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1. INTRODUCTION

Guided-wave electrodynamics in the modern understanding deals with
the study of propagation, radiation, excitation, and interaction of
waves in a variety of waveguiding structures. The term “complex me-
dia waveguide” applied in the title of the paper implies the medium
complexity of two types:

(i) the physical complexity associated with medium properties di-
versified by the very nature (gas and solid state plasmas with drift-
ing carriers; polarized and magnetized solids with different properties:
piezoelectric, electrooptic, acoustooptic, magnetooptic, magnetoelas-
tic; chiral, biisotropic, and bianisotropic media);

(ii) the geometrical complexity due to using composite and multi-
layered structures.

Electromagnetic theory has been developed up to its present state
by extensive works and efforts of a great number of researchers and
scientists. Besides pure scientific purposes, progress in classical elec-
trodynamics at all stages of its advancement was encouraged by certain
demands of technology.

At the first stage such a stimulating factor was related to practical
needs of then incipient radar and antenna engineering. The consequent
experience on electrodynamic properties of mostly passive nondisper-
sive media specified by phenomenological constants, which had been
gathered over a number of years, was accumulated in many scientific
publications. Among them we should refer, for instance, to such fa-
mous and popular books as [1–5] which now constitute the theoretical
foundation of classical electrodynamics. Much attention was given to
the study of electromagnetic properties of gas plasma as a medium for
wave propagation. Later on the plasma wave aspects were extended
to the behavior of charge carriers in solids considered as a solid-state
plasma. At present the literature devoted to the electromagnetic prop-
erties of plasmas is immense and the following books [6–11] with their
bibliographies can give a good indication of the scope of plasma elec-
trodynamics.
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Another direction of electrodynamic aspects was inspired by devel-
oping the technology of microwave devices operating on wave principle.
The first to be developed were vacuum devices using the space charge,
cyclotron, and synchronous waves on an electron beam such as the
traveling-wave tube, backward-wave tube, and others [12–14]. Later
the similar idea to apply waves in solids for signal processing gave rise
to new lines of solid-state electronics. They are due to applying the
surface acoustic waves (SAW) in elastic piezo-dielectrics [15–17], the
magnetostatic spin waves (MSW) in magnetized ferrites [18–23], and
the space charge waves (SCW) in semiconductors with negative dif-
ferential mobility of electrons [10, 24, 25]. These waves refer to the
quasistatic part of the electromagnetic spectrum of waveguiding struc-
tures for which a relevant potential field (electric for SAW and SCW
or magnetic for MSW) dominates over its curl counterpart. This fact
caused some electrodynamic formulations to be revised in order to sep-
arate such potential fields and take into account the space-dispersive
properties of these media described by the proper equations of medium
motion [15, 22, 24, 25].

For the last decades the macroscopic electrodynamics of waveguid-
ing structures has experienced two powerful stimulating actions. The
first is associated with needs of fiber and integrated optics and began
about twenty five years ago. A number of theoretical propositions in
electrodynamics were reformulated, as applied to optical waveguides,
and have been embodied in devices. The literature devoted to this
topic is enormous including the well-known books [26–32].

Nowadays we observe the renewed interest in electrodynamic prob-
lems caused by efforts to apply chiral, biisotropic, and bianisotropic
media for the control of electromagnetic radiation in waveguiding struc-
tures. Phenomenon of optical activity in certain natural substances
generated by their handedness property (chirality) was already known
last century. The present revival of scientific and technological at-
tention to this problem is inspired by the modern progress of material
science and technology in synthesizing artificial composite media. Such
media possess unique properties to open new potential possibilities in
their utilizing in optics and at microwaves. This has aroused a great
wave of research followed by numerous publications, among them both
the general books [33–35] comprising bianisotropic issues and the spe-
cial books [36–40] devoted entirely to this subject.
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Theoretical ground for many wave electrodynamics applications is
the modal expansion method. In the case of the eigenmode excita-
tion by external sources the question of completeness of the eigenfunc-
tion basis chosen inside the source region is of crucial importance in
practice. Unfortunately, most authors solve this question rather su-
perficially assuming intuitively that the set of eigenfunctions found as
the general solution to the boundary-value problem without sources is
complete also inside the source region. However, this is not the case in
general.

From mathematical considerations given in Appendix A.1 it fol-
lows that the above statement is valid only for the desired functions
ψ(x) tangential to the Hilbert space spanned by the eigenfunction
basis {ψk(x)} . Generally, for most functions f(x) their series ex-
pansion in terms of the base functions (convergent in mean) is only a
projection ψ(x) of the function f(x) on the Hilbert space. In addi-
tion, there may exist a nonzero function c(x) orthogonal to this space,
the so-called orthogonal complement , which in general must be added
to the projection ψ(x) in order for f(x) to be considered as the com-
plete required function (see Eq. (A.18) and relevant relations in Ap-
pendix A.2 involving the appropriate electrodynamic extensions). The
above statement is fairly obvious for mathematicians but unfortunately
was fully ignored in developing the modern topics of guided-wave elec-
trodynamics by most authors, not counting Vainshtein [2] and Felsen
and Marcuvitz [8]. Strange as it may seem, when developing the exci-
tation theory of optical waveguides, many authors [26, 27, 29, 31, 32]
have correctly applied the modal expansions to the transverse com-
ponents of electromagnetic fields but entirely dropped the orthogonal
complements due to the longitudinal exciting bulk currents. As will
be shown, this causes the so-called effective surface currents to be lost.
Similar situation also holds for electrodynamics of the waveguiding
structures with chiral and bianisotropic media [34, 38–40] where the
modal expansion method is practically undeveloped and the problem
of the orthogonal complements and effective surface sources, worked
out below, is more complicated.

The objective in writing this paper is to develop a unified electro-
dynamic theory of waveguide excitation by external sources (bulk and
surface) applicable equally for any media and waveguiding structures.
Particular attention will be given to the study of the unexpandable
orthogonal complements to the eigenmode expansions which should
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be expressed in terms of the given exciting currents as well as the
desired mode amplitudes of the modal expansions. To this end, we
begin with Sec. 2 devoted to deriving the basic energy-power relations
of electrodynamics applied to the lossy bianisotropic media including
Poynting’s theorem in the differential and integral forms involving the
self-power and cross-power quantities (flows and losses) transmitted
and dissipated by the eigenmodes of a waveguiding structure. Sec. 3
deals with a generalization of the known orthogonality relation for the
waveguides without losses to the so-called quasi-orthogonality relation
for lossy waveguides which describes, as a special case, the orthogonal-
ity of the reactive (nonpropagating) modes in lossless waveguides. In
addition, an expression for the time-average energy stored by the active
(propagating) modes is proved. Sec. 4 is concerned with the consider-
ation of external sources (currents, fields, and medium perturbations)
and electromagnetic fields inside the source region. The complete rep-
resentation of the fields, besides their modal expansions, involves also
the so-called orthogonal complementary fields which necessarily gen-
erate the effective surface currents. Sec. 5 contains two different ap-
proaches to the derivation of the equations of mode excitation by exter-
nal sources. The first approach applied only to the lossless waveguides
is based on an electrodynamic analogy with the known mathematical
statements such as the method of variation of constants and the re-
lations of functional analysis (see Appendix A). The second approach
makes use of the reciprocity theorem in the complex-conjugate form
to obtain the equations of mode excitation in the general form valid
for both lossy and lossless waveguiding structures. Another alterna-
tive proof of the excitation equations for lossless waveguides starting
directly from Maxwell’s equations is adduced in Appendix B.

In this paper we restrict our consideration to the case of time-
dispersive media whose electrodynamic properties (isotropic, aniso-
tropic, bianisotropic) are characterized by the frequency-dependent
constitutive parameters considered as phenomenologically given. More
complicated case of space-dispersive media such as elastic piezo-
dielectrics, magnetized ferrites, nondegenerate plasmas with drifting
charge carriers whose electrodynamic description requires, besides
Maxwell’s equations, employing the proper equation of medium mo-
tion will be the subject of matter of the second part of the paper.
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In conclusion there are a few words concerning the notation applied:

(i) tensors of rank 0 (scalars), 1 (vectors), 2 (dyadics), and more than
2 (tensors) are denoted as: A , A , Ā , and ¯̄A , respectively;

(ii) their products are denoted as: AB (for two scalars); A · B ,
A×B , and AB (for scalar, vector, and dyad products of two vec-
tors); AB · CD = AD(B ·C) , Ā · B̄ = AijBjk , and
¯̄A· ¯̄B = AijkBklm (for scalar product of two vector dyads, dyadics,
and tensors); AB : CD = (A ·D)(B ·C) , Ā : B̄ = AijBji , and
¯̄A : ¯̄B = AijkBkjl (for double scalar product of two vector dyads,
dyadics, and tensors).

2. GENERAL POWER-ENERGY RELATIONS OF ELEC-
TRODYNAMICS FOR BIANISOTROPIC MEDIA

2.1 Poynting’s Theorem

In macroscopic electrodynamics, the electromagnetic properties of
a medium are described by two field-intensity vectors, E (the electric
field) and H (the magnetic field), and two flux-density vectors, D
(the electric induction) and B (the magnetic induction), which are
related by means of Maxwell’s equations (written in the rationalized
mks system):

∇∇∇ ×E = −∂B
∂t

, ∇∇∇ ×H =
∂D
∂t

+ J, ∇∇∇ ·D = ρ, ∇∇∇ ·B = 0. (2.1)

Mobile charge effects in the medium are specified by the charge and
current densities ρ and J, whereas the bound charges arise as a re-
sult of polarization responses of the medium to electromagnetic actions
characterized by the electric and magnetic polarization vectors P (the
polarization vector) and M (the magnetization vector). These vectors
yield the corresponding contributions to the electric and magnetic in-
ductions:

D = εoE + P and B = µo(H + M). (2.2)

The conventional procedure applied to Eqs. (2.1) reduces to Poynt-
ing’s theorem in the form involving the instantaneous values of power-
energy quantities:

∂w

∂t
+ ∇∇∇ · S = −IJ − IP − IM (2.3)
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where w = (E ·D + H · B)/2 is the electromagnetic energy density
and S = E×H is the electromagnetic energy flux density (Poynting’s
vector). The terms in the right-hand side of Eq. (2.3):

IJ = J ·E, (2.4)

IP =
1
2

(
E · ∂P

∂t
−P · ∂E

∂t

)
, (2.5)

IM =
1
2

(
H · ∂µoM

∂t
− µoM ·

∂H
∂t

)
, (2.6)

reflect specific properties of the medium under study and take into
account the instantaneous power of interaction between the electro-
magnetic fields (E, H) and the charges — both mobile ones carrying
the current J and bound ones generating the polarization P and the
magnetization M .

In the literature the energy term ∂w/∂t is conventionally identified
with the sum E · ∂D/∂t+ H · ∂B/∂t , which is true only if D = ε̄εε ·E
and B = µ̄µµ ·H where the tensors ε̄εε and µ̄µµ are symmetric and time-
independent. In this case only the first interaction term (2.4) is taken
into account, whereas two others (2.5) and (2.6) are dropped without
any justification. As will be evident from our subsequent examination
including the second part of the paper, these terms play an important
role in the power-energy theorem.

For time-harmonic fields (with time dependence in the form of
exp(iωt) ) one is usually interested in time-average values of the power-
energy quantities denoted as 〈· · ·〉 . In this case 〈∂w/∂t〉 = 0 so that
Eq. (2.3) takes the following form involving the time-average values of
quantities:

∇∇∇ · 〈S〉 = −〈IJ〉 − 〈IP〉 − 〈IM〉. (2.7)

Below we concentrate on bianisotropic media for which there is no
equation of motion. Their properties are usually described by the con-
stitutive equations establishing macroscopic local relations among field
vectors. It should be emphasized that magneto-electric effects (for
instance, optical activity), by their microscopic nature, are brought
about by nonlocality of polarization response on electromagnetic ac-
tions [33, 35, 36, 41]. But their macroscopic manifestations are usually
similar to those of actual time-dispersive media because for plane waves
with the wave vector k = (ω/c)n all the constitutive tensor parame-
ters of such media become solely frequency-dependent (see Ref. [41]).
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There are a few forms of the constitutive relations for bianisotropic
media [33–38]. Among them we choose the following form

D = ε̄εε ·E + ξ̄ξξ ·H, (2.8)
B = ζ̄ζζ ·E + µ̄µµ ·H, (2.9)

as more convenient for our subsequent examination. Four constitutive
medium parameters ε̄εε , µ̄µµ , ξ̄ξξ and ζ̄ζζ are considered as dyadic func-
tions of frequency given phenomenologically. They comprise all special
cases of the physical media without space dispersion:

(i) for the isotropic medium

ε̄εε = εĪ, µ̄µµ = µĪ, ξ̄ξξ = ζ̄ζζ = 0; (2.10)

(ii) for the double anisotropic medium

ε̄εε 	= εĪ, µ̄µµ 	= µĪ, ξ̄ξξ = ζ̄ζζ = 0; (2.11)

(iii) for the chiral (biisotropic) medium

ε̄εε = εĪ, µ̄µµ = µĪ, ξ̄ξξ = (χ−iκ)
√
εoµo Ī, ζ̄ζζ = (χ+iκ)

√
εoµo Ī, (2.12)

where χ and κ are Tellegen’s parameter of nonreciprocity and Pas-
teur’s parameter of chirality, respectively [35, 38]. It is known [33–35]
that for a bianisotropic medium without losses the dyadics ε̄εε and µ̄µµ
are hermitian (self-adjoint) while the dyadics ξ̄ξξ and ζ̄ζζ are hermitian
conjugate (mutually adjoint), that is

ε̄εε = ε̄εε †, µ̄µµ = µ̄µµ †, ξ̄ξξ = ζ̄ζζ
†
, (2.13)

where superscript † denotes transpose and complex conjugate (hermi-
tian conjugate). Relations (2.13) imply that in the general case of lossy
media the antihermitian parts ε̄εε a = ( ε̄εε − ε̄εε †)/2 , µ̄µµ a = ( µ̄µµ − µ̄µµ †)/2
and the difference ( ξ̄ξξ − ζ̄ζζ

†) are responsible for losses (dielectric, mag-
netic, and magneto-electric, respectively). If the medium has also the
electric losses related to its conductive properties and specified by the
conductivity dyadic σ̄σσ c , then in addition to Eqs. (2.8) and (2.9) there
is another constitutive relation

J = σ̄σσ c ·E. (2.14)
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Let us calculate the terms in the right-hand side of Eq. (2.7) by using
their definitions (2.4) through (2.6) and the constitutive relations (2.8),
(2.9), and (2.14):

〈IJ〉 ≡ 〈J ·E〉 =
1
2
Re{J ·E∗} =

1
2
Re{E∗ · σ̄σσc ·E}

=
1
2
σ̄σσc : EE∗, (2.15)

〈IP〉 ≡
1
2

〈
E · ∂P

∂t
−P · ∂E

∂t

〉
=

1
2

〈
E · ∂D

∂t
−D · ∂E

∂t

〉

=
1
4
Re {E∗ · (iωD)−D∗ · (iωE)}

=
1
4
Re

{
iω(E∗ · ε̄εε ·E + E∗ · ξ̄ξξ ·H−E · ε̄εε∗ ·E∗ −E · ξ̄ξξ∗ ·H∗)

}
=

1
4
Re

{
iω[E∗ · (ε̄εε− ε̄εε†) ·E + 2E∗ · ξ̄ξξ ·H]

}
=

1
2
Re

{
iω(ε̄εεa : EE∗ + ξ̄ξξ : HE∗)

}
, (2.16)

〈IM〉 ≡
1
2

〈
H · ∂µoM

∂t
− µoM ·

∂H
∂t

〉

=
1
2

〈
H · ∂µoB

∂t
− µoB ·

∂H
∂t

〉
=

1
4
Re {H∗ · (iωB)−B∗ · (iωH)}

=
1
4
Re

{
iω(H∗ · µ̄µµ ·H + H∗ · ζ̄ζζ ·E−H · µ̄µµ∗ ·H∗ −H · ζ̄ζζ∗ ·E∗)

}
=

1
4
Re

{
iω[H∗ · (µ̄µµ− µ̄µµ†) ·H− 2E∗ · ζ̄ζζ† ·H]

}
=

1
2
Re

{
iω(µ̄µµa : HH∗ − ζ̄ζζ

† : HE∗)
}
. (2.17)

Substitution of Eqs. (2.15)–(2.17) into Eq. (2.7) gives the time-
average Poynting theorem in the following form

∇̄∇∇ · 〈S〉+ 〈q〉 = 0 (2.18)

involving the average Poynting vector

〈S〉 =
1
2
Re{E×H∗} (2.19)

and the average power loss density

〈q〉 = 〈IJ〉+ 〈IP〉+ 〈IM〉

=
1
2
σ̄σσe : EE∗ +

1
2
σ̄σσm : HH∗ +

1
2
Re{σ̄σσme : HE∗}

(2.20)
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where we have introduced the total tensor of electric conductivity

σ̄σσ e = σ̄σσ c + σ̄σσ d = σ̄σσ c + iω ε̄εε a ≡ σ̄σσ c +
iω( ε̄εε − ε̄εε †)

2
(2.21)

associated with conductor ( σ̄σσ c) and dielectric ( σ̄σσ d = iω ε̄εε a) losses of
a medium, the tensor of magnetic conductivity

σ̄σσ m = iω µ̄µµ a ≡ iω( µ̄µµ − µ̄µµ †)
2

(2.22)

associated with magnetic losses of a medium, and the tensor of
magneto-electric conductivity

σ̄σσ me = iω( ξ̄ξξ − ζ̄ζζ
†) ≡ iω

[
( ξ̄ξξ a + ζ̄ζζ

a) + ( ξ̄ξξ h − ζ̄ζζ
h)

]
(2.23)

consisting of both antihermitian (with superscript a ) and hermitian
(with superscript h ) parts of the cross susceptibilities ξ̄ξξ and ζ̄ζζ .
Unlike σ̄σσ me , the dyadics σ̄σσ e = σ̄σσ c + iω ε̄εε a and σ̄σσ m = iω µ̄µµ a are
hermitian so that they produce the real (positive) definite quadratic
forms in Eq. (2.20).

2.2 Mode Power Transmission and Dissipation

In order to obtain expressions for the power carried by modes along a
waveguiding structure involving complex (anisotropic and bian-
isotropic) media and to find the dissipation of mode power it is neces-
sary to go from the time-average Poynting theorem in differential form
(2.18) to its integral form. For this purpose let us integrate Eq. (2.18)
over the composite (multilayered) cross section S =

∑
Si formed from

a few medium parts Si with interface contours Li by using the two-
dimensional divergence theorem (e.g., see Ref. [5], p.150)∫

Si

∇∇∇ ·A dS =
∂

∂z

∫
Si

zo ·A dS =
∮
Li

no ·A dl (2.24)

where A is the arbitrary field vector and no is the outward unit vector
normal to the contour Li and perpendicular to the longitudinal unit
vector zo .

Application of the integral relation (2.24) to ∇∇∇ · 〈S〉 gives∫
S
∇∇∇ · 〈S〉 dS =

∂

∂z

∫
S
zo · 〈S〉 dS −

∑
i

∮
Li

[
n+
i · 〈S+〉+ n−i · 〈S−〉

]
dl

(2.25)
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where 〈S±〉 means values of the time-average Poynting vector taken at
points of contour Li lying on its different sides marked by the inward
(for either adjacent medium) unit vectors n±i . The parts of interfaces
between two adjacent nonconducting media do not contribute to the
line integrals in Eq. (2.25) owing to continuity in tangential compo-
nents of the electric and magnetic fields. The only contribution may
appear from the parts of Li corresponding to conducting surfaces on
which there is the known boundary condition [2, 5, 35]

Eτ = Z̄s · (Hτ × ni) (2.26)

where Eτ and Hτ are the electric and magnetic fields tangential to
the surface and Z̄s is the surface impedance tensor. For the special
case of the isotropic metallic surface with the conductivity σ and the
skin depth δ =

√
2/ωµoσ we have [2, 5]

Z̄s = (1 + i)RsĪ where Rs =
1
σδ

=
√
ωµo
2σ

. (2.27)

In this case the integrand of the line integral in Eq. (2.25) yields
the surface loss power density 〈q′〉 in addition to the bulk loss power
density 〈q〉 entering into Poynting’s theorem (2.18).

The result of integrating Eq. (2.18) over the total cross section S of
the waveguide and applying Eqs. (2.19), (2.20), and (2.25)–(2.27) give
Poynting’s theorem in the integral from

∂P

∂z
+Q = 0 (2.28)

where the total real power carried by electromagnetic fields in the
direction of increasing coordinate z is equal to

P =
∫
S
〈S〉 · zo dS =

1
2
Re

∫
S
(E×H∗) · zo dS (2.29)

and the total power loss per unit length caused by the bulk losses Q(b)

(obtained by integrating 〈q〉 over S =
∑

Si ) and the surface (skin)
losses Q(s) (obtained by integrating 〈q′〉 along L =

∑
Li ) is equal to

Q = Q(b) + Q(s) =
∫
S
〈 q 〉 dS +

∫
L
〈 q′ 〉 dl

=
1
2

∫
S
( σ̄σσe : EE∗) dS +

1
2

∫
S
( σ̄σσm : HH∗) dS

+
1
2

Re
∫
S
( σ̄σσme : HE∗) dS +

1
2

∫
L
Rs (Hτ ·H∗τ ) dl (2.30)
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Power relation (2.28) is valid only for the source-free region of a
wave-guiding structure where the electromagnetic fields can be ex-
panded in terms of its eigenmodes (cf. Eqs. (A.29))

E(rt, z) =
∑
k

Ak Êk(rt) e− γkz =
∑
k

ak(z) Êk(rt), (2.31)

H(rt, z) =
∑
k

Ak Ĥk(rt) e− γkz =
∑
k

ak(z) Ĥk(rt). (2.32)

Every k th mode is specified by the propagation constant γk =
αk + iβk and the eigenfunctions {Êk, Ĥk} (where the hat sign over
field vectors implies their dependence only on transverse coordinates
rt , see Appendix A.2), which are regarded as known quantities found
from solving the appropriate boundary-value problem. The amplitudes
Ak are determined by the exciting sources and called the excitation
amplitudes. Inside the source region they depend on z as a result of
source actions but for the source-free region Ak(z) = const. , as in the
case of Eqs. (2.31) and (2.32). It is often convenient instead of Ak(z)
to introduce the mode amplitudes

ak(z) = Ak(z) e− γkz (2.33)

which take into account the total z -dependence related both to the
mode propagation (exp(−γkz)) and to the exciting sources (Ak(z) ) ,
if any.

Let us employ the modal expansions (2.31) and (2.32) to calculate
the power flow P (z) and the power loss Q(z) given by Eqs. (2.29)
and (2.30) for the source-free region. The final result of calculations is
the following:

P (z) =
1
4

∫
S
(E∗ ×H + E×H∗) · z0 dS

=
1
4

∑
k

∑
l

Nkl a
∗
k(z)al(z) ≡

∑
k

∑
l

Pkl(z) , (2.34)

Q(z) =
1
2

∫
S
(E∗ · σ̄σσe ·E) dS +

1
2

∫
S
(H∗ · σ̄σσm ·H) dS+

+
1
4

∫
S
(E∗ · σ̄σσme ·H + H∗ · σ̄σσ †me ·E) dS +

1
2

∫
L
Rs (H∗τ ·Hτ ) dl

=
1
4

∑
k

∑
l

Mkl a
∗
k(z)al(z) ≡

∑
k

∑
l

Qkl(z) (2.35)
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where we have introduced the normalizing coefficients

Nkl =
∫
S
(Ê∗k × Ĥl + Êl × Ĥ∗k) · z0 dS (2.36)

and the dissipative coefficients

Mkl = 2
∫
S
(Ê∗k · σ̄σσe · Êl) dS + 2

∫
S
(Ĥ∗k · σ̄σσm · Ĥl) dS

+
∫
S
(Ê∗k · σ̄σσme · Ĥl + Ĥ∗k · σ̄σσ †me · Êl) dS + 2

∫
L
Rs (Ĥ∗τ,k · Ĥτ,l) dl

(2.37)
constructed of the cross-section eigenfield vectors (marked with the hat
sign above them, see Eq. (3.5)).

From Eqs. (2.36) and (2.37) it follows that the matrices {Nkl} and
{Mkl} are hermitian, that is

Nkl = N∗lk and Mkl = M∗lk , (2.38)

and have dimensions of watts and watts per meter, respectively, be-
cause the amplitudes Ak and ak are dimensionless.

The quantities Pk(z) and Qk(z) appearing in Eqs. (2.34) and (2.35)
for l = k in the following form

Pk(z) ≡ Pkk(z) =
1
4
Nkk a

∗
k(z)ak(z) =

1
4
Nk |Ak|2 e−2αkz (2.39)

Qk(z) ≡ Qkk(z) =
1
4
Mkk a

∗
k(z)ak(z) =

1
4
Mk |Ak|2 e−2αkz (2.40)

are the real self powers transmitted and dissipated at point z by the
k th mode which was excited at point z = 0 with amplitude Ak .

Similarly, the quantities Pkl(z) and Qkl(z) for l 	= k equal to

Pkl(z) =
1
4
Nkl a

∗
k(z)al(z) =

1
4
NklA

∗
kAl e

− (γ∗k + γl)z (2.41)

Qkl(z) =
1
4
Mkl a

∗
k(z)al(z) =

1
4
MklA

∗
kAl e

− (γ∗k + γl)z (2.42)

can be interpreted as the complex cross powers transmitted and dissi-
pated at point z jointly by the k th and l th modes which were excited
at point z = 0 with amplitudes Ak and Al . Owing to (2.38), the
quantities defined by Eqs. (2.41) and (2.42) are also hermitian:

Pkl(z) = P ∗lk(z) and Qkl(z) = Q∗lk(z) . (2.43)
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From Eqs. (2.41) through (2.43) it follows that in a lossy waveguid-
ing structure every pair of modes always transmits and dissipates the
real combined cross powers

P c
kl(z) ≡ Pkl(z) + Plk(z) = 2 RePkl(z) =

1
2

Re {Nkl a
∗
k(z)al(z)} ,

(2.44)

Qc
kl(z) ≡ Qkl(z) +Qlk(z) = 2 ReQkl(z) =

1
2

Re {Mkl a
∗
k(z)al(z)}.

(2.45)

Therefore, the double sums in Eqs. (2.34) and (2.35) yield the real
(time-average) total powers transmitted and dissipated by all modes
in a lossy waveguide:

P (z) =
∑
k

∑
l

Pkl(z) =
∑
k

Pk(z) +
∑
k

∑
l �=k

P c
kl(z)

=
1
4

∑
k

Nk |ak(z)|2 +
1
2

Re
∑
k

∑
l>k

Nkl a
∗
k(z)al(z), (2.46)

Q(z) =
∑
k

∑
l

Qkl(z) =
∑
k

Qk(z) +
∑
k

∑
l �=k

Qc
kl(z)

=
1
4

∑
k

Mk |ak(z)|2 +
1
2

Re
∑
k

∑
l>k

Mkl a
∗
k(z)al(z) , (2.47)

where Nk ≡ Nkk and Mk ≡Mkk.
In the next section we shall derive a relation named the quasi-

orthogonality relation to link the cross powers Pkl and Qkl for every
pair of modes in a lossy waveguide or for every pair of the so-called
twin-conjugate modes in a lossless waveguide.

3. ORTHOGONALITY AND QUASI-ORTHOGONALITY
OF MODES IN LOSSLESS AND LOSSY WAVEGUIDES

3.1 Quasi-orthogonality Relation for Lossy Waveguides

Let us begin our examination with the general case of the com-
posite (multilayered) waveguiding structure containing bianisotropic
media with bulk (electric, magnetic, magneto-electric) losses and sur-
face (skin) losses. Consider the k th and l th modes propagating in the
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source-free region of the waveguide which obey the curl Maxwell equa-
tions (2.1) rewritten by using the constitutive relations (2.8), (2.9),
and (2.14) in the following form

∇∇∇×Ek(l) = − iω µ̄µµ ·Hk(l) − iω ζ̄ζζ ·Ek(l) , (3.1)

∇∇∇×Hk(l) = ( σ̄σσc + iω ε̄εε ) ·Ek(l) + iω ξ̄ξξ ·Hk(l) . (3.2)

A conventional procedure applied to Eqs. (3.1) and (3.2) gives

∇∇∇ · (E∗k ×Hl + El ×H∗k) = − 2E∗k · σ̄σσe ·El − 2H∗k · σ̄σσm ·Hl

− (E∗k · σ̄σσme ·Hl + H∗k · σ̄σσ †me ·El)
(3.3)

where we have used formulas (2.21) – (2.23).
Application of the two-dimensional divergence theorem (2.24) to the

left-hand side of Eq. (3.3), by analogy with formula (2.25) and by using
the boundary condition (2.26), results in the following expression

∂

∂z

∫
S
(E∗k ×Hl + El ×H∗k) · z0 dS =

=− 2
∫
S
(E∗k · σ̄σσe ·El) dS − 2

∫
S
(H∗k · σ̄σσm ·Hl) dS

−
∫
S
(E∗k · σ̄σσme ·Hl + H∗k · σ̄σσ †me ·El) dS − 2

∫
L
Rs (H∗τ,k ·Hτ,l) dl .

(3.4)
Representation of the fields for the k th and l th modes in the form

Ek(l)(rt, z) = Êk(l)(rt) e− γk(l)z, Hk(l)(rt, z) = Ĥk(l)(rt) e− γk(l)z

(3.5)
and their substitution into Eq. (3.4) give, by comparing with formulas
(2.36) and (2.37) for Nkl and Mkl , the desired relation

(γ∗k + γl)Nkl = Mkl (3.6)

referred to as the quasi-orthogonality relation. It will play the same
role in deriving the excitation equations (see Eq. (5.46)) as the ordinary
orthogonality relation.

Expressions (2.41) and (2.42) relate the normalizing and dissipative
coefficients Nkl and Mkl to the cross-power flow Pkl and the cross-
power loss Qkl , respectively, transmitted and dissipated jointly by the
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k th and l th modes. The use of these expressions allows us to rewrite
the quasi-orthogonality relation (3.6) in the power form

(γ∗k + γl)Pkl = Qkl . (3.7)

This formulation furnishes the following power interpretation of
mode quasi-orthogonality: outside the source region every pair of
modes, independently of other modes, transmits the complex cross-
power flow Pkl rigidly coupled to the complex cross-power loss Qkl

by the factor (γ∗k + γl) consisting of the mode propagation constants
γk(l) = αk(l) + iβk(l) , and in doing so the combined cross powers
P c
kl = Pkl + Plk and Qc

kl = Qkl + Qlk always remain real. The
quasi-orthogonality relation (3.7) means that outside the source re-
gion Poynting’s theorem (2.28) takes place for any one of mode pairs
(k, l) :

dPkl
dz

+ Qkl = 0 . (3.8)

Besides, every single mode has the real self-power flow Pk ≡ Pkk
and self-power loss Qk ≡ Qkk in the form of Eqs. (2.39) and Eq. (2.40).
These self powers are coupled to each other by the same relations (3.7)
and (3.8) which for l = k yield the following expression for the atten-
uation constant:

αk =
Qk

2Pk
=

Mk

2Nk
. (3.9)

Hence, there occurs the following pattern of mode power transfer in
the lossy waveguiding structures. Every k th mode propagates from
the source region with the fixed value of amplitude Ak (the loss attenu-
ation is taken into account by the amplitude constant αk appearing in
γk ) which was excited by the sources. Outside them the mode, being
a linearly independent solution to the boundary-value problem, does
not interact with other modes owing to their linear independence. The
k th mode transfers the self power Pk on its own and the cross powers
Pkl in conjunction with the other l th modes which were also excited
inside the source region and outside retain constant their excitation
amplitudes Al as well as the k th mode.

3.2 Mode Orthogonality in Lossless Waveguides

The orthogonality relation for a lossless waveguiding structure is
obtained from the general relation (3.6) as the special case of Mkl = 0
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and has the following form

(γ∗k + γl)Nkl = 0 . (3.10)

In spite of the absence of dissipation, in the eigenmode spectrum of
the lossless waveguide, besides propagating modes with αk ≡ 0 and
γk = iβk , there are also modes having complex values of the prop-
agation constant γk = αk + iβk with αk 	= 0 . These modes exist
in the cutoff regime of propagation and their attenuation is of reac-
tive (nondissipative) character associated with the storage of reactive
power. As a token of this, it seems reasonable to refer to such modes as
the reactive modes to distinguish between them and the active (prop-
agating) modes carrying an active (real) power.

In the literature the reactive (in our terminology) modes are var-
iously termed the complex, cutoff, nonpropagating, and evanescent
modes. The last term is usually attributed only to cutoff modes with
pure decay (αk 	= 0 ) and without phase delay ( βk = 0 ). The lat-
ter feature of evanescent modes makes appropriate for them also the
term “nonpropagating” because there is no phase propagation. But for
the complex modes with αk 	= 0 and βk 	= 0 their reactive decay as
exp(−αkz) is accompanied by the phase variation in accordance with
the wave factor exp[i(ωt− βkz)] . For this reason it is more preferable
to refer to the complex modes as reactive modes rather than nonprop-
agating ones. However, we shall apply both terms, the reactive and
nonpropagating modes, as well as their antitheses, the active and prop-
agating modes, to reflect the fact that the former do not transfer any
self power, whereas the latter carry it.

Let us show that in any lossless waveguide, independently of its
structure and media used, every reactive mode with number k has
its own twin mode with number k̃ (marked by tilde) so that their
propagation constants are related by the equality

γk̃ = − γ∗k or αk̃ = −αk , βk̃ = βk . (3.11)

Such mode twins with pair of numbers (k, k̃) that satisfy the rela-
tion (3.11) will be referred to as the twin-conjugate modes. As is seen
from Eq. (3.11), these modes have the same phase velocity ( βk = βk̃ )
but decay in opposite directions (αk = −αk̃) .

The existence of twin-conjugate modes possessing the property ex-
pressed by Eq. (3.11) can be justified by means of the following rea-
soning. In our treatment of complex amplitude technique, we have
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chosen the wave factor in the form exp[i(ωt−k ·r)] where kz≡− i γ .
However, there is another alternative form exp[−i(ωt − k̃ · r)] with
k̃z ≡− i γ̃ which differs from the first form in opposite sign of imagi-
nary unity and having tilde above the wave vector. It is clearly evident
that the alternative case can be obtained from our solution by applying
complex conjugation, then

k̃z ≡ − iγ̃ = k∗z ≡ iγ∗ whence γ̃ = − γ∗. (3.12)

Equalities for gammas in Eqs. (3.11) and (3.12) are fully coincident
not counting different positions of tilde (the former marking the mode
number k̃ in subscripts will be used later on). This result substan-
tiates the existence of twin-conjugate modes for which γk = − γ∗

k̃
or

kz,k = k∗
z,k̃

. In other words, any dispersion equation obtained as a
result of solving the boundary-value problem for lossless systems has
the complex roots with complex-conjugate values of the longitudinal
wavenumber kz which appear in pairs. Such a pair of complex roots
corresponds to the twin-conjugate modes.

Sign of the amplitude constant αk can be used as the basis for
classification of the reactive (nonpropagating) modes under two types,
forward and backward , as is usually done for the active (propagat-
ing) modes but on the basis of a sign of the group velocity vgr,k =
[dβk(ω)/dω]−1 . In reference to the source region location between
z = 0 and z = L , all the modes (active and reactive) can be classified
into two categories:

(i) the forward modes marked by subscript k = +n > 0 (active
with vgr,+n>0 or reactive with α+n>0 ) which, being excited inside
the source region, leave it (without or with reactive damping) across
the right boundary and exist outside at z > L ;

(ii) the backward modes marked by subscript k = −n< 0 (active
with vgr,−n<0 or reactive with α−n<0 ) which, being excited inside
the source region, leave it (without or with reactive damping) across
the left boundary and exist outside at z < 0 .

3.2.1 Orthogonality and Normalization Relations for Active Modes

The active (propagating) modes exist in the pass band of lossless
waveguides where they have zero amplitude attenuation (αk(l) = 0),
so that their propagation constants γk(l) = iβk(l) are pure imaginary.
In this case the orthogonality relation (3.10) rewritten in the form

(βk − βl)Nkl = 0 (3.13)



Bianisotropic media waveguide excitation 259

along with expression (2.36) for Nkl furnishes two alternatives:

Nkl ≡
∫
S
(Ê∗k × Ĥl + Êl × Ĥ∗k) · z0 dS = 0 for l 	= k (3.14)

or

Nk ≡ Nkk = 2 Re
∫
S
(Ê∗k × Ĥk) · z0 dS 	= 0 for l = k . (3.15)

Expression (3.14) is the orthogonality relation between the different
propagating modes for which βk − βl 	= 0 , whereas formula (3.15) de-
fines the norm Nk ≡ Nkk of the k th mode. It should be noted that
Eq. (3.14) does not necessarily hold for different but degenerate modes
with βk = βl . In this case one can employ the conventional technique
commonly used for usual waveguides [2, 3] to ensure the orthogonality
among degenerate modes by constructing from them such linear com-
binations that constitute a new orthogonal subset for which relation
(3.14) is applicable. For this reason we shall no longer turn special
attention to degenerate modes.

From Eqs. (2.41)) and (3.14) it follows that two different propagat-
ing modes (with numbers k 	= l ) have zero cross-power flow (Pkl = 0) ,
i.e., they are orthogonal in power sense. Any mode carries along a
waveguide only the self power Pk defined by formula (2.39), which
gives the following power interpretation for the norm of active modes:
Nk is equal to 4P o

k where P o
k means the time-average power car-

ried in the positive z -direction by the k th mode with unit amplitude
( |Ak| = 1 ). In some instances it may be more convenient to normalize
the mode amplitude to unit power ( |P o

k | = 1 watt). Then |Nk| = 4
watts and according to Eq. (2.39)

Pk = ± |ak|2 = ± |Ak|2 (3.16)

where subscripts should be read as k = ±n , with upper and lower
signs corresponding to the forward and backward modes for which,
respectively, N+n=4 watts and N−n=− 4 watts. In the special case
of a reciprocal waveguide wherein for every forward mode there is a
backward one with the same law of dispersion, their norms are related
to each other by the equality

N+n = −N−n . (3.17)
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In conclusion, let us write the relation of orthonormalization for the
active (propagating) modes in the following form

Nkl = Nkk δkl ≡
{

0 for l 	= k ,

Nkk ≡ Nk for l = k ,
(3.18)

where the normalizing coefficient Nkl and the norm Nk are given by
Eqs. (3.14) and (3.15), respectively.

3.2.2 Orthogonality and Normalization Relations for Reactive Modes

The reactive modes of a lossless waveguide are cutoff modes whose
propagation constants γk(l) = αk(l) + iβk(l) are generally complex-
valued or particularly real-valued for the evanescent modes with
βk(l) = 0 . So the general relation of orthogonality (3.10) holds for
them and by using Eq. (3.11) for the twin-conjugate modes gives two
alternatives:

Nkl ≡
∫
S
(Ê∗k × Ĥl + Êl × Ĥ∗k) · z0 dS = 0 for l 	= k̃ (3.19)

or

Nk ≡ Nkk̃ =
∫
S
(Ê∗k × Ĥk̃ + Êk̃ × Ĥ∗k) · z0 dS 	= 0 for l = k̃ .

(3.20)
Expression (3.19) fulfills a role of the orthogonality relation for the

reactive modes. As is seen from here, every reactive k th mode is
orthogonal to all the l th modes (reactive with αl 	= 0 and active with
αl = 0 ) for which γl + γ∗k = γl − γk̃ 	= 0 and Nkl = 0 , including itself
since γk+γ∗k = 2αk 	= 0 and Nkk = 0 . The only mode nonorthogonal
to the given k th mode is its own twin with number k̃ for which
γk̃ + γ∗k = 0 . Formula (3.20) defines the norm Nk ≡ Nkk̃ for the
reactive k th mode which is constructed of the fields of twin-conjugate
modes (k, k̃) .

From Eqs. (2.39), (2.41), and (3.19) it follows that every reactive
mode has no both the self power (Pkk = 0 ) and the cross powers with
the other modes (Pkl = 0) for which γl 	=− γ∗k , i.e., these modes are
orthogonal in power sense.

Each mode forming a twin-conjugate pair, being nonorthogonal to
its twin, has its own norm defined by Eq. (3.20) as

Nk ≡ Nkk̃ or Nk̃ ≡ Nk̃k , (3.21)
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whence, according to the general property of hermitian symmetry for
the normalizing coefficients expressed by equality (2.38), it follows that

Nk = N∗
k̃
, (3.22)

i.e., the reactive twin-conjugate modes have the complex-conjugate
norms.

Although the reactive mode has no self power (Pkk ≡ 0) , the
twin-conjugate modes in pair carry the real combined cross power
(cf. Eq. (2.44))

P c
kk̃
≡ Pkk̃ + Pk̃k = 2 RePkk̃ =

1
2

Re {Nk A
∗
kAk̃} ≡

1
2

Re {Nk̃ A
∗
k̃
Ak}
(3.23)

where subscripts should be read as k = +n and k̃ =−n . This is a
consequence of relations (3.11) for the twin-conjugate modes and the
definition of forward and backward reactive modes: if the k th mode
is a forward one with Nk = N+n ≡ N+n,−n , then the k̃ th mode is a
backward one with Nk̃ = N−n ≡ N−n,+n = N∗+n .

As evident from Eq. (3.23), to transfer the real power by reactive
modes it is necessary that both constituents of a twin-conjugate pair
should have nonzero amplitudes (Ak and Ak̃ ) and to be in such a
phase relationship that their combined cross power P c

kk̃
would be

other than zero. Similar situation usually takes place in the regu-
lar waveguide of finite length bounded by two irregularities and ex-
cited at frequencies below its cutoff frequency [1–3]. Reflections from
these irregularities can form inside this length two evanescent (cutoff)
modes with numbers k = +n (forward mode) and k̃ = −n (back-
ward mode) constituting the twin-conjugate pair for which β±n = 0
and γ+n≡ α+n= −α−n≡ − γ∗−n . It is easy to see that the norms for
the forward and backward evanescent modes are pure imaginary-valued
and related to each other by the general relation (3.22). Superposition
of fields for the two evanescent modes with opposite decay sense fur-
nishes nonzero real cross-power flow along a short length of the cutoff
waveguide.

In conclusion, let us write the relation of orthonormalization for the
reactive (nonpropagating) modes in the following form

Nkl = Nkk̃ δk̃l ≡
{

0 for l 	= k̃ ,

Nkk̃ ≡ Nk for l = k̃ ,
(3.24)
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where the normalizing coefficient Nkl and the norm Nk are given by
Eqs. (3.19) and (3.20), respectively. From comparison of Eqs. (3.18)
and (3.24) it is seen that the latter relation is of general form because
it comprises the former one for the active modes as a special case
obtained by replacing subscript k̃ with k so that, in particular, the
norm Nk ≡ Nkk takes the form given by Eq. (3.15).

It is pertinent to note that all the above expressions for the norms
and the relations of orthogonality and orthonormalization can contain
the total field vectors in place of their cross section parts related to
each other by Eqs. (3.5), i.e., the hat sign over the field vectors can
be dropped. This is obvious for the active modes and follows from the
equality γk + γ∗

k̃
= 0 for the reactive twin-conjugate modes.

If in a waveguiding structure there are both the active (propagating)
and reactive (nonpropagating) modes, the total power flow (2.46) car-
ried by them, in accordance with the aforesaid, is given by the following
expression

P = Pact + Preact =
∑
k

(active)

Pk +
∑′

k
(reactive)

P c
kk̃

=
1
4

∑
k

(active)

Nk |ak(z)|2 +
1
2

Re
∑′

k
(reactive)

Nk a
∗
k(z)ak̃(z)

(3.25)

where prime on the sum sign means summation of the twin-conjugate
modes in pairs rather than that of the single reactive modes.

3.3 Time-average Stored Energy for Active Modes in Lossless
Waveguides

The time-average Poynting theorem written in the form of Eq. (2.18)
for time-harmonic fields does not contain a stored energy density. In
order to find it one usually applies variational technique (e.g., see
Ref. [29]). To this end, it is necessary to obtain a relation between
variations of the electromagnetic fields (δEk, δHk) for the k th mode
and perturbations of the frequency and medium parameters ( δ(ω ε̄εε ) ,
δ(ω µ̄µµ ) , δ(ω ξ̄ξξ ) , δ(ω ζ̄ζζ ) ) which bring about these variations.

The k th mode is governed by Maxwell’s equations (3.1) and (3.2)
with σ̄σσ c = 0 for a lossless medium whose other parameters satisfy the
requirements (2.13). By taking variations in these equations we obtain
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∇∇∇× δEk = − iω µ̄µµ · δHk − iω ζ̄ζζ · δEk − iδ(ω µ̄µµ) ·Hk − iδ(ω ζ̄ζζ) ·Ek ,

(3.26)
∇∇∇× δHk = iω ε̄εε · δEk + iω ξ̄ξξ · δHk + iδ(ω ε̄εε ) ·Ek + iδ(ω ξ̄ξξ) ·Hk .

(3.27)

A conventional procedure applied to Eqs. (3.26) and (3.27) reduces
to the following relation

∇∇∇ · (E∗k × δHk + δEk ×H∗k) =

= − iω
[
E∗k · ( ε̄εε− ε̄εε †) · δEk + H∗k · ( µ̄µµ− µ̄µµ †) · δHk

+ E∗k · ( ξ̄ξξ − ζ̄ζζ †) · δHk + H∗k · ( ζ̄ζζ − ξ̄ξξ †) · δEk

]

− i

[
E∗k · δ(ω ε̄εε ) ·Ek + H∗k · δ(ω µ̄µµ) ·Hk

+ E∗k · δ(ω ξ̄ξξ) ·Hk + H∗k · δ(ω ζ̄ζζ) ·Ek

]

where the terms inside the first square brackets vanish because of re-
lations (2.13) for lossless media so that

∇∇∇·(E∗k × δHk + δEk ×H∗k) =

= − i
[
δ(ω ε̄εε ) : EkE∗k + δ(ω µ̄µµ) : HkH∗k + 2 Re {δ(ω ξ̄ξξ) : HkE∗k

]
.

(3.28)
Electromagnetic fields of a propagating mode and their variations

can be written on the basis of Eq. (3.5) as

Ek = Êk e−i βkz , δEk = (δÊk − iδβkz Êk) e−i βkz , (3.29)
Hk = Ĥk e−i βkz , δHk = (δĤk − iδβkz Ĥk) e−i βkz. (3.30)

When substituting Eqs. (3.29) and (3.30) into Eq. (3.28) and apply-
ing the integral relation (2.25) where the line integral vanishes owing
to continuity in tangential components of the fields, the integration
over the cross section S yields

δβk
1
2
Re

∫
S
(Ek ×H∗k) · z0 dS =

=
1
4

∫
S

[
δ(ω ε̄εε ) : ÊkÊ∗k + δ(ω µ̄µµ) : ĤkĤ∗k + 2 Re{δ(ω ξ̄ξξ) : ĤkÊ∗k}

]
dS.

(3.31)
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The left-hand side of Eq. (3.31) involves the time-average power flow
Pk as a multiplier of δβk . By using the known relation

Pk = vgr,kWk where vgr,k =
(
∂βk(ω)
∂ω

)−1

(3.32)

is the group velocity, we obtain from Eq. (3.31) the desired expres-
sion for the time-average energy stored per unit length of a waveguide
(dropping the mode index k ):

W =
1
4

∫
S

(
E∗ · ∂(ω ε̄εε )

∂ ω
·E + H∗ · ∂(ω µ̄µµ )

∂ ω
·H

)
dS

+
1
2

Re
∫
S

(
E∗ · ∂(ω ξ̄ξξ )

∂ ω
·H

)
dS

≡
∫
S
w dS .

(3.33)

In accordance with expression (3.33), the time-average stored energy
density for a lossless bianisotropic medium is given by the following
formula

w =
1
4

(
E∗ H∗

)
·
(
∂(ω ε̄εε )/∂ ω ∂(ω ξ̄ξξ )/∂ ω
∂(ω ζ̄ζζ )/∂ ω ∂(ω µ̄µµ )/∂ ω

)
·
(

E
H

)
(3.34)

which is a generalization of the conventional expression for lossless
anisotropic media [7,10,22].

4. ORTHOGONAL COMPLEMENTS AND EFFECTIVE
SURFACE CURRENTS INSIDE SOURCE REGION

4.1 Bulk and Surface Exciting Sources

Up to the present, the external sources exciting the composite (mul-
tilayered) waveguiding structures involving isotropic, anisotropic, and
bianisotropic media have been dropped. From this point onward, the
special attention will be given to investigating the behavior of modes
inside the source region. In doing so, we assume that all the eigenfields
{Ek,Hk} in the form of Eq. (3.5), including their eigenfunctions of
cross-section coordinates {Êk, Ĥk} (marked by hat over them) and
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their eigenvalues of propagation constants γk = αk + iβk , are known
from solving the corresponding boundary-value problem. As shown in
Appendix A, these eigenfields constitute an infinite countable set of
the vector functions quadratically integrable on the cross section S
of a waveguiding structure. This set can be taken as a basis of the
proper Hilbert space to expand the required fields E and H not only
outside sources, as was done by Eqs. (2.31) and (2.32), but also inside
the region of external sources. In general, this eigenvector basis is not
complete inside the source region since it cannot take into account en-
tirely the potential fields of the sources. This requires to supplement
the modal expansions Ea and Ha with unknown modal amplitudes
Ak(z) by the orthogonal complements Eb and Hb (see Eqs. (A.27)
and (A.28)). Hence, the desired issues to be obtained inside the source
region are both the longitudinal dependence of modal amplitudes and
the orthogonal complements to the modal expansions.

In the most general case there exist three physical reasons to excite
the waveguiding structure under examination:

(a) the external currents – electric Jeext and magnetic Jmext ,
(b) the external fields – electric Eext and magnetic Hext ,
(c) the external perturbations of bianisotropic medium parameters

∆ ε̄εε , ∆ µ̄µµ , ∆ ξ̄ξξ , and ∆ ζ̄ζζ .

Owing to these medium perturbations, the total electric (E+Eext)
and magnetic (H + Hext) fields create the excess electric ∆D and
magnetic ∆B inductions linked by the constitutive relations (2.8) and
(2.9), that is

∆D = ∆ ε̄εε · (E + Eext) + ∆ ξ̄ξξ · (H + Hext) , (4.1)
∆B = ∆ ζ̄ζζ · (E + Eext) + ∆ µ̄µµ · (H + Hext) . (4.2)

These excess inductions bring about the induced displacement cur-
rents – electric Jeind = iω∆D and magnetic Jmind = iω∆B which,
being added to the external currents Jeext and Jmext , yield the bulk
exciting currents

Jeb = Jeext + Jeind = Jeext + iω∆D , Jmb = Jmext + Jmind = Jmext + iω∆B
(4.3)

entering into the curl Maxwell equations (2.1) in the following form

∇∇∇×E = −iωB− Jmb , (4.4)
∇∇∇×H = iωD + Jeb . (4.5)
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The conduction current J of a conductive medium defined by
Eq. (2.14) is now assumed to be incorporated with the electric dis-
placement current iωD , whereas the induction vectors D and B are
taken, as before, to be related to the intrinsic electromagnetic fields E
and H inside the medium in question by the same constitutive rela-
tions (2.8) and (2.9). So the permittivity tensor ε̄εε is now regarded
as a sum ( ε̄εε + σ̄σσ c/iω) whose antihermitian part defines the total
tensor of electric conductivity σ̄σσ e = σ̄σσ c + σ̄σσ d given by Eq. (2.21).

Besides the bulk currents Jeb and Jmb , there may exist the surface
exciting currents Jes and Jms which give discontinuities of the tan-
gential components of fields at the surface whereon these sources are
located, written in the form of the following boundary conditions:

n+
s ×E+ + n−s ×E− = −Jms , (4.6)

n+
s ×H+ + n−s ×H− = Jes . (4.7)

Here the field vectors with superscripts ± mean their values taken
at points of the source location contour Ls lying on its different sides
marked by the inward (for either adjacent medium) unit vectors n±s .

4.2 Orthogonal Complementary Fields and Effective Surface
Currents

The general electrodynamic eigenmode treatment (see Appendix
A.2) based on the well-known mathematical formulations (see Ap-
pendix A.1) yields the complete representation of the desired field vec-
tor F inside sources as a sum of the the modal expansion Ψ giving a
projection of F onto the Hilbert space and the complement C orthog-
onal to the Hilbert space (see Eq. (A.25)). Thus, the electromagnetic
fields inside the source region have the complete representation given
by Eqs. (A.27) and (A.28), namely (cf. Eqs. (2.31) and (2.32)):

E(rt, z) = Ea(rt, z) + Eb(rt, z) =
∑
k

ak(z) Êk(rt) + Eb(rt, z),

(4.8)

H(rt, z) = Ha(rt, z) + Hb(rt, z) =
∑
k

ak(z) Ĥk(rt) + Hb(rt, z),

(4.9)

where Eb(rt, z) and Hb(rt, z) are the required orthogonal comple-
ments. The mode amplitude ak(z) = Ak(z) exp(− γkz) allows for the
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total dependence on z due to both the unperturbed propagation of the
k th mode with a constant γk and the perturbed amplitude Ak(z) as
a result of source actions. Using Eqs. (2.8) and (2.9) gives the similar
expressions for the induction vectors

D(rt, z) = Da(rt, z) + Db(rt, z) =
∑
k

ak(z) D̂k(rt) + Db(rt, z),

(4.10)

B(rt, z) = Ba(rt, z) + Bb(rt, z) =
∑
k

ak(z) B̂k(rt) + Bb(rt, z).

(4.11)

In order to find the orthogonal complements let us substitute
Eqs. (4.8) through (4.11) into Maxwell’s equations (4.4) and (4.5) with
taking into account the fact that the eigenfields (3.5) satisfy the ho-
mogeneous (with no sources) Maxwell equations (3.1) and (3.2). Some
transformations yield

∑
k

dAk
dz

(z0 ×Ek) = −∇∇∇×Eb − iωBb − Jmb , (4.12)

∑
k

dAk
dz

(z0 ×Hk) = −∇∇∇×Hb + iωDb + Jeb . (4.13)

The left-hand side of Eqs. (4.12) and (4.13) has only transverse com-
ponents. From here it necessarily follows that there must exist nonzero
orthogonal complementary fields. Otherwise (when Eb = Hb = Db =
Bb = 0 ) these equations become physically contradictory because then
they require the longitudinal components of the arbitrary bulk currents
Jeb and Jmb to be always equal to zero, which is of course not the case.

Hence, the required orthogonal complementary fields should be cho-
sen so as to make the longitudinal component of the right-hand part
of Eqs. (4.12) and (4.13) vanish, that is

∇∇∇ · (z0 ×Eb)− z0 · (iωBb + Jmb ) = 0 , (4.14)
∇∇∇ · (z0 ×Hb) + z0 · (iωDb + Jeb ) = 0 , (4.15)

where the identity z0 · (∇∇∇ × a) = − ∇∇∇ · (z0 × a) has been used.
Since the field parts Eb and Hb form the orthogonal complement

to the Hilbert space spanned by the base eigenvectors {Ek,Hk} , they
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must be orthogonal to the fields of any eigenmode in power sense given
by the relation similar to Eqs. (3.14) and (3.19) (cf. Eq. (A.26))):∫

S
(E∗k ×Hb + Eb ×H∗k) · z0 dS ≡

≡
∫
S

[
(z0 ×Eb) ·H∗k − (z0 ×Hb) ·E∗k

]
dS = 0 .

(4.16)

In virtue of arbitrary choice of the k th eigenmode taken from the
base set, zero equality in Eq. (4.16) can occur if and only if

z0 ×Eb = 0 or Eb = z0 Eb , (4.17)
z0 ×Hb = 0 or Hb = z0 Hb , (4.18)

i.e., both complementary fields are longitudinal. In order for their
magnitude to be found, it is necessary to insert Eqs. (2.8), (2.9), (4.17),
and (4.18) into Eqs. (4.14) and (4.15), then

z0 ·Db ≡ εzz Eb + ξzzHb = − 1
iω

Jebz , (4.19)

z0 ·Bb ≡ ζzz Eb + µzzHb = − 1
iω

Jmbz . (4.20)

From here it finally follows that

Eb = − Jebz − νmJmbz
iωεzz (1− νeνm)

, (4.21)

Hb = − Jmbz − νeJebz
iωµzz (1− νeνm)

, (4.22)

where we have denoted

νe =
ζzz
εzz

=
ζ̄ζζ : z0z0

ε̄εε : z0z0
, νm =

ξzz
µzz

=
ξ̄ξξ : z0z0

µ̄µµ : z0z0
. (4.23)

Hence, both the orthogonal complementary fields are longitudinal
and produced by the longitudinal components of the bulk exciting cur-
rents.

Existence of the complementary fields Eb and Hb immediately
reduces to appearance of the so-called effective surface currents Jes,ef
and Jms,ef . Consider the bulk source region having the cross section
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Sb with a boundary contour Lb and write the complete electric field
inside and outside this area:

E(rt, z) =




∑
k

Ak(z)Ek(rt, z) + Eb(rt, z) ≡ E− −inside Sb ,

∑
k

Ak(z)Ek(rt, z) ≡ E+ −outside Sb .

(4.24)
Analogous expressions can be written for the magnetic field H(rt, z) .

The eigenfields Ek and Hk , being obtained for the situation with-
out sources, are generally continuous at points of the line Lb . Then
the tangential components of the complete fields E and H prove dis-
continuous:

n+
b × E+ + n−b × E− = −nb ×Eb , (4.25)

n+
b ×H+ + n−b ×H− = −nb ×Hb , (4.26)

where nb = n+
b = −n−b is the outward unit vector normal to both

the line Lb and the longitudinal unit vector z0 . The comparison of
these relations with the boundary conditions (4.6) and (4.7) yields the
desired effective surface currents

Jes,ef = −nb ×Hb

∣∣∣
Lb

= − τττ Jmbz (Lb)− νeJebz(Lb)
iωµzz (1− νeνm)

, (4.27)

Jms,ef = nb ×Eb

∣∣∣
Lb

= τττ
Jebz(Lb)− νmJmbz (Lb)
iωεzz (1− νeνm)

, (4.28)

where Jebz(Lb) and Jmbz (Lb) mean the longitudinal components of the
bulk currents taken at points lying on the boundary Lb of their exis-
tence area Sb and τττ = z0 × nb is the unit vector tangential to the
contour Lb .

The general expressions (4.21) and (4.22) for the complementary
fields Eb and Hb and the general expressions (4.27) and (4.28) for the
effective surface currents Jes,ef and Jms,ef take the following simplified
form in special cases of:

(i) the isotropic medium with parameters (2.10) ( νe = νm = 0 )

Eb = − z0

iωε
Jebz and Hb = − z0

iωµ
Jmbz , (4.29)

Jms,ef =
τττ

iωε
Jebz(Lb) and Jes,ef = − τττ

iωµ
Jmbz (Lb) ; (4.30)
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(ii) the anisotropic medium with parameters (2.11) ( νe = νm = 0 )

Eb = − z0

iωεzz
Jebz and Hb = − z0

iωµzz
Jmbz , (4.31)

Jms,ef =
τττ

iωεzz
Jebz(Lb) and Jes,ef = − τττ

iωµzz
Jmbz (Lb). (4.32)

Formulas (4.29) and (4.31) are in agreement with those obtained
first by Vainshtein [2] and Felsen and Marcuvitz [8], respectively. As
for the effective surface currents (4.30) and (4.32), Vainshtein did not
consider them at all but the excitation integrals in the theory of Felsen
and Marcuvitz allow for them implicitly, which will be shown later (see
Sec. 5.1).

Therefore, in the absence of medium bianisotropy the bulk cur-
rents, electric Jeb and magnetic Jmb , generate the effective surface
currents, respectively, magnetic Jms,ef and electric Jes,ef . As is seen
from Eqs. (4.27) and (4.28), the bianisotropic properties of a medium
intermix the contributions from the bulk currents into the effective
surface currents owing to the longitudinal components ξzz and ζzz .

The newly obtained effective surface currents Jes,ef and Jms,ef , as
well as the actual surface currents Jes and Jms entering into the bound-
ary conditions (4.6) and (4.7), make contributions to the excitation
amplitudes Ak together with the bulk currents Jeb and Jmb .

The next step should be done toward deriving the differential equa-
tions to find the functions Ak(z) inside the region of bulk and surface
sources. For this purpose we shall apply three independent approaches
set forth in the next section and Appendix B.

5. EQUATIONS OF MODE EXCITATION

5.1 Approach Based on the Electrodynamic Method of Vari-
ation of Constants

Mathematical method of variation of constants is applied to solve
an inhomogeneous differential equation (with driving terms) by repre-
senting its general solution in the form of a superposition of the known
linearly independent solutions of the proper homogeneous equation
with coefficients which are no longer considered to be constant and
assumed to be the desired functions of an independent variable [42].
Electrodynamic analog of the mathematical method of variation of con-
stants is built by representing the fields E(rt, z) and H(rt, z) inside
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the source region in the form of the expansions (4.8) and (4.9) in terms
of eigenfunctions of the proper homogeneous boundary-value problem
(without sources) whose amplitude coefficients Ak(z) are the desired
functions of z rather than constants, as they are outside sources.

In accordance with the conventional mathematical technique, the
method of variation of constants is to give differential equations for
the mode amplitudes in the following form

dAk(z)
dz

= fk(z) , k = 1, 2, . . . (5.1)

where the functions fk(z) take into account the longitudinal distri-
bution of exciting sources (bulk and surface). Integration of Eq. (5.1)
yields the required dependence

Ak(z) = Ao
k +

∫
fk(z) dz ≡ Ao

k + ∆Ak(z) . (5.2)

The integration constant Ao
k should be determined from a boundary

condition given at one of two boundaries ( z = 0 or z = L ) of the
source region depending on the type of modes for a lossless waveguiding
structure:

(i) for the forward modes (active and reactive, k = +n ) supplied
at the left input

A+n(0) 	= 0 or A+n(0) = 0 , (5.3)

(ii) for the backward modes (active and reactive, k = −n ) supplied
at the right input

A−n(L) 	= 0 or A−n(L) = 0 . (5.4)

Substitution of Eq. (5.2) into Eqs. (4.8) and (4.9) allows us to rep-
resent the complete solution for the electromagnetic fields inside the
source region as the sum of the general solution (Egen, Hgen) to the
homogeneous boundary-value problem (without exciting sources) in-
volving the constant amplitude coefficients Ao

k and the particular so-
lution (Epar, Hpar) to the proper inhomogeneous problem (with ex-
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citing sources), namely:

E(rt, z) = Egen + Epar

≡
∑
k

Ao
k Ek(rt, z) +

[∑
k

∆Ak(z)Ek(rt, z) + Eb(rt, z)
]
,

H(rt, z) = Hgen + Hpar

≡
∑
k

Ao
k Hk(rt, z) +

[∑
k

∆Ak(z)Hk(rt, z) + Hb(rt, z)
]
.

Thus, the general technique of solving the electrodynamic problem
of waveguide excitation by external sources based on the method of
variation of constants gives rise to the representation of the desired
electromagnetic fields as the sum of the general and particular solutions
adopted in the theory of linear differential equations. The next task is
to obtain a specific form for the excitation equation like Eq. (5.1).

To derive the equation of mode excitation let us vector-multiply
both sides of Eqs. (4.8) and (4.9) by Ĥ∗l and −Ê∗l , respectively, and
add them. Then after scalar-multiplying the result of summation by
z0 and integrating over the cross section S of a waveguide we obtain∫

S
(Ê∗l ×H + E× Ĥ∗l ) · z0 dS =

=
∑
k

ak

∫
S
(Ê∗l × Ĥk + Êk × Ĥ∗l ) · z0 dS+

+
∫
S
(Ê∗l ×Hb + Eb × Ĥ∗l ) · z0 dS .

(5.5)

The last integral in the right-hand side of Eq. (5.5) vanishes be-
cause of the orthogonality relation (4.16) or (A.26). According to the
orthonormalization relations (3.18) and (3.24), the integral under the
sign of summation is equal to Nlδlk for the active (propagating) modes
and to Nlδ̃lk for the reactive (nonpropagating) modes. Hence, from
Eq. (5.5) we obtain (cf. Eq. (A.31)):

(i) for the active modes (with replacing subscripts l→k )

ak =
1
Nk

∫
S
(Ê∗k ×H + E× Ĥ∗k) · z0 dS ≡ Ak e−i βkz

or Ak =
1
Nk

∫
S
(E∗k ×H + E×H∗k) · z0 dS

(5.6)
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where the norm Nk is defined by formula (3.15),
(ii) for the reactive modes (with replacing subscripts l → k̃ and

l̃→k )

ak =
1
Nk̃

∫
S
(Ê∗

k̃
×H + E× Ĥ∗

k̃
) · z0 dS ≡ Ak e− γkz

or Ak =
1
Nk̃

∫
S
(E∗

k̃
×H + E×H∗

k̃
) · z0 dS

(5.7)

where subscript k̃ corresponds to the mode which together with the
k th mode constitute the twin-conjugate pair and have the propagation
constant γk̃=− γ∗k and the norm Nk̃=N∗k defined by formula (3.20).
From comparison of Eqs. (5.6) and (5.7) it is seen that the latter ex-
pression can be considered as the general form valid not only for the
reactive modes but also for the active modes with replacing k̃ by k .

It is pertinent to note that expression (5.6) for ak is in agreement
with Eq. (A.31) obtained by minimizing the mean-square difference
Dn (defined by Eq. (A.33)) between the mode series expansion Ψ
and the partial sum Sn of the n th order (given by Eq. (A.32)) to
provide convergence in mean for the modal expansion.

Formulas (5.6) and (5.7) give a rule to find the mode excitation
amplitude if the electromagnetic fields are known. However, this is
usually not the case because the exciting currents (bulk and surface)
are assumed to be given rather than the fields. In order to go from
the fields to the currents, let us differentiate the general relation (5.7)
with respect to z :

Nk̃

dAk
dz

=
∂

∂z

∫
S
(E∗

k̃
×H + E×H∗

k̃
) · z0 dS

=
∫
S
∇∇∇ · (E∗

k̃
×H + E×H∗

k̃
) dS +

+
∑
i

∮
Li

[
n+
i · (E∗k̃ ×H + E×H∗

k̃
)+

+ n−i · (E∗k̃ ×H + E×H∗
k̃
)−

]
dl

(5.8)

where the last equality is written by using the relation similar to
Eq. (2.25).

The complete fields E and H inside the source region satisfy the
inhomogeneous Maxwell equations (4.4) and (4.5), whereas the fields
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E∗
k̃

and H∗
k̃

of the k̃ th mode obey the following homogeneous equa-
tions

∇∇∇×E∗
k̃

= iωB∗
k̃
, (5.9)

∇∇∇×H∗
k̃

= −iωD∗
k̃
. (5.10)

By using the constitutive relations (2.8), (2.9) and Eqs. (4.4), (4.5),
(5.9), and (5.10) it is easy to prove that

∇∇∇ · (E∗
k̃
×H + E×H∗

k̃
) = − (Jeb ·E∗k̃ + Jmb ·H∗k̃)−

− iω


 ( ε̄εε− ε̄εε †) : EE∗

k̃
+ ( µ̄µµ− µ̄µµ †) : HH∗

k̃

+ ( ξ̄ξξ − ζ̄ζζ †) : HE∗
k̃

+ ( ζ̄ζζ − ξ̄ξξ †) : EH∗
k̃




(5.11)
where the square bracket equals zero for a lossless medium owing to
Eq. (2.13).

The contour integrals in the right-hand side of Eq. (5.8) include two
contributions:

(i) from the actual surface currents Jes and Jms which are located
on a contour Ls and meet the boundary conditions (4.6) and (4.7),

(ii) from the effective surface currents Jes,ef and Jms,ef given by
Eqs. (4.27) and (4.28) which are located on a contour Lb bounding
the bulk current area Sb and meet the boundary conditions (4.25) and
(4.26).

On the strength of the aforesaid we can write

∑
i

∮
Li

[
n+
i · (E∗k̃ ×H + E×H∗

k̃
)+ + n−i · (E∗k̃ ×H + E×H∗

k̃
)−

]
dl

=
∫
Ls

[
n+
s · (E∗k̃ ×H + E×H∗

k̃
)+ + n−s · (E∗k̃ ×H + E×H∗

k̃
)−

]
dl

+
∫
Lb

[
n+
b · (E∗k̃ ×H + E×H∗

k̃
)+ + n−b · (E∗k̃ ×H + E×H∗

k̃
)−

]
dl

= −
∫
Ls

(Jes ·E∗k̃ + Jms ·H∗k̃) dl −
∫
Lb

(Jes,ef ·E∗k̃ + Jms,ef ·H∗k̃) dl .
(5.12)

Eqs. (5.8), (5.11), and (5.12) finally give the desired equations of
mode excitation written as
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(i) for the excitation amplitudes Ak(z), k = ±n :

dAk
dz

= − 1
Nk̃

∫
Sb

(Jeb ·E∗k̃ + Jmb ·H∗k̃) dS

− 1
Nk̃

∫
Ls

(Jes ·E∗k̃ + Jms ·H∗k̃) dl

− 1
Nk̃

∫
Lb

(Jes,ef ·E∗k̃ + Jms,ef ·H∗k̃) dl ;

(5.13)

(ii) for the mode amplitudes ak(z)=Ak(z) exp(− γkz), k = ±n :

dak
dz

+ γk ak = − 1
Nk̃

∫
Sb

(Jeb · Ê∗k̃ + Jmb · Ĥ∗k̃) dS

− 1
Nk̃

∫
Ls

(Jes · Ê∗k̃ + Jms · Ĥ∗k̃) dl

− 1
Nk̃

∫
Lb

(Jes,ef · Ê∗k̃ + Jms,ef · Ĥ∗k̃) dl .

(5.14)

The excitation equations (5.13) and (5.14) written for the ampli-
tudes of reactive modes hold true also for an active mode if one assumes
k̃ = k and γk = iβk . The excitation integrals in the right-hand side
of these equations represent the complex power of interaction between
the external currents (bulk and surface) and the eigenfields of the k th
mode (for active ones) or those of its twin-conjugate k̃ th mode (for
reactive ones).

As distinct from the theory developed, Vainshtein [2] fully excluded
from consideration the reactive (nonpropagating) modes and the ef-
fective surface currents and restricted his analysis only to the recip-
rocal waveguides with isotropic media. In this case every forward-
propagating mode (k=+n) has a backward counterpart (k=−n) of
the same type so that their common norm is defined by Vainshtein as

Nn =
∫
S
(Ê+n × Ĥ−n − Ê−n × Ĥ+n) · z0 dS .

Unlike the definition (3.15), Vainshtein’s norm has no power sense
and does not allow a generalization to nonreciprocal waveguides to be
made.

Theory of Felsen and Marcuvitz [8], unlike Vainshtein’s theory, takes
into consideration anisotropic (not bianisotropic) media but also does
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not allow for the reactive modes. The excitation integral in their equa-
tion similar to our Eq. (5.14) has a visually different form which does
not involve the effective surface currents explicitly. In order for their
implicit existence to be displayed, let us convert our excitation integral
containing the bulk currents.

To this end, it is necessary to transform the products of longitudinal
components such as Jebz E

∗
kz and Jmbz H

∗
kz (where k = k̃ for reactive

modes). The use of the constitutive relations D = ε̄εε ·E and B = µ̄µµ ·H
for a double-anisotropic medium in Eqs. (5.9) and (5.10) written for
the k th mode gives the longitudinal projections of these equations:

(∇∇∇×E∗k)z ≡ (∇∇∇t ×E∗kt) · z0 = iω (µ∗zxH
∗
kx+ µ∗zyH

∗
ky+ µ∗zzH

∗
kz) ,

(5.15)
(∇∇∇×H∗k)z ≡ (∇∇∇t ×H∗kt) · z0 = − iω (ε∗zxE

∗
kx+ ε∗zyE

∗
ky+ ε∗zzE

∗
kz) .
(5.16)

Taking into account that for a lossless medium ε∗ij = εji and µ∗ij =
µji , on the basis of Eqs. (5.15) and (5.16) we can obtain the following
expressions

Jebz E
∗
kz = − 1

iωεzz
(∇∇∇t ×H∗kt) · Jebz −

εxzE
∗
kx + εyzE

∗
ky

εzz
Jebz

= − 1
iω
∇∇∇t ·

(
H∗kt ×

Jebz
εzz

)
− 1

iω

(
∇∇∇t ×

Jebz
εzz

)
·H∗kt −

εεεtz
εzz

Jebz ,

(5.17)
and

Jmbz H
∗
kz =

1
iωµzz

(∇∇∇t ×E∗kt) · Jmbz −
µxzH

∗
kx + µyzH

∗
ky

µzz
Jmbz

=
1
iω
∇∇∇t ·

(
E∗kt ×

Jmbz
µzz

)
+

1
iω

(
∇∇∇t ×

Jmbz
µzz

)
·E∗kt −

µµµtz
µzz

Jmbz ,

(5.18)
where following [8] we have introduced the auxiliary vectors

εεε tz = x0 εxz + y0 εyz and µµµ tz = x0 µxz + y0 µyz . (5.19)

It is easy to see that the terms in Eqs. (5.17) and (5.18) containing
the transverse divergence operator ∇∇∇ t · , after integrating over the
bulk current area Sb , yield the following results
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1
iω

∫
Sb

∇∇∇t ·
(
E∗kt ×

Jmbz
µzz

)
dS =

1
iω

∮
Lb

nb ·
(
E∗kt ×

Jmbz
µzz

)
dl

≡ −
∫
Lb

Jes,ef ·E∗k dl , (5.20)

− 1
iω

∫
Sb

∇∇∇t ·
(
H∗kt ×

Jebz
εzz

)
dS = − 1

iω

∮
Lb

nb ·
(
H∗kt ×

Jebz
εzz

)
dl

≡ −
∫
Lb

Jms,ef ·H∗k dl , (5.21)

where expressions (4.32) for the effective surface currents have been
used.

As is quite evident, the terms (5.20) and (5.21), being inserted in the
excitation integral with the bulk currents by means of equalities (5.17)
and (5.18), fully compensate for the contribution from the excitation
integral with the effective surface currents entering into Eq. (5.13) and
(5.14). Then the excitation equation (5.14) written for propagating
modes takes the form entirely coincident with that of Felsen and Mar-
cuvitz [8] (in different notation):

dak
dz

+ γk ak =− 1
Nk

∫
Sb

(Jeb,ef · Ê∗kt + Jmb,ef · Ĥ∗kt) dS

− 1
Nk

∫
Ls

(Jes · Ê∗k + Jms · Ĥ∗k) dl
(5.22)

where following [8] we have introduced the effective bulk currents

Jeb,ef = Jebt +
1
iω

(
∇∇∇t ×

Jmbz
µzz

)
− εεεtz
εzz

Jebz , (5.23)

Jmb,ef = Jmbt −
1
iω

(
∇∇∇t ×

Jebz
εzz

)
− µµµtz

µzz
Jmbz , (5.24)

with the transverse vectors εεε tz and µµµ tz being defined by formulas
(5.19). The currents (5.23) and (5.24) were introduced by Felsen and
Marcuvitz in different designations but of the same structure.

From Eq. (5.22) it follows that the effective bulk currents Jeb,ef and
Jmb,ef , being formed as mixtures of the longitudinal and transverse
components of the actual electric and magnetic currents, interact only
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with the transverse eigenfield components Êkt and Ĥkt of the k th
mode, but in doing so take into account the contribution from the
effective surface currents Jes,ef and Jms,ef defined by Eqs. (4.32). It
should be mentioned that the contour integral in Eq. (5.22) allowing
for the contribution from the actual surface currents Jes and Jms is
absent in the appropriate equation of Felsen and Marcuvitz [8].

In view of fundamental importance of the mode excitation equa-
tions, Appendix B displays another derivation for the lossless waveg-
uiding structures based on the direct use of Eqs. (4.12) and (4.13) which
are an exact consequence of Maxwell’s equations (4.4) and (4.5). The
general case of lossy waveguides is studied below on the basis of the
reciprocity theorem in the complex-conjugate form.

5.2 Approach Based on the Reciprocity Theorem

5.2.1 Derivation of the Conjugate Reciprocity Theorem

The basis of deriving the reciprocity theorem in complex-conjugate
form is constituted by two systems of Maxwell’s equations like
Eqs. (4.4) and (4.5):

∇∇∇×E1 = − iωB1 − Jmb1 , ∇∇∇×E∗2 = iωB∗2 − Jm∗b2 , (5.25)
∇∇∇×H1 = iωD1 + Jeb1 , ∇∇∇×H∗2 = − iωD∗2 + Je∗b2, (5.26)

written for two different electromagnetic processes (marked with sub-
scripts 1 and 2) excited by different external currents (bulk and sur-
face), with the frequency and the constitutive parameters of a waveg-
uiding medium entering into relations (2.8) and (2.9) assumed to be
the same.

Application of the conventional technique to Eqs. (5.25) and (5.26)
yields

∇∇∇· (E1 ×H∗2 + E∗2 ×H1) =
=− (Jeb1 ·E∗2 + Je∗b2 ·E1)− (Jmb1 ·H∗2 + Jm∗b2 ·H1)

− iω
[
(D1 ·E∗2 −D∗2 ·E1) + (B1 ·H∗2 −B∗2 ·H1)

]
.

(5.27)
After transformation with using the constitutive relations (2.8) and

(2.9) the last term in the right-hand side of Eq. (5.27) accepts the
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following form

iω
[
(D1 ·E∗2 −D∗2 ·E1) + (B1 ·H∗2 −B∗2 ·H1)

]
=

= iω

[
( ε̄εε− ε̄εε †) : E1E∗2 + ( µ̄µµ− µ̄µµ †) : H1H∗2

+ ( ξ̄ξξ − ζ̄ζζ †) : H1E∗2 + ( ζ̄ζζ − ξ̄ξξ †) : E1H∗2

]
.

In accordance with the aforesaid in Sec. 4.1, the permittivity ten-
sor ε̄εε is regarded here as a sum ( ε̄εε + σ̄σσ c/iω) so that its an-
tihermitian part determines the total tensor of electric conductivity,
σ̄σσ e = σ̄σσ c+ σ̄σσ d taking into account both dielectric ( σ̄σσ d) and conduc-
tor ( σ̄σσ c) losses of a medium. Magnetic losses ( σ̄σσ m) are taken into ac-
count by the antihermitian part of the permeability tensor µ̄µµ , whereas
the tensor σ̄σσ me = iω( ξξξ − ζ̄ζζ †) reflects the magneto-electric losses due
to bianisotropic properties of a medium. The use of Eqs. (2.21)–(2.23)
converts relation (5.27) into the differential form of the conjugate reci-
procity theorem

∇∇∇ · S12 + q12 = r
(b)
12 (5.28)

where we have denoted

S12 = E1 ×H∗2 + E∗2 ×H1 , (5.29)
q12 = 2 (σ̄σσe : E1E∗2 + σ̄σσm : H1H∗2) +

( σ̄σσme : H1E∗2 + σ̄σσ †me : E1H∗2) , (5.30)

r
(b)
12 = − (Jeb1 ·E∗2 + Je∗b2 ·E1) − (Jmb1 ·H∗2 + Jm∗b2 ·H1) . (5.31)

Superscript (b) reflects belonging an appropriate quantity to bulk
properties of a system, while the surface properties will be marked
by superscript (s) .

To obtain the integral form of the reciprocity theorem it is necessary
to integrate Eq. (5.28) over the cross section S of a waveguiding struc-
ture with using the integral relation similar to Eq. (2.25) which involves
the contour integrals taking into account two physical phenomena:

(i) the skin losses expressed by the boundary condition (2.26) with
the surface impedance tensor (2.27) given along a contour L ,

(ii) the discontinuity in tangential components of the fields caused
both by the actual surface currents Jes and Jms located on a contour
Ls with the boundary conditions (4.6) and (4.7) and by the effective
surface currents Jes,ef and Jms,ef located on a contour Lb with the
boundary conditions (4.25) and (4.26).
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For the sake of brevity it is convenient to write both surface currents
as the overall surface sources

JeΣ = Jes + Jes,ef and JmΣ = Jms + Jms,ef (5.32)

located along the combined contour LΣ = Ls + Lb .
Substitution of Eq. (5.29) into the integral relation (2.25) yields∫

S
∇∇∇ · S12 dS =

∂

∂z

∫
S

(
E1 ×H∗2 + E∗2 ×H1

)
· z0 dS

−
∫
L+Ls

[
n+
s · (E1 ×H∗2 + E∗2 ×H1)+

+ n−s · (E1 ×H∗2 + E∗2 ×H1)−

]
dl

+
∫
Lb

nb ·
[

(Ea1 ×H∗b2 + E∗b2 ×Ha1)

+ (Eb1 ×H∗a2 + E∗a2 ×Hb1)

]
dl

=
∂

∂z

∫
S

(
E1 ×H∗2 + E∗2 ×H1

)
· z0 dS

+ 2
∫
L
Rs (Hτ1 ·H∗τ2) dl

+
∫
Ls

[
(Jes1 ·E∗2 + Jms1 ·H∗2)

+ (Je∗s2 ·E1 + Jm∗s2 ·H1)

]
dl

+
∫
Lb

[
(Jes,ef1 ·E∗a2 + Jms,ef1 ·H∗a2)

+ (Je∗s,ef2 ·Ea1 + Jm∗s,ef2 ·Ha1)

]
dl .

Here we have used: (a) the boundary condition (2.26) on the con-
tour L with surface impedance (2.27), (b) the boundary conditions
(4.6) and (4.7) with the actual surface currents Jes1(2) and Jms1(2)
given on the contour Ls , (c) the effective surface currents Jes,ef1(2) =
−nb ×Hb1(2) and Jms,ef1(2) = nb × Eb1(2) defined on the contour Lb .
Therefore, the line integrals in the previous formula yield two resulting
contributions:

(i) from the skin losses on the contour L of a conducting surface

q′12 = 2Rs (Hτ1 ·H∗τ2) , (5.33)

(ii) from the overall surface currents on the contour LΣ = Ls + Lb

r
(s)
12 = − (JeΣ1 ·E∗2 + Je∗Σ2 ·E1) − (JmΣ1 ·H∗2 + Jm∗Σ2 ·H1) . (5.34)
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Therefore, the reciprocity theorem in the integral form is given by
the relation

dP12(z)
dz

+ Q12(z) = R12(z) (5.35)

where we have introduced the following integral quantities (complex-
valued) (cf. Eqs. (2.29) and (2.30))

P12(z) ≡
∫
S
S12(rt, z) · z0 dS

=
∫
S
(E1 ×H∗2 + E∗2 ×H1) · z0 dS , (5.36)

Q12(z) = Q
(b)
12 (z) + Q

(s)
12 (z) ≡

∫
S
q12(rt, z) dS +

∫
L
q′12(rt, z) dl

= 2
∫
S
( σ̄σσe : E1E∗2) dS + 2

∫
S
( σ̄σσm : H1H∗2) dS

+
∫
S
( σ̄σσme : H1E∗2 + σ̄σσ †me : E1H∗2) dS

+ 2
∫
L
Rs (Hτ1 ·H∗τ2) dl , (5.37)

R12(z) = R
(b)
12 (z) +R

(s)
12 (z) ≡

∫
Sb

r
(b)
12 (rt, z) dS +

∫
LΣ

r
(s)
12 (rt, z) dl

= −
∫
Sb

[
(Jeb1 ·E∗2 + Jmb1 ·H∗2) + (Je∗b2 ·E1 + Jm∗b2 ·H1)

]
dS

−
∫
LΣ

[
(JeΣ1 ·E∗2 + JmΣ1 ·H∗2) + (Je∗Σ2 ·E1 + Jm∗Σ2 ·H1)

]
dl .

(5.38)

It is easy to see that with no sources (when R12 = 0 ) the second
system (with subscript 2) of Maxwell’s equations (5.25) and (5.26)
describes the same fields as the first (marked by subscript 1) only
with taking complex conjugation. This makes it possible to replace
subscript 2 with 1 and what is more to drop them. In this case the
integral reciprocity theorem (5.35) turns into the integral Poynting
theorem (2.28) in which the real power flow P and the real power loss
(bulk and surface) Q per unit length of a waveguide are equal to

P =
1
4

∫
S
S11 · z0 dS ≡

∫
S
〈S 〉 · z0 dS , (5.39)

Q =
1
4

∫
S
q11 dS +

1
4

∫
L
q′11 dl ≡

∫
S
〈 q 〉 dS +

∫
L
〈 q′ 〉 dl , (5.40)
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where their expressions in terms of fields are given by Eq. (2.29) and
(2.30).

5.2.2 Derivation of the Equations of Mode Excitation

Inside the source region the reciprocity theorem in the integral form
(5.35) is the basis for obtaining the excitation equations. To this end,
the fields marked by subscript 1 (which will be dropped for the ex-
citing currents) are assumed to be the desired fields excited by the
bulk and surface sources ( Je,mb1 ≡ Je,mb 	= 0 and Je,mΣ1 ≡ Je,mΣ 	= 0 )
and represented in the form of expressions (4.8) and (4.9) (with re-
placing summation index k by l ), whereas those marked by subscript
2 are the known fields of the k th mode outside the source region
(Je,mb2 = Je,mΣ2 = 0) given in the form of Eq. (3.5).

Substitution of Eqs. (4.8) and (4.9) into Eqs. (5.36), (5.37), and
(5.38) yields the following expressions:

P1k(z) ≡
∫
S
S1k(rt, z) · z0 dS =

∫
S
(E1 ×H∗k + E∗k ×H1) · z0 dS

=
∑
l

NklAl(z) e− (γ∗k+γl)z, (5.41)

Q1k(z) ≡
∫
S
q1k(rt, z) dS +

∫
L
q′1k(rt, z) dl

=
∑
l

MklAl(z) e− (γ∗k+γl)z, (5.42)

R1k(z) = R
(b)
1k (z) + R

(s)
1k (z) ≡

∫
Sb

r
(b)
1k (rt, z) dS +

∫
LΣ

r
(s)
1k (rt, z) dl

= R
(b)
k (z) e− γ

∗
kz + R

(s)
k (z) e− γ

∗
kz ≡ Rk(z) e− γ

∗
kz, (5.43)

where the normalizing and dissipative coefficients Nkl and Mkl have
the form of Eqs. (2.36) and (2.37) and the quantity Rk(z) = R

(b)
k (z)+

R
(s)
k (z) consists of two exciting integrals (bulk and surface):

R
(b)
k (z) =

∫
Sb

(
Jeb · Ê∗k + Jmb · Ĥ∗k

)
dS , (5.44)

R
(s)
k (z) = −

∫
LΣ

(
JeΣ · Ê∗k + JmΣ · Ĥ∗k

)
dl

= −
∫
Ls

(
Jes · Ê∗k + Jms · Ĥ∗k

)
dl
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−
∫
Lb

(
Jes,ef · Ê∗k + Jms,ef · Ĥ∗k

)
dS . (5.45)

These integrals involve the cross-section eigenfield vectors (marked
with hat above them) and their dependence on z is due to that of the
external currents Je,mb (z) and Je,mΣ (z) .

It should be pointed out that expressions (5.41) and (5.42) come only
from the field contributions of the mode expansions Ea and Ha since
the orthogonal complementary fields Eb and Hb , being proportional
to the longitudinal component of external currents, do not contribute
into P1k and cannot influence the intrinsic losses in a medium related
to Q1k .

Substitution of Eqs. (5.41), (5.42), and (5.43) into the integral reci-
procity theorem (5.35) (with replacing 2 by k ) gives a relation

∑
l

{
Nkl

dAl
dz
−

[
(γ∗k + γl)Nkl −Mkl

]
Al

}
e− γlz = Rk ≡ R

(b)
k + R

(s)
k .

(5.46)
The quasi-orthogonality relation of the general form (3.6) make the

square bracket in Eq. (5.46) vanish so that it reduces to the desired set
of the excitation equations written in the following form:

(i) for the excitation amplitudes Al(z)

∑
l

Nkl
dAl(z)
dz

e− γlz = R
(b)
k (z) + R

(s)
k (z) , k = 1, 2, . . .

(5.47)
(ii) for the mode amplitudes al(z) = Al(z) e− γlz

∑
l

Nkl

[
dal(z)
dz

+ γlal(z)
]

= R
(b)
k (z) + R

(s)
k (z) , k = 1, 2, . . .

(5.48)

Discussion of the excitation equations obtained will be put off un-
til the similar equations for the waveguiding structures with space-
dispersive media are developed in the second part of the paper.

Up to this point the waveguiding structures under examination have
been assumed to be closed with a screening metallic boundary, whose
spectrum of eigenmodes is always discrete.

In conclusion, it is pertinent to show features of the excitation the-
ory peculiar to open waveguiding structures (without losses) in which
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an outside homogeneous medium extends to infinity in one or both
transverse directions. As is known [27, 29, 31], for the open waveg-
uides in addition to the discrete part of the spectrum of bound modes
(with the outside medium fields localized near outer boundaries of the
waveguiding layer), there is a continuous part of the spectrum related
to radiation modes (with the fields extending to infinity in the outside
medium). Unlike the eigenfields Ek(rt, z) and Hk(rt, z) of discrete
modes marked by the integer-valued subscript k = 1, 2, . . . and ex-
pressed by Eqs. (3.5), the fields of a radiation mode

E(rt, z;ko
t ) = Ê(rt;ko

t ) e− iβ(ko
t )z, H(rt, z;ko

t ) = Ĥ(rt;ko
t ) e− iβ(ko

t )z

(5.49)
are specified by the transverse wave vector ko

t = x0 k
o
x + y0 k

o
y of the

outside passive medium.
In this case the modal expansions of the total fields Ea(rt, z) and

Ha(rt, z) inside the source region, besides the series expansions in
terms of discrete modes, involve also the integral expansions in terms
of radiation modes:

Ea(rt, z) =
∑
k

Ak(z) Êk(rt) e− iβkz

+
∫

A(z;ko
t ) Ê(rt;ko

t ) e− iβ(ko
t )z dko

t , (5.50)

Ha(rt, z) =
∑
k

Ak(z) Ĥk(rt) e− iβkz

+
∫

A(z;ko
t ) Ĥ(rt;ko

t ) e− iβ(ko
t )z dko

t , (5.51)

where integrating over ko
x and ko

y is taken along the real axes from
−∞ to ∞ .

The orthonormalization relation for radiation modes can be written
by analogy with relation (3.18) for discrete modes in the following form

N(ko
t ,k

o′
t ) ≡

≡
∫
S

[
(Ê∗(rt;ko

t )× Ĥ(rt;ko′
t ) + Ê(rt;ko′

t )× Ĥ∗(rt;ko
t )

]
· z0 dS

= δ(ko
t − ko′

t )N(ko
t )

(5.52)
where the Dirac delta function δ(ko

t − ko′
t ) = δ(ko

x − ko′
x ) δ(ko

y − ko′
y )

replaces the Kronecker delta function δkl . It should be mentioned that
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since δ(ko
t−ko′

t ) has dimensions of (length) 2 , the dimensionality of the
norm N(ko

t ) and the excitation amplitude A(z;ko
t ) for the radiation

modes is equal to watts/m 2 and m 2 , respectively, as distinct from
the bounded modes for which the similar quantities are taken in watts
and as dimensionless.

The equation for the excitation amplitude A(z;ko
t ) of the radiation

mode has the form similar to Eq. (5.13):

dA(ko
t )

dz
=− 1

N(ko
t )

∫
Sb

(
Jeb ·E∗(ko

t ) + Jmb ·H∗(ko
t )

)
dS

− 1
N(ko

t )

∫
LΣ

(
JeΣ ·E∗(ko

t ) + JmΣ ·H∗(ko
t )

)
dl

(5.53)

where the coordinate variables are dropped for simplicity.
The orthogonal complementary fields Eb = z0Eb and Hb = z0Hb

obtained in the form of Eqs. (4.21) and (4.22) remain valid for open
waveguides.

6. CONCLUSION

We have shown a unified treatment of the electrodynamic theory of the
guided wave excitation by external sources applied to any waveguiding
structure involving the complex media with bianisotropic properties.
Allowing for losses in such media has reduced to the power loss density
in Poynting’s theorem due to the magneto-electric conductivity ¯̄σσσ me

defined by Eq. (2.23), in addition to the usual electric and magnetic
conductivities.

Application of the desired field expansions in terms of eigenmode
fields gives the self-power and cross-power quantities (flows and losses)
transmitted and dissipated by the eigenmodes of a lossy waveguide,
as well as the time-average energy density stored by the propagating
modes in a lossless waveguides which involve the additional contribu-
tions from bianisotropic properties of a medium.

The basis of developing the excitation theory for lossy waveguides
is the novel relation (3.6) called the quasi-orthogonality relation whose
general form is always true including the propagating (active) and
nonpropagating (reactive) modes in lossless waveguides considered as
a special case. Among the external sources exciting the waveguid-
ing structure we have included the bulk sources (currents, fields, and
medium perturbations) and the actual surface currents. Inside the
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source region the modal expansions (2.31) and (2.32) have proved to
be incomplete and must be supplemented with the orthogonal comple-
mentary fields (4.21) and (4.22), as it is done by Eqs. (4.8) and (4.9).
In general, these complementary fields generate the effective surface
currents (4.27) and (4.28). So in the most general case the external
source region contains the bulk currents Je,mb , the actual surface cur-
rents Je,ms , and the effective surface currents Je,ms,ef brought about by
the longitudinal components of the bulk currents.

The equations of mode excitation in the form of (5.47) or (5.48)
have been derived by using three approaches based on: (i) the di-
rect derivation from Maxwell’s equations (see Appendix B), (ii) the
electrodynamic analogy with the mathematical method of variation of
constants (see Sec. 5.1), (iii) the reciprocity theorem in the complex-
conjugate form (see Sec. 5.2).

All the results obtained are valid only for the time-dispersive media
specified by macroscopically-local and frequency-dependent parame-
ters. An extension of the theory to space-dispersive media which re-
quire for their description the special equations of motion with regard
for nonlocal effects will be examined in the second part of the paper
where the orthogonal complementary fields are explained as a part of
the contribution from the potential fields of external sources.

APPENDIX A. BASIC RELATIONS OF FUNCTIONAL
ANALYSIS AND THEIR ELECTRODYNAMIC ANALOGS

A.1 Mathematical Formulation (in notation of [42])

Unlike [42], we shall examine the general case of nonorthogonal base
functions which gives the orthogonal basis as a special case.

Consider a countable set of complex functions ψ1(x), ψ2(x), . . .
quadratically integrable in the sense of Lebesgue on a given set S of
points (x) . The class L2(S) of such functions (regarded as vectors)
constitutes an infinite-dimensional unitary functional (vector) space if,
in addition to two binary operations of the vector sum ψk(x) + ψl(x)
and the product akψk(x) by a complex scalar ak , one defines the
inner product of ψk(x) and ψl(x) as

(ψk, ψl) =
∫
S
ψ∗k(x)γ(x)ψl(x) dx (A.1)
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where the weighting function γ(x) is a given real nonnegative function
quadratically integrable on S , in particular, may be γ(x) ≡ 1 .

If Gram’s determinant det[(ψk, ψl)] built up on the inner products
of the form (A.1) differs from zero, the functions ψk(x), k=1, 2, ... are
linearly independent in L2 and can be chosen as a basis of the unitary
functional space, with their mutual orthogonality not being necessarily
required in general. The given set of functions ψk(x) spans a linear
manifold comprising all linear combinations of ψ1(x), ψ2(x), . . . .

Let us compose a partial sum of the n th order

sn(x) =
n∑
k=1

a
(n)
k ψk(x) (A.2)

with scalar coefficients a
(n)
k not yet defined. Given a function ψ(x)

fully belonging to the linear manifold spanned by ψ1(x), ψ2(x), . . . ,
these coefficients can be found from the requirement that the weighted
mean-square difference

Dn =
∫
S
γ(x)|sn(x)− ψ(x)|2 dx (A.3)

between sn(x) and ψ(x) would be minimum. With the help of (A.2)
the quantity Dn can be rewritten in the following form

Dn =
∫
S

[ n∑
k=1

a
(n)∗
k ψ∗k(x)− ψ∗(x)

]
γ(x)

[ n∑
l=1

a
(n)
l ψl(x)− ψ(x)

]
dx .

(A.4)
Then the conditions of its minimality with respect to the set of

coefficients a
(n)
k are written as

∂Dn

∂a
(n)∗
k

=
∫
S
ψ∗k(x)γ(x)

[ n∑
l=1

a
(n)
l ψl(x)− ψ(x)

]
dx = 0 , (A.5)

∂2Dn

∂a
(n)∗
k ∂a

(n)
k

=
∫
S
ψ∗k(x)γ(x)ψk(x) dx > 0 . (A.6)

(A.6) complies with the requirement of quadratic integrability ini-
tially imposed on the base functions ψk(x) , while the condition (A.5)
yields the following system of equations to find a

(n)
k :

n∑
l=1

Nkla
(n)
l = Rk , k = 1, 2, . . . (A.7)
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where we have denoted

Nkl =
∫
S
ψ∗k(x)γ(x)ψl(x) dx ≡ (ψk, ψl) , (A.8)

Rk =
∫
S
ψ∗k(x)γ(x)ψ(x) dx ≡ (ψk, ψ) . (A.9)

Metric convergence in L2 is defined as convergence in mean (with
index 2) of the sequence of partial sums sn(x) (with coefficients a

(n)
k

from Eqs. (A.7)) to the function ψ(x) , i.e., sn(x) mean−→ ψ(x) as n→∞ ,
which occurs if and only if

Dn ≡
∫
S
γ(x)|sn(x)− ψ(x)|2 dx→ 0 as n→∞ . (A.10)

Using Eqs. (A.7) through (A.9) and the equality Nkl = N∗lk allows
Eq. (A.4) to take the following form

Dn =
n∑
k=1

n∑
l=1

Nkla
(n)∗
k a

(n)
l −

n∑
k=1

Rka
(n)∗
k −

n∑
l=1

R∗l a
(n)
l

+
∫
S
γ(x)|ψ(x)|2 dx = −

n∑
k=1

n∑
l=1

Nkla
(n)∗
k a

(n)
l +

∫
S
γ(x)|ψ(x)|2 dx.

From here for limiting case (A.10), when a
(n)
k (z)→ak(z) as n→∞ ,

it follows that

(ψ,ψ) ≡
∫
S
ψ∗(x)γ(x)ψ(x) dx =

∞∑
k=1

∞∑
l=1

Nkla
∗
kal . (A.11)

Relation (A.11) is realizable only for functions ψ(x) quadratically
integrable on S (with the weighting function γ(x) ), i.e., for which
there exists an integral on the left. This relation expresses completeness
of the set of the base functions ψk(x) (also quadratically integrable
on S ) inside the class of functions ψ(x) . The completeness property
establishes the space L2 as the Hilbert space for which the series
expansion

ψ(x) mean=
∞∑
k=1

akψk(x) (A.12)
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interpreted in the sense of convergence in mean given by formula (A.10)
is valid. Uniqueness of this expansion arises from the following reason-
ing.

By contradiction, let two different series expansions
∑

k a
′
kψk(x)

and
∑

k a
′′
kψk(x) correspond to the same function ψ(x) in the sense

of convergence in mean. To determine the expansion coefficients a′k
and a′′k there are two systems of form (A.7) with the same right-hand
sides Rk . When resulted from them, the difference system of equa-
tions

∑
lNkl(a′l − a′′l ) = 0, k = 1, 2, . . . gives a′l ≡ a′′l by virtue of

Nkl 	= 0 , i.e., the initial series expansions coincide. If on the contrary
one assumes that the same series expansion

∑
k akψk(x) corresponds

to two different functions ψ′(x) and ψ′′(x) , then the difference func-
tion ψ−(x) = ψ′(x)− ψ′′(x) has the expansion coefficients identically
equal to zero. So the right-hand side of the completeness relation
(A.11) vanishes, which necessarily provides ψ−(x) ≡ 0 , i.e., the initial
functions coincide.

The completeness relation (A.11) is a generalization of the conven-
tional Parseval identity (see Eq. (A.16)) to the case of nonorthogonal
bases. All the aforestated convince us that linear independence and
completeness of the set of base functions ψk(x) are fundamental prop-
erties of the basis, whereas their mutual orthogonality is not obligatory
requirement and merely facilitates the problem of finding the expansion
coefficients ak . Indeed, for the orthogonal basis

(ψk, ψl) ≡
∫
S
ψ∗k(x)γ(x)ψl(x) dx = 0 for k 	= l (A.13)

so that

Nkl = Nkδkl with Nk =
∫
S
ψ∗k(x)γ(x)ψk(x) dx ≡ ‖ψk‖2 (A.14)

where ‖ψk‖ =
√

(ψk, ψk) ≡
√
Nk is conventionally called the norm of

a function ψk(x) [42]. In addition, we extend this term to quantities
Nkl recognizing the self norm Nk ≡ Nkk for l = k and the cross
norm Nkl for l 	= k .

Hence, in the special case of the orthogonal basis satisfying
Eq. (A.14): (i) the system of coupled equations (A.7) falls apart into
separate equations yielding

ak =
Rk
Nk
≡ (ψk, ψ)

(ψk, ψk)
=

1
Nk

∫
S
ψ∗k(x)γ(x)ψ(x) dx , (A.15)
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(ii) the general completeness relation (A.11) gives the conventional
Parseval identity

(ψ,ψ) ≡
∫
S
ψ∗(x)γ(x)ψ(x) dx =

∞∑
k=1

Nk|ak|2 . (A.16)

It should be remembered that the use of the known Gram-Schmidt
orthogonalization process [42], in principle, allows one to construct the
orthonormal basis.

The above completeness property of a basis expressed by relation
(A.11) or (A.16) concerns only such functions ψ(x) that fully belong to
the linear manifold spanned by the functions ψ1(x), ψ2(x), . . . . How-
ever, for the most general functions f(x) this is not the case.

Any given function f(x) quadratically integrable on S (with the
weighting function γ(x) , in general) can formally be associated with
the function ψ(x) represented by series (A.12) if one assumes that its
coefficients ak satisfying Eqs. (A.7) through (A.9) are due to f(x) and
not to ψ(x) , i.e., the quantities Rk(x) contain f(x) in place of ψ(x)
under the integral sign of Eq. (A.9). Let us prove that the difference
c (x) = f(x)−ψ(x) is orthogonal to every base function ψk(x) in the
sense of relation (A.13):

(ψk, c) ≡ (ψk, f − ψ) = (ψk, f)− (ψk, ψ)

= (ψk, f)−
∑
l

(ψk, ψl)al = Rk −
∑
l

Nklal = 0 (A.17)

where the relations Nkl = (ψk, ψl) and Rk = (ψk, f) have been used.
Thus, any arbitrary function f(x) not belonging fully to the Hilbert

space (spanned, for instance, by eigenfunctions of a boundary-value
problem) can be represented in the following form

f(x) = ψ(x) + c (x) =
∑
k

akψk(x) + c (x) . (A.18)

Here the function ψ(x) written as a series expansion in terms of
base functions (convergent in mean) and considered as tangential to
the given Hilbert space is called the projection of f(x) on this space,
while c (x) is a function orthogonal to the Hilbert space and referred
to as the orthogonal complement because (ψk, c) = 0 . For such a
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function f(x) instead of the generalized Parseval identity (A.11) there
exists the generalized Bessel inequality

(f, f) ≡ ‖ψ + c‖2 ≡
∫
S
f∗(x)γ(x)f(x) dx

≥
∞∑
k=1

∞∑
l=1

Nkla
∗
kal or ≥

∞∑
k=1

Nk|ak|2
(A.19)

where the last single sum corresponds to the orthogonal basis.

A.2 Electrodynamic Treatment (in notation of [8])

Let us consider a relevant aspect of the electrodynamic modal theory
on the basis of analogy with the foregoing mathematical relations.

Given an infinite set of eigenfunctions of a boundary-value problem
defined on the cross section S of a waveguiding structure with the
transverse radius vector rt and the longitudinal axis z , any eigenfunc-
tion Ψk(rt) and its adjoint (hermitian conjugate) Ψ†k(rt) are denoted
in the two-vector notation as

Ψk(rt) =
(

Êk(rt)
Ĥk(rt)

)
and Ψ†k(rt) =

(
Ê∗k(rt) Ĥ∗k(rt)

)
(A.20)

where the hat over field vectors means the absence of their dependence
on z .

By analogy with Eq. (A.1), the inner product of two eigenfunctions
Ψk(rt) and Ψl(rt) can be defined in the following form

(Ψk,Ψl) =
∫
S
Ψ†k(rt) · Γ̄ ·Ψl(rt) dS (A.21)

with the weighting function given in the form of a special dyadic

Γ̄ =
(

0 −z0 × Ī
z0 × Ī 0

)
(A.22)

where z0 is the unit vector of the axis z and Ī is the unit dyadic
such that (z0 × Ī) · a = −a · (Ī× z0) = z0 × a for any vector a . The
weighting dyadic Γ̄ is constructed so as to make the double scalar
product Ψ†k · Γ̄ ·Ψl = Ψ†k ·

(
Γ̄ ·Ψl

)
=

(
Ψ†k · Γ̄

)
·Ψl ≡ Γ̄ : ΨlΨ

†
k under

the integral sign of Eq. (A. 21) be equal to (Ê∗k × Ĥl + Êl × Ĥ∗k) · z0 .
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Thus, the cross norm Nkl for the k th and l th modes and the
self norm Nk ≡ Nkk for the k th mode, according to Eqs. (A.8) and
(A.21), can be represented as

Nkl ≡ (Ψk,Ψl) =
∫
S
Ψ†k · Γ̄ ·Ψl dS

=
∫
S
(Ê∗k × Ĥl + Êl × Ĥ∗k) · z0 dS

(A.23)

and
Nk ≡ (Ψk,Ψk) =

∫
S
Ψ†k · Γ̄ ·Ψk dS

= 2 Re
∫
S
(Ê∗k × Ĥk) · z0 dS .

(A.24)

By analogy with the series expansion (A.18), an arbitrary function
F(rt, z) quadratically integrable on S can be represented as a sum
of the modal expansion Ψ(rt, z) in terms of eigenfunctions Ψk(rt)
(the projection of F(rt, z) tangent to Hilbert space and convergent in
mean) and the orthogonal complement C(rt, z) :

F(rt, z) = Ψ(rt, z) + C(rt, z) =
∑
k

ak(z)Ψk(rt) + C(rt, z) (A.25)

where we have denoted

F(rt, z) =
(

E(rt, z)
H(rt, z)

)
, Ψ(rt, z) =

(
Ea(rt, z)
Ha(rt, z)

)
,

C(rt, z) =
(

Eb(rt, z)
Hb(rt, z)

)

and by analogy with Eq. (A.17) the orthogonal complement C satisfy
the relation

(Ψk,C) ≡
∫
S
Ψ†k · Γ̄ ·C dS

=
∫
S
(Ê∗k ×Hb + Eb × Ĥ∗k) · z0 dS = 0

(A.26)

Eqs. (A.25) and (A.26) allow the electromagnetic fields to be repre-
sented in the following form
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E(rt, z) = Ea(rt, z) + Eb(rt, z) =
∑
k

ak(z) Êk(rt) + Eb(rt, z)

(A.27)

H(rt, z) = Ha(rt, z) + Hb(rt, z) =
∑
k

ak(z)Ĥk(rt) + Hb(rt, z)

(A.28)

where the orthogonal complementary fields Eb(rt, z) and Hb(rt, z) as
well as the mode amplitudes ak(z) of the modal expansions

Ea(rt, z) =
∑
k

ak(z) Êk(rt) and Ha(rt, z) =
∑
k

ak(z) Ĥk(rt)

(A.29)
should be determined. The amplitudes ak(z) , in principle, can be
found from the equations similar to Eqs. (A.7) for the nonorthogonal
basis or to Eq. (A.15) for the orthogonal basis, with Rk being given
as follows

Rk ≡ (Ψk,Ψ) = (Ψk,F) =
∫
S
Ψ†k · Γ̄ · F dS

=
∫
S
(Ê∗k ×H + E× Ĥ∗k) · z0 dS , (A.30)

in particular, by analogy with Eq. (A.15)

ak =
Rk
Nk
≡ (Ψk,F)

(Ψk,Ψk)
=

1
Nk

∫
S
(Ê∗k ×H + E× Ĥ∗k) · z0 dS . (A.31)

It is of great importance in electrodynamic applications that such a
procedure of determining the mode amplitude ak(z) based on
Eq. (A.7) or (A.15) allows us instead of the series expansion Ψ(rt, z)
in terms of eigenmodes to apply its finite sum of the n th order

Sn(rt, z) =
n∑
k=1

a
(n)
k (z)Ψk(rt) (A.32)

like Eq. (A.2), which yields the least mean-square error

Dn =
∫
S

[
S†n(rt, z)−Ψ†(rt, z)

]
· Γ̄ ·

[
Sn(rt, z)−Ψ(rt, z)

]
dS (A.33)
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analogously to Eq. (A.4).
The above general reasoning concerning the convergence in mean,

completeness, and orthogonality properties of base functions can be
extended to the electrodynamic basis of eigenfunctions so that, in par-
ticular, the generalized Parseval identity (A.11) and Bessel inequality
(A.19) take the following form

(Ψ,Ψ) ≡ ‖Ψ‖2 =
∫
S
Ψ† · Γ̄ ·Ψ dS

=
∫
S
(E∗a ×Ha + Ea ×H∗a) · z0 dS

=
∞∑
k=1

∞∑
l=1

Nkla
∗
kal or =

∞∑
k=1

Nk|ak|2 (A.34)

and

(F,F) ≡ ‖Ψ + C‖2 =
∫
S
F† · Γ̄ · F dS

=
∫
S
(E∗ ×H + E×H∗) · z0 dS

≥
∞∑
k=1

∞∑
l=1

Nkla
∗
kal or ≥

∞∑
k=1

Nk|ak|2 (A.35)

where the last single sums correspond to the orthogonal basis.
As noted above, the orthogonality property of a basis is not manda-

tory but its existence facilitates the determination of the expansion
coefficients ak(z) . Such a property is inherent in lossless physical sys-
tems, whereas losses destroy the “pure” orthogonality and convert it
into the so-called quasi-orthogonality (see Sec. 3.1).

APPENDIX B. DIRECT DERVATION OF THE
EQUATIONS OF MODE EXCITATION FROM
MAXWELL’S EQUATIONS

Starting point to derive the equation of mode excitation is formulas
(4.12) and (4.13) which are a result of transforming Maxwell’s equa-
tions (4.4) and (4.5) inside the source region. Let us rewrite Eqs. (4.12)
and (4.13) for transverse components:
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∑
l

dAl
dz

(z0 ×El) = −∇∇∇×Eb − iωµ0Mbt − Jmbt , (B.1)

∑
l

dAl
dz

(z0 ×Hl) = −∇∇∇×Hb + iωPbt + Jebt . (B.2)

Here, in accordance with Eq. (2.2), the orthogonal complements for
the polarization Pb and magnetization Mb are defined as

Pb = Db − ε0Eb and µ0Mb = Bb − µ0Hb (B.3)

so that, as follows from Eqs. (4.14), (4.15), (4.17), and (4.18), their
longitudinal components contribute to the complementary fields:

Eb ≡ z0 Eb = − 1
iωε0

(Jebz + iωPbz) , (B.4)

Hb ≡ z0 Hb = − 1
iωµ0

(Jmbz + iωµ0Mbz) . (B.5)

If we scalar-multiply Eqs. (B .1) and (B .2) by H∗k and −E∗k , re-
spectively, and add the results, then after integrating over S we obtain∑

l

dAl
dz

∫
S
(E∗k ×Hl + El ×H∗k) · z0 dS

=
∫
S
(E∗k · ∇∇∇×Hb −H∗k · ∇∇∇×Eb) dS

−
∫
S
(Jebt ·E∗kt + Jmbt ·H∗kt) dS

− iω

∫
S
(Pbt ·E∗kt + µ0Mbt ·H∗kt) dS .

(B.6)

Now it is necessary to transform the first integral in the right-hand
side of Eq. (B .6). The terms of its integrand can be rearranged as
follows

E∗k · ∇∇∇×Hb = z0 · (E∗k ×∇Hb)
= Hb · ∇ ×E∗k − z0 · ∇∇∇× (E∗kHb)
= iωµ0 (H∗k + M∗

k) ·Hb − z0 · ∇∇∇× (E∗kHb) ,
H∗k · ∇∇∇×Eb = z0 · (H∗k ×∇Eb)

= Eb · ∇ ×H∗k − z0 · ∇ × (H∗k Eb)
= − iω (ε0E∗k + P∗k) ·Eb − z0 · ∇ × (H∗k Eb) ,
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where in the last equalities for the k th mode we have used Eqs. (5.9)
and (5.10). Then the first integral in Eq. (B .6) turns into the sum of
three integrals: ∫

Sb

(E∗k · ∇∇∇×Hb −H∗k · ∇∇∇×Eb) dS

=
∫
Sb

∇∇∇× (H∗k Eb −E∗kHb) · z0 dS

+ iω

∫
Sb

(E∗k · ε0Eb + H∗k · µ0Hb) dS

+ iω

∫
Sb

(P∗k ·Eb + µ0M∗
k ·Hb) dS ,

(B.7)

The first integral in the right-hand side of Eq. (B .7) is transformed
by using the Stokes theorem [42] into the following form

∫
Sb

∇∇∇× (H∗k Eb −E∗kHb) · z0 dS =
∮
Lb

(H∗k Eb −E∗kHb) · τττ dl

=
∮
Lb

[
(nb ×Hb) ·E∗k − (nb ×Eb) ·H∗k

]
dl

(B.8)

where nb and τττ = z0 × nb are the unit vectors, respectively, normal
(outward) and tangential to the contour Lb bounding the bulk current
area Sb .

The second integral in the right-hand side of Eq. (B .7) is rearranged
by using Eqs. (B .4) and (B .5) to the following form

iω

∫
Sb

(E∗k · ε0Eb + H∗k · µ0Hb) dS = −
∫
Sb

(Jebz E
∗
kz + Jmbz H

∗
kz) dS

− iω

∫
Sb

(Pbz E∗kz + µ0MbzH
∗
kz) dS . (B.9)
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After inserting Eqs. (B .8) and (B .9) into Eq. (B .7) we obtain∫
Sb

(
E∗k · ∇ ×Hb −H∗k · ∇ ×Eb

)
dS

=
∮
Lb

[
(nb ×Hb) ·E∗k − (nb ×Eb) ·H∗k

]
dl

−
∫
Sb

(Jebz E
∗
kz + Jmbz H

∗
kz) dS

− iω

∫
Sb

(Pbz E∗kz + µ0MbzH
∗
kz) dS

+ iω

∫
Sb

(P∗k ·Eb + µ0M∗
k ·Hb)dS

(B.10)

The first integral in the right-hand side of Eq. (B .10) involves the
effective surface currents Jes,ef =−nb×Hb and Jms,ef =nb×Eb defined
by Eqs. (4.27) and (4.28). With allowing for this and employing the
expression for the normalizing coefficient

Nkl =
∫
S
(E∗k ×Hl + El ×H∗k) · z0 dS ,

the substitution of Eq. (B .10) into Eq. (B .6) yields

∑
l

Nkl
dAl
dz

= −
∫
Sb

(Jeb ·E∗k + Jmb ·H∗k) dS

−
∫
Lb

(Jes,ef ·E∗k + Jms,ef ·H∗k) dl

− iω

∫
Sb

[
(Pb ·E∗k −P∗k ·Eb) + (µ0Mb ·H∗k − µ0M∗

k ·Hb)
]
dS .

(B.11)
The last integral in the right-hand side of Eq. (B .11) vanishes be-

cause of [
(Pb ·E∗k −P∗k ·Eb) + (µ0Mb ·H∗k − µ0M∗

k ·Hb)
]

=
[
(Db ·E∗k −D∗k ·Eb) + (Bb ·H∗k −B∗k ·Hb)

]
=

[
(ε̄−ε̄ †) : EbE∗k + (µ̄−µ̄ †) : HbH∗k

+ (ξ̄ −ζ̄ †) : HbE∗k + (ζ̄ −ξ̄ †) : EbH∗k
]
= 0
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where the constitutive relations (2.8), (2.9), and (2.13) have been used
for lossless bianisotropic media.

For the most general case of the reactive k th mode from the or-
thonormalization relation (3.24) we have Nkl = Nkδk̃l . Then formula
(B .11) finally gives the excitation equation for the k̃ th mode:

dAk̃
dz

= − 1
Nk

∫
Sb

(Jeb ·E∗k + Jmb ·H∗k) dS

− 1
Nk

∫
Lb

(Jes,ef ·E∗k + Jms,ef ·H∗k) dl .
(B.12)

This formula is in agreement with the similar equation (5.13) ob-
tained by another method, not counting the absence of the actual sur-
face currents which can be considered as enclosed implicitly into the
bulk currents.
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