, generates a magnetic flux
density �Bs that is found to be

�Bs = ∇×
∮
C
�Jms(�ρ′)µ0G(�ρ,�ρ′)dl′ (1)
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Figure 2. Cross section of a cylinder with earth’s magnetic field par-
allel to its axis.

where C is the bounding contour of the cylinder and �ρ , �ρ′ locate
the field and source point. The 2D static Green’s function G(�ρ,�ρ′) is
given by [6]

G(�ρ,�ρ′) = − 1
2π

ln |�ρ− �ρ′|+ 1
2π

ln |�ρR − �ρ′| (2)

in which �ρR locates a reference point at which G(�ρ,�ρ′) vanishes.
Note that the total magnetic field everywhere can be expressed as

the sum of the earth’s magnetic field and the field produced by the
magnetization current. Also, note that the tangential component of
the total magnetic field intensity on the surface of the cylinder must
be continuous since there is no free current. Enforcing this boundary
condition requirement, one obtains



A 2-D model of magnetization of submarine 323

1
µrµ0

[
n̂× �Be − lim

�ρ↑C
n̂×

∮
C

�Jms(�ρ′)× µ0∇G(�ρ,�ρ′)dl

]

=
1
µ0

[
n̂× �Be − lim

�ρ↓C
n̂×

∮
C

�Jms(�ρ′)× µ0∇G(�ρ,�ρ′)dl

] �ρ ∈ C (3)

Equation (3) can be further simplified corresponding to each of the
following two cases: the earth’s magnetic field is perpendicular and
parallel to the cylinder axis.

(1) The magnetic field of the earth is perpendicular to the cylin-
der axis. Under this condition, a z-directed magnetization current is
induced on the cylinder surface and equation (3) can be rewritten as

1
µr
n̂× �Be −

µo
µr

lim
�ρ↑C

∮
C

∂G(�ρ,�ρ′)
∂n

�Jms(�ρ′)dl′

= n̂× �Be − µ0 lim
�ρ↓C

∮
C

∂G(�ρ,�ρ′)
∂n

�Jms(�ρ′)dl′
�ρ ∈ C (4)

Taking dot product of ẑ on both sides of equation (4), one has

1
µr
Be,l −

µo
µr

lim
�ρ↑C

∮
C

∂G(�ρ,�ρ′)
∂n

�Jms,z(�ρ′)dl′

= Be,l − µ0 lim
�ρ↓C

∮
C

∂G(�ρ,�ρ′)
∂n

�Jms,z(�ρ′)dl′
�ρ ∈ C (5)

in which Be,l is the component of the earth’s magnetic flux density
tangential to the cylinder surface. Further, one notices that

∂G

∂n
= n̂ · ∇G(�ρ,�ρ′) = n̂ · (− 1

2π
�ρ− �ρ′
|�ρ− �ρ′|2 )

or
∂G

∂n
= − 1

2π
cos θ
|�ρ− �ρ′| (6)

in which

cos θ = n̂ · �ρ− �ρ
′

|�ρ− �ρ′| (7)
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Then, going through the normal limiting procedure [7], one arrives at

1
µr
Be,l −

µ0

µr
[− 1

2π

∮
c

�Jms,z(�ρ′)
cos θ
|�ρ− �ρ′|dl

′ +
�Jms,z(�ρ)

2
]

= Be,l − µ0[−
1
2π

∮
c

�Jms,z(�ρ′)
cos θ
|�ρ− �ρ′|dl

′ −
�Jms,z(�ρ)

2
]

(8)

or

−µ0

2π

∮
c

�Jms,z(�ρ′)
cos θ
|�ρ− �ρ′|dl

′ − µr + 1
µr − 1

µ0
�Jms,z(�ρ)

2
= Be,l(�ρ), �ρ ∈ C

(8′)
where cos θ is defined in equation (7).

(2) The magnetic field of the earth is parallel to the cylinder axis.
Under this condition, a magnetization current �Jms = �Jms,l̂l is induced
on the cylinder surface, where l̂ is a unit vector tangential to the
cylinder surface. Taking dot product of l̂ with both sides of equation
(3), and making use of vector identities, one converts it to

1
µr
Be,z +

µ0

µr
lim
�ρ↑C

∮
C

�Jms,l(�ρ′)
∂G(�ρ,�ρ′)
∂n′

dl′

= Be,z + µ0 lim
�ρ↓C

∮
C

�Jms,l(�ρ′)
∂G(�ρ,�ρ′)
∂n′

dl′
�ρ ∈ C (9)

Again, one notes that

∂G

∂n′
= − 1

2π
cos θ′

|�ρ− �ρ′| (10)

in which

cos θ′ = n̂′ · �ρ− �ρ
′

|�ρ− �ρ′| (11)

Then, going through the limiting procedure [7] similar to that in the
previous case, one arrives at

− 1
µr
Be,z +

1
2π

µ0

µr
[
∮
c
Jms,l(�ρ′)

cos θ′

|�ρ− �ρ′|dl
′ − Jms,l(�ρ)

2
]

= −Be,z +
1
2π
µ0[

∮
c
Jms,l(�ρ′)

cos θ′

|�ρ− �ρ′|dl
′ +

Jms,l(�ρ)
2

]
(12)
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or
µ0

2π

∮
c
Jms,l(�ρ′)

cos θ′

|�ρ− �ρ′|dl
′ +

µr + 1
µr − 1

µ0Jms,l(�ρ)
2

= Be,z(�ρ), �ρ ∈ C
(12′)

where cos θ′ is defined in equation (11).

3. NUMERICAL SOLUTION SCHEME

The integral equations (8′) and (12′) are solved numerically employ-
ing the moment method [5]. The cylinder bounding contour C is par-
titioned into N subcontours ∆Cn and each of them is approximated
by a straight line segment of length ∆ln . The unknown magnetiza-
tion currents �Jms,z in equation (8′) and �Jms,l in equation (12′) are
approximated as

Jms,z
ms,l

(�ρ) =
N∑
n=1

Jnz
nl

Πn(�ρ) (13)

where Jnz
nl

are the unknown constants to be determined and Πn is a
pulse function defined by

Πn(�ρ) =
{

1, �ρ ∈ ∆Cn,
0, otherwise. (14)

Replacing the surface current �Jms,z in equation (8′), corresponding
to �Be = �Be,l , by its pulse expansion and then using point-matching at
subcontour centers located by �ρm , one converts the integral equation
into a set of N simultaneous equations

N∑
n=1

JnzΓmn = Bm, m = 1, 2, ......, N, (15)

where Bm = Be,l(�ρ) and where

Γmn = −µ0

2π

∫ ∆ln/2

−∆ln/2

cos θmn
|�ρm − �ρn − l′̂ln|

dl′ − µ0(µr + 1)
2(µr − 1)

δmn (16)

in which �ρn locates the center of ∆Cn, l̂n is the unit vector along
∆Cn , and δmn is the Kronecker delta

δmn =
{

1, m = n,
0, otherwise. (17)
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Also, in equation (16), cos θmn is defined by

cos θmn =
(xm − xn − x̂ · l̂nl′)(ŷ · l̂m)− (ym − yn − ŷ · l̂nl′)(x̂ · l̂m)

|�ρm − �ρn − l′̂ln|
(18)

The magnetization current Jms,l in equation (12′), corresponding
to �Be = �Be,z , can also be determined employing moment method. Go-
ing through the same pulse expansion and point matching procedure,
equation (12′) is converted into a set of N simultaneous equations

N∑
n=1

JnlΓmn = Bm m = 1, 2, ......, N, (19)

where Bm = Be,z(�ρm) and where

Γmn =
µ0

2π

∫ ∆ln/2

−∆ln/2

cos θ′mn
|�ρm − �ρn − l′̂ln|

dl′ +
µ0(µr + 1)
2(µr − 1)

δmn (20)

in which cos θ′mn is defined by

cos θ′mn =
(xm − xn)(ŷ · l̂n)− (ym − yn)(x̂ · l̂n)

|�ρm − �ρn − l′̂ln|
(21)

4. COMPUTATION OF MAGNETIC FIELD

Based on the numerical solution of the magnetization current, �Jms , on
the cylinder surface, the magnetic flux density created by the magne-
tized cylinder can be determined by

�Bs = −µ0

∮
C

�Jms(�ρ′)×∇G(�ρ,�ρ′)dl′ (22)

When the earth’s magnetic field is perpendicular to the cylinder
axis, the magnetic field is due to a z-directed magnetization current
�Jms,z . The two components of the magnetic field are found to be

Bx = µ0

∮
C

�Jms,z(�ρ′)
∂G(�ρ,�ρ′)

∂y
dl′ (23a)
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Figure 3. Cylinders of various cross sections. (a) Rectangular cylin-
der; (b) Circular cylinder; (c) Elliptic cylinder.

and

By = −µ0

∮
C

�Jms,z(�ρ′)
∂G(�ρ,�ρ′)

∂x
dl′ (23b)

or

Bx = µ0

N∑
n=1

Jnz

∫ ∆ln/2

−∆ln/2

∂G(�ρ,�ρ′)
∂y

dl′ (23a′)

and

By = −µ0

N∑
n=1

Jnz

∫ ∆ln/2

−∆ln/2

∂G(�ρ,�ρ′)
∂x

dl′ (23b′)

When the earth’s magnetic field is parallel to the cylinder axis, the
magnetic field produced by the cylinder is due to a circumferential
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Figure 4. Magnetization current Jms,z on the surface of a rectangular
cylinder.

magnetization current. The magnetic field is z-directed and it can be
found by

�Bs = −µ0

∮
C

�Jms,l̂l
′ × (x̂

∂G(�ρ,�ρ′)
∂x

+ ŷ
∂G(�ρ,�ρ′)

∂y
)dl′ (24)

or

�Bs = −µ0

N∑
n=1

Jnl

∫ ∆ln/2

−∆ln/2
l̂′ × (x̂

∂G(�ρ,�ρ′)
∂x

+ ŷ
∂G(�ρ,�ρ′)

∂y
)dl′ (24′)

5. RESULTS AND DISCUSSION

In this section, we first show the numerical results of the magnetization
current on a magnetizable cylinder placed in the earth’s magnetic field.
Then, data of the magnetic flux density produce by the cylinder are
presented. In particular, data of the total magnetic field, as the sum
of the magnetic field of the earth and that produced by the cylinder,
near the cylinder surface are analyzed and compared with the bound-
ary condition requirements. In the computation, the earth’s magnetic
flux density is taken to be 10−4 Wb/m 2 (1 Gauss). The relative per-
meability of the cylinder is assumed to be µr = 60 . The cylinder may
be such oriented that its axis is either parallel or perpendicular to the
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Figure 5. Magnetization current Jms,z on the surface of a circular
cylinder.

Figure 6. Magnetization current Jms,z on the surface of an elliptic
cylinder.
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earth’s magnetic field. It can be of general cross section. However,
data are only presented for a 1m×1m rectangular cylinder, a circular
cylinder of radius r = 1m , and an elliptic cylinder with a 1.5m major
axis and a 1m minor axis. The cross sections of the cylinders are
displayed in Fig. 3.

In Figs. 4–6 are depicted distributions of magnetization current
Jms,z on the surface of a cylinder magnetized in the earth’s magnetic
field which is perpendicular to the cylinder axis ( �Be = Be,yŷ ). Data
of magnetization current on the surface of a rectangular cylinder are
presented in Fig. 4. The magnetization current has peak values at
corners of the rectangular cylinder and the current changes its sign
across the corners as one would predict. The data shown in this figure
agree with that presented in [3]. In Figs. 5 and 6 are illustrated mag-
netization currents on the surface of a circular cylinder and an elliptic
cylinder. One sees that the magnetization currents change smoothly
on the surface of the circular cylinder and elliptic cylinder as expected.
In Fig. 7 is displayed the magnetization current Jms,l on the surface of
a circular cylinder placed in the earth’s magnetic field which is parallel
to the cylinder axis ( �Be = Be,z ẑ ). Because the earth’s magnetic field,
as the “excitation” field, is tangential to the cylinder surface, and is
invariant all along the cylinder bounding contour, one predicts that the
magnetization current should be invariant as well. Indeed, the magne-
tization current shown in Fig. 7 is a constant over the cylinder surface.
Since data of the magnetization currents on a rectangular cylinder and
on an elliptic cylinder exhibit the similar characteristic, they are not
shown in this paper. Further, one notes that equation (12′) is analyti-
cally solvable for a constant magnetization current Jms,l on a circular
cylinder, with the earth’s magnetic field parallel to its axis. For the
parameters specified in this section, the analytic solution of the magne-
tization current density is 4,695 A/M, which agrees with the numerical
result depicted in Fig. 7.

Based on knowledge of the magnetization current, the magnetic field
due to a magnetizable cylinder placed in the earth’s magnetic field is
calculated. Data of magnitude of the magnetic flux density generated
by a circular cylinder and by an elliptic cylinder, with the earth’s
magnetic field perpendicular to their axes, are presented in Figs. 8
and 9. As one would predict, the magnetic flux density in each case
decreases as the distance from the cylinder increases. In Fig. 10 are
depicted the numerical results of magnetic flux density produced by
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Figure 7. Magnetization current Jms,l on the surface of a circular
cylinder.

Figure 8. Magnitude of magnetic flux density produced by a circular
cylinder, with earth’s magnetic field perpendicular to its axis, observed
at x = 0, y = 1− 10m .
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Figure 9. Magnitude of magnetic flux density produced by an elliptic
cylinder, with earth’s magnetic field perpendicular to its axis, observed
at x = 0, y = 1− 10m .

Figure 10. Magnitude of magnetic flux density produced by a circular
cylinder, with earth’s magnetic field parallel to its axis, observed at
x = 0, y = 1− 10m .
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Figure 11. Total magnetic field (−×−×−×− Bx , − •− • − • −
By ) of a rectangular cylinder, with y-directed earth’s magnetic field,
observed at x = 0.25m, y = −1.5–1.5m .

Figure 12. Total magnetic field (−×−×−×− Bx , − •− • − • −
By ) of a rectangular cylinder, with y-directed earth’s magnetic field,
observed at x = −1.5–1.5m, y = 0.25m .
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Figure 13. Total magnetic field of a rectangular cylinder, with earth’s
magnetic field parallel to its axis, observed at x = −2–2m, y = 0.25m .

a circular cylinder, with the earth’s magnetic field parallel to its axis,
which is almost zero outside the cylinder. For a rectangular cylinder
and an elliptic cylinder, with the earth’s magnetic field parallel to
their axes, the calculated magnetic flux density due to the cylinder
(not presented in this paper) is also almost zero.

To validate the computational method presented in this paper, the
numerical results of the total magnetic field, as the sum of the earth’s
magnetic field and the magnetic field produced by the cylinder, are
compared with the boundary condition requirements near the cylin-
der surface. For convenience of making the comparison, we use the
data for a rectangular cylinder as examples. In Figs. 11 and 12 are
presented numerical results of x- and y-component of the total mag-
netic field for a rectangular cylinder, with the earth’s magnetic field
�Be = Be,yŷ . Data depicted in Fig. 11 are for the magnetic field ob-
served at x = 0.25m and y varying from −1.5m to 1.5m . One
observes that at y = ±0.5m , or on the surface of the cylinder, the
normal component of the magnetic flux density (By) is continuous
and the tangential component of the magnetic flux density (Bx) is
discontinuous, as required by boundary conditions. The same obser-
vation applies to the data presented in Fig. 12, at x = ±0.5m where
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Bx is the normal component and By is the tangential component.
In both figures, the ratio of the tangential components of the mag-
netic flux densities evaluated on the opposite sides of the boundary
tends to be equal to the contrast of the permeability of the cylinder
and that of the external material, as the observation point approaches
to the boundary. When the earth’s magnetic field �Be = Be,z ẑ , the
total magnetic flux density is also z directed. As one can see from
the data displayed in Fig. 13, on the cylinder surface x = ±0.5m ,
the z-directed total magnetic flux density, which is tangential to the
cylinder surface, is discontinuous. Also, one notes that the ratio of the
magnetic flux densities on the opposite sides of the boundary displayed
in Fig. 13 is about equal to 60. This value is exactly the same as the
relative permeability of the cylinder taken for our computation. This
comparison shows that the computed magnetic flux density agrees with
that required by the boundary condition.
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