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1. INTRODUCTION

The dyadic Green’s function is a powerful and important tool in the study
of electromagnetic wave propagation and scattering problems [1–4]. Since
the past few decades, considerable amount of research work have been de-
voted to the dyadic Green’s functions in various media. In [5], the un-
bounded dyadic Green’s function for the most general bianisotropic media
has been obtained in terms of complete three-dimensional Fourier integrals.
In many applications such as multilayered structures, the dyadic Green’s
functions are expressed as two-dimensional spectral domain integrals. In
[6], the dyadic Green’s function for a layered uniaxial anisotropic medium
with optic axis perpendicular to the plane of stratification has been deter-
mined. In [7], the case corresponding to a uniaxial anisotropic medium with
tilted optic axis is considered where both unbounded and layered dyadic
Green’s functions have been obtained. In [8], the spectral domain dyadic
Green’s functions for a stratified arbitrarily magnetized linear plasma have
been formulated using the concept of upgoing and downgoing waves. In
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[9], the complete plane wave spectral vector wave function expansion of
the dyadic Green’s functions for multilayered symmetric gyroelectric me-
dia is derived utilizing the orthogonality of transverse modes together with
Lorentz reciprocity theorem and multiple scattering method. In [10], the
dyadic Green’s functions pertaining to the surface electric currents in com-
plex anisotropic layered media is obtained using the spectral domain 4× 4
matrix approach. In [11], a systematic approach based on the equivalent
boundary method is described to obtain the bidimensional spectral Green’s
dyad in multilayered complex bianisotropic media. In [12], a matrix expo-
nential function approach based on Cayley-Hamilton theorem is applied to
study the electromagnetic fields of elementary dipole antennas embedded in
stratified general gyrotropic media. Recently, the complex spectral Green’s
dyadics for inhomogeneous anisotropic and bianisotropic media have been
determined using the integral equation method in [13, 14].

In this paper, we present a novel approach for constructing the complete
eigenfunction expansions of electric and magnetic dyadic Green’s functions
for general linear bianisotropic media. The eigenfunctions are expressed in
terms of linear combinations of commonly employed vector wave functions
M , N and L [4]. There are certain advantages in writing the electromag-
netic fields and dyadic Green’s functions in terms of these wave functions.
In particular, the M and N functions correspond to the TE and TM waves
respectively, hence the representations attempt to provide some insight to
the eigenwaves in bianisotropic media, although the interpretation may of-
ten be obscured by the complicated nature of the media. As demonstrated
in [4, 7–9] and recently in [15], the dyadic Green’s functions for multilay-
ered media can be formulated in a fairly simple manner once the unbounded
dyadic Green’s functions in vector wave function representations have been
determined. Therefore, the emphasis of this paper will be on the unbounded
case. Moreover, by applying the appropriate plane wave expansion formulas
[16], the vector wave functions (and hence the dyadic Green’s functions)
expressed in Cartesian coordinate system can be transformed readily into
those in other coordinate systems, e.g., cylindrical and spherical. In addi-
tion to the eigenfunction representations, both electric and magnetic dyadic
Green’s functions require explicit dyadic delta function terms for complete
expansions at the source point [17–20]. Following the approach described
in [21], these source point singularities are derived based on the theory
of distributions [22] directly from Maxwell equations cast in dyadic forms.
This approach avoids any cumbersome extraction from three-dimensional
spectral domain integrals [4, 23]. Moreover, no integration is required as
compared to the principal volume method [19, 20]. Apart from the sin-
gularities, the discontinuities associated with the eigenfunction expansions
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across the source point [24, 25] are also obtained directly from Maxwell
dyadic equations as by-products. These discontinuity relations constitute
the fundamental equations from which the eigenfunction expansions outside
the source point can be constructed. This application of discontinuity re-
lations is parallel to the utilization of Lorentz reciprocity theorem [3, 25]
for relating the source-free eigenwaves with sources. However, the theorem
cannot be applied directly to nonreciprocal media without a complementary
medium [26] whereas our approach deals with both reciprocal and nonre-
ciprocal cases in the same manner. Furthermore, the discontinuity relations
also yield directly the jump conditions for electric and magnetic fields across
a current sheet. For generality, this current sheet is assumed to consist of
both tangentially and normally directed components. To demonstrate the
application of our approach, we will consider in detail the dyadic Green’s
functions for (nonreciprocal) biisotropic media in which their expansions
are readily available for validation. To show the feasibility of the method
for more complex media, we also present the expressions for general uniax-
ial bianisotropic media in Appendix A. Throughout the following analysis,
e−iωt time dependence is assumed and suppressed.

2. EIGENFUNCTION EXPANSIONS OF ELECTRIC AND
MAGNETIC FIELDS

A homogeneous linear bianisotropic medium can be characterized by the
constitutive relations of the form [2]

D = ε · E + ξ ·H (1)

B = ζ · E + µ ·H (2)

where ε and µ are respectively the permittivity and permeability dyadics,
while ξ and ζ are the magneto-electric pseudodyadics. Applying the con-
stitutive equations (1)–(2) into the source-free Maxwell equations, we have

∇× E =iω(ζ · E + µ ·H) (3)

∇×H =− iω(ε · E + ξ ·H). (4)

Eliminating H in the above equations, we obtain the vector wave equation
for the electric field as

∇×µ−1·∇×E−iω(∇×µ−1·ζ ·E−ξ·µ−1·∇×E)−ω2(ε−ξ·µ−1·ζ)·E = 0. (5)

Substituting the Fourier transformation

E(r) =
∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkzE(k)eik·r, k = kxx̂+ kyŷ + kz ẑ (6)



230 Tan and Tan

into (5), the condition for nontrivial solutions of E reads

det
[(

k

ω
× I + ξ

)
· µ−1 ·

(
k

ω
× I − ζ

)
+ ε

]
= 0 (7)

where I is the idemfactor. This is the dispersion relation relating the wave
vector k and the angular frequency ω in compact form. In a Cartesian
coordinate system described by unit vectors (̂t1, t̂2, p̂) , the wave vector can
be decomposed into its components as k = kt1t̂1 + kt2t̂2 + kpp̂ . Assuming
kp is to be determined as a function of frequency, constitutive parameters
and the transverse components ( kt1 and kt2 ), equation (7) then yields four
roots which may be real, complex and/or multiples of each other. These
roots may be solved analytically or numerically [27, 28].

Corresponding to each of the roots, there exists one or more (for repeated
kp ) eigenvectors representing the nontrivial solutions of (5). Depending on
the root multiplicity which renders the dyadic in (7) planar or linear, these
eigenvectors can be constructed using standard dyadic methods [29]. Alter-
natively, the eigenvectors can be expressed directly in terms of commonly
employed vector wave functions, namely the M , N and L functions (of r
and k ) defined in [4]. Since these vector functions form a complete set [16],
for each root designated as kpj (j = 1, 2, 3, 4) , we let

Ej(r) =
∫
kt

Ej(r; k) =
∫
kt

aejM j + bejN j + cejLj (8)

where
∫
kt

implies
∫∞
−∞ dkt1

∫∞
−∞ dkt2 and aej , bej and cej are the coef-

ficients of expansion to be determined. Substituting (8) into (5) and using
the relations

∇×M j = kjN j , ∇×N j = kjM j (9)

k2
j = k2

t + k2
pj , k2

t = k2
t1 + k2

t2, (10)

we obtain ∫
kt

∫
S


 v1

v2

v3


 · [V aj V bj V cj ] ·


 aej
bej
cej


 = 0 (11)

where

V aj =ikjkj × I · µ−1 ·N j + ωkj × I · µ−1 · ζ ·M j

+ iωkjξ · µ−1 ·N j − ω2(ε− ξ · µ−1 · ζ) ·M j (12)
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V bj =ikjkj × I · µ−1 ·M j + ωkj × I · µ−1 · ζ ·N j

+ iωkjξ · µ−1 ·M j − ω2(ε− ξ · µ−1 · ζ) ·N j (13)

V cj =ωkj × I · µ−1 · ζ · Lj − ω2(ε− ξ · µ−1 · ζ) · Lj . (14)

Here, v1 , v2 and v3 are three linearly independent vectors which when
dot-integrated with V aj , V bj and V cj over surface

∫
S ≡

∫∞
−∞ dt1

∫∞
−∞ dt2

lead to extraction of a particular mode corresponding to a particular index
in

∫
kt

, e.g., k′t1 and k′t2 . Thus, (11) represents the homogeneous equation

of the form A · x = 0 whose solutions express the bianisotropic eigenwaves
directly as linear combinations of M , N and L . Since the homogeneous
solutions can be scaled by any scalar factor, at least one of aej , bej or cej
is left arbitrary. In practice, this arbitrary factor is to be determined from
the impressed source or the external excitation. As an example, consider the
isotropic medium where ε = εI , µ = µI and ξ = ζ = 0 . The wavenumber
in p̂ = ẑ direction can be obtained easily as kz = ±

√
ω2µε− k2

t (each
repeated once). From (11), we find that both aej and bej can be arbitrary,
i.e. they are independent of each other. This deduction coincides with the
fact that M and N are actually the electric eigenfunctions in isotropic
media. Furthermore, we find cej = 0 indicating that only the solenoidal
type vector wave functions are required for electric field expansion in source-
free isotropic regions. For more complex media, the irrotational vector wave
function would be present as well in the expansion.

Having determined the eigenfunction expansions for the electric field, we
proceed to find those for the magnetic field. Corresponding to a particular
set of aej , bej and cej , the magnetic field can be obtained readily from (3)
by letting

Hj(r) =
∫
kt

Hj(r; k) =
∫
kt

ahjM j + bhjN j + chjLj . (15)

The coefficients of expansion ahj , bhj and chj can then be determined
from

∫
kt

∫
S


 v1

v2

v3


 · [M j N j Lj ] ·


 ahj
bhj
chj


 =

∫
kt

∫
S


 v1

v2

v3


 · [V hj ] (16)

where we have chosen the same set of v ’s as in (11) and

V hj = aej(
kj
iω

µ−1·N j−µ−1·ζ·M j)+bej(
kj
iω

µ−1·M j−µ−1·ζ·N j)−cejµ−1·ζ·Lj .
(17)
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The solutions of (15)–(17) express the magnetic eigenwaves directly as linear
combinations of M , N and L . Together with (8) and (11)–(14), they con-
stitute the eigenfunction expansions of the electromagnetic fields in a source-
free bianisotropic medium. These eigenfunctions will be used to construct
the expansions for both electric and magnetic dyadic Green’s functions. In
addition to the source-free eigenfunction expansions, each of these dyadics
requires an extra dyadic delta function term at the source point. This is
discussed in the next section.

3. EIGENFUNCTION EXPANSIONS OF DYADIC GREEN’S
FUNCTION

Assuming an electric current source J is impressed in a bianisotropic
medium. (The case for magnetic sources can also be considered via duality
principle.) Due to linearity of Maxwell equations, the electric and magnetic
fields can be related directly to the current source as

E(r) =
∫∫∫
V ′

dv′Ge(r, r′) · J(r′) (18)

H(r) =
∫∫∫
V ′

dv′Gm(r, r′) · J(r′) (19)

where Ge and Gm are respectively the electric and magnetic dyadic Green’s
functions. Substituting (18)–(19) into the Maxwell equations, we obtain the
dyadic equations

∇×Ge =iω(ζ ·Ge + µ ·Gm) (20)

∇×Gm =− iω(ε ·Ge + ξ ·Gm) + Iδ(r′ − r) (21)

where δ(r′ − r) is the three-dimensional Dirac delta function defined as

J(r) =
∫∫∫
V ′

dv′ Iδ(r′ − r) · J(r′). (22)

Since the dyadic Green’s functions represent the field responses attributed
to a point source, they can be written in general forms as

Ge =G
0

eδ(p
′ − p) +G

>

e U(p− p′) +G
<

e U(p′ − p) (23)

Gm =G
0

mδ(p
′ − p) +G

>

mU(p− p′) +G
<

mU(p′ − p). (24)
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Here, we have expanded each dyadic Green’s function into three parts
weighted by different distributions. δ(p′ − p) is the one-dimensional Dirac
delta function and U(±p ∓ p′) are the Heaviside unit step functions. The

G
0

part together with δ(p′ − p) gives the singular dyadic term required

for complete expansion in the source region. The G
>
< parts together with

U(±p ∓ p′) correspond to eigenfunction expansions for p > p′ and p < p′

respectively [25]. Substituting (23)–(24) into the Maxwell dyadic equations
(20)–(21) and their divergences, we carry out the derivative operations in
the sense of distributions using [30]

∇×
[
G

0
δ(p′ − p)

]
=(∇×G

0
)δ(p′ − p) +∇δ(p′ − p)×G

0
(25)

∇×
[
G
>
<
U(±p∓ p′)

]
=(∇×G

>
< )U(±p∓ p′)± (p̂×G

>
< )δ(p− p′) (26)

∇ ·
[
G

0
δ(p′ − p)

]
=(∇ ·G

0
)δ(p′ − p) +∇δ(p′ − p) ·G

0
(27)

∇ ·
[
G
>
<
U(±p∓ p′)

]
=(∇ ·G

>
< )U(±p∓ p′)± (p̂ ·G

>
< )δ(p− p′). (28)

Then, the singularities and discontinuities associated with the eigenfunction
expansions of Ge and Gm can be deduced as follows.

Corresponding to ∂
∂p′ δ(p

′ − p) , we obtain the following equations for
p = p′ :

p̂×G
0

e = 0 (29)

p̂×G
0

m = 0 (30)

p̂ · ε ·G
0

e + p̂ · ξ ·G
0

m =
1
iω

δtp̂
′ (31)

p̂ · ζ ·G
0

e + p̂ · µ ·G
0

m = 0 (32)

where δt is the transverse delta function which together with δ(p′−p) forms
the three-dimensional Dirac delta function, i.e. δtδ(p′−p) = δ(r′−r) . From
these equations, it follows that

G
0

eδ(p
′ − p) =

1
iω

g0
eδ(r

′ − r)p̂p̂′,

g0
e =

µ : p̂p̂

(ε : p̂p̂)(µ : p̂p̂)− (ξ : p̂p̂)(ζ : p̂p̂)

∣∣∣∣∣
r=r′

(33)
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G
0

mδ(p
′ − p) =

1
iω

g0
mδ(r

′ − r)p̂p̂′,

g0
m =− ζ : p̂p̂

(ε : p̂p̂)(µ : p̂p̂)− (ξ : p̂p̂)(ζ : p̂p̂)

∣∣∣∣∣
r=r′

. (34)

Here,
∣∣∣
r=r′

indicates that g0
e and g0

m are to be evaluated at the source point

and : is the double-dot product operator defined in [29]. Hence, we have
obtained the explicit expressions of the source point dyadic delta function
terms for Ge and Gm as given by (33) and (34) respectively. These results
are seen to be in accordance with those given in [14] for p̂ = ẑ . Note that
the singular terms are obtained in a simple manner directly from Maxwell
dyadic equations treated in the sense of distributions. This approach has
avoided the somewhat cumbersome task of singularity extraction from three-
dimensional spectral domain integrals [4, 23]. Moreover, there is no apparent
need to specify the shape of an exclusion volume [31] and no integration is
required as compared to the principal volume method [19, 20]. From (33)–
(34), we see that for general bianisotropic media, both electric and magnetic
dyadic Green’s functions feature explicit dyadic delta function terms which
depend on the constitutive parameters as well as on the preferred p̂ direction
of eigenfunction expansion.

Corresponding to U(±p∓ p′) in the Maxwell dyadic equations, we have

∇×G
>
<
e =iω(ζ ·G

>
<
e + µ ·G

>
<
m ) (35)

∇×G
>
<
m =− iω(ε ·G

>
<
e + ξ ·G

>
<
m ). (36)

These results state that G
>
<
e and G

>
<
m actually correspond to the field re-

sponses in the source-free regions of p > p′ and p < p′ . In view of these
homogeneous equations, we anticipate that the dyadics can be expanded as

G
>
<
e =

∫
kt

E 1
3
S
′
1
3

+ E 2
4
S
′
2
4

(37)

G
>
<
m =

∫
kt

H 1
3
S
′
1
3

+H 2
4
S
′
2
4
. (38)

Here, S
′
j are the source vectors to be determined as functions of source

(primed) coordinates. Ej and Hj are given by (8) and (15) satisfying
(3)–(4) and hence (35)–(36). Furthermore, kp1 and kp2 are assumed to
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correspond to p > p′ while kp3 and kp4 to p < p′ . In reality, the associ-
ation of each kpj with the respective region is rather intricate [32]. As kt1
and kt2 vary from −∞ to ∞ , each of these roots traces a certain path
in the complex kp plane. Based on the Jordan’s lemma requirement, one
must select for p > p′ those roots with Im kpj > 0 and for p < p′ those
with Im kpj < 0 . For lossless medium, all roots may be located right on
the real kp axis, i.e. Im kpj = 0 . In this case, one can introduce a small
loss and examine the root behavior in the complex plane as the loss goes
to zero. Considering the real part of kpj which indicates the propagating
direction, we may expect that incoming waves existing at large distance
from the source [32]. This conclusion is seen to contradict the well-known
Sommerfeld radiation condition for isotropic media which requires waves to
propagate outward at infinity. Indeed, for general bianisotropic media, the
radiation condition should be based on the concept of bounded solutions
and both incoming as well as (decaying) evanescent waves may be present
in addition to the outgoing waves.

Corresponding to δ(p′ − p) in the Maxwell dyadic equations, we obtain
the following by-products for p = p′ :

p̂× (G
>

e −G
<

e ) =− 1
iω

g0
e∇tδt × p̂p̂′ + It · (g0

eζ + g0
mµ) · p̂p̂′δt (39)

p̂× (G
>

m −G
<

m) =Itδt −
1
iω

g0
m∇tδt × p̂p̂′ − It · (g0

eε + g0
mξ) · p̂p̂′δt (40)

where It is the transverse (to p̂ ) part of idemfactor and ∇t is the gradient
operator taken with respect to transverse coordinates. Equations (39)–(40)
describe the discontinuities present in the eigenfunction expansions of the
dyadic Green’s functions for general linear bianisotropic media. These dis-
continuities denote the changes undergone in the tangential components
( p̂× ) of the dyadics across the source point. They have emerged naturally
due to the representations of Ge and Gm in the forms of (23)–(24) where a
point singularity at r = r′ has been modeled by an equivalent layer of sur-
face singularity at p = p′ . For isotropic media, the discontinuity relations
(39)–(40) can be verified readily as demonstrated in [24, 25]. In actual-
ity, these relations constitute the fundamental equations from which the

dyadics G
>
<
e and G

>
<
m can be determined explicitly. Specifically, substitut-

ing (37)–(38) into (39)–(40) and applying some orthogonal relationships via
two linearly independent transverse vector functions ( vt1 , vt2 ), we obtain
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∫
kt

∫
S



vt1 · p̂× E1 vt1 · p̂× E2 −vt1 · p̂× E3 −vt1 · p̂× E4

vt2 · p̂× E1 vt2 · p̂× E2 −vt2 · p̂× E3 −vt2 · p̂× E4

vt1 · p̂×H1 vt1 · p̂×H2 −vt1 · p̂×H3 −vt1 · p̂×H4

vt2 · p̂×H1 vt2 · p̂×H2 −vt2 · p̂×H3 −vt2 · p̂×H4



p=p′

·



S
′
1

S
′
2

S
′
3

S
′
4


 =

∫
S




[
1
iωg

0
e∇t · (p̂× vt1) + vt1 · (g0

eζ + g0
mµ) · p̂

]
p̂′δt[

1
iωg

0
e∇t · (p̂× vt2) + vt2 · (g0

eζ + g0
mµ) · p̂

]
p̂′δt

vt1δt +
[

1
iωg

0
m∇t · (p̂× vt1)− vt1 · (g0

eε + g0
mξ) · p̂

]
p̂′δt

vt2δt +
[

1
iωg

0
m∇t · (p̂× vt2)− vt2 · (g0

eε + g0
mξ) · p̂

]
p̂′δt



p=p′

(41)
Solving the above 4 × 4 matrix, we can then cast the resultant S

′
j ’s into

linear combinations of M , N and L following the similar procedure as
described in the previous section. Having determined these source functions,
we have all the dyadics in the right sides of (23)–(24) known and hence the
complete expansions of the dyadic Green’s functions have been obtained.

At this point, it is clear from above the role played by each distribution in
the Maxwell dyadic equations. In particular, the derivative of delta function
∂
∂p′ δ(p

′ − p) leads to straightforward derivation of the source point dyadic

delta function terms G
0

e and G
0

m in (23) and (24). The Heaviside unit
step functions U(±p∓ p′) correspond to the (source-free) eigenfunction ex-

pansions of field antecedents in G
>
<
e and G

>
<
m of (35) and (36). Finally,

the correspondence of delta function δ(p′ − p) provides a direct mean to

determine the expansion coefficients and source consequents in G
>
<
e and

G
>
<
m , thus asserting the importance of (39)–(40). In fact, the significance

of these discontinuities has been emphasized in [1] when (40) is utilized in
the method of Gm to derive the singular term associated with the electric
dyadic Green’s function for isotropic media. Moreover, from the discontinu-
ity relations, we obtain the jump conditions for electric and magnetic fields
across a current sheet Js as

p̂× (E> − E<) = − 1
iω

g0
e∇× Jps + It · (g0

eζ + g0
mµ) · Jps (42)

p̂× (H> −H<) = J ts −
1
iω

g0
m∇× Jps − It · (g0

eε + g0
mξ) · Jps. (43)
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Here, it is assumed that the current sheet may consist of both tangentially
and normally directed components denoted as J ts = It ·Js and Jps = p̂p̂·Js
respectively. From (42)–(43), it is interesting to observe the manner Jps ,
via certain components of the constitutive dyadics, gives rise to the discon-
tinuities in the tangential components of electromagnetic fields. Note that
these jump conditions have resulted as direct consequences of interpreting
the Maxwell equations in the distribution sense.

4. APPLICATION EXAMPLE

In this section, the procedures developed above is applied to obtain the ex-
plicit eigenfunction expansion of the dyadic Green’s functions for unbounded
bianisotropic media. These eigenfunctions are assumed to ‘propagate’ along
p̂ = ẑ transverse to t̂1 = x̂ and t̂2 = ŷ . For simplicity, we will consider
in detail the dyadic Green’s functions for biisotropic media in which their
expansions are readily available for validation. To show the feasibility of
the method for more complex media, we also present the expressions for
general uniaxial bianisotropic in Appendix A. These materials have received
much attention recently due to their potential applications and they can
be fabricated easily by inserting metal helices in an isotropic host medium
[33, 34].

For biisotropic media, the constitutive dyadics are multiples of idemfactor
and hence they can be characterized by four scalar coefficients as

ε = εI, µ = µI, ξ = ξI, ζ = ζI. (44)

Using (44), we obtain the dispersion equation in terms of kz as

k4
z +

[
ω2(ξ2 + ζ2 − 2εµ) + 2k2

t

]
k2
z

+
[
ω4(εµ− ξζ)2 + ω2(ξ2 + ζ2 − 2εµ)k2

t + k4
t

]
= 0

(45)

where k2
t = k2

x+ k2
y . This biquadratic equation yields four roots designated

as kz1 , kz2 , kz3 = −kz1 and kz4 = −kz2 ( Im kz1, kz2 > 0 ). Corresponding
to each root, we can determine from (11) the electric eigenfunctions in terms
of [4]

M(r; kx, ky, kz) = [x̂iky − ŷikx] eikxx+ikyy+ikzz (46)

N(r; kx, ky, kz) =
1
k

[
−x̂kzkx − ŷkzky + ẑ(k2

x + k2
y)

]
eikxx+ikyy+ikzz,

k2 = k2
x + k2

y + k2
z (47)

L(r; kx, ky, kz) = [x̂ikx + ŷiky + ẑikz] eikxx+ikyy+ikzz. (48)
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By choosing some convenient v ’s in the surface integral, for instance,

v1 =
1

4π2k′t
2

[
x̂k′x + ŷk′y

]
e−ik

′
xx−ik′yy (49)

v2 =
1

4π2k′t
2

[
−x̂k′y + ŷk′x

]
e−ik

′
xx−ik′yy, (50)

we find (dropping the primes associated with k′x and k′y )

bej =
i
[
k2
j − ω2(εµ− ξζ)

]
ωkj(ξ − ζ)

aej (51)

cej =−
kzj

[
k4
j + ω2(ξ2 + ζ2 − 2εµ)k2

j + ω4(εµ− ξζ)2
]

ω3k2
j (ξ − ζ)(εµ− ξζ)

aej . (52)

Inserting (51)–(52) into the third equation of (11) and choosing say, v3 =
ẑe−ik

′
xx−ik′yy , we obtain the dispersion equation in the form of (45) in an

alternative approach. In other words, (11) can be treated as a nonhomoge-
neous equation with aej assumed known while bej , cej and kzj stay as
unknowns. Furthermore, substituting each kzj explicitly into (51)–(52), we
find bej = ±aej for

k2
1
2

= ±ω(ξ − ζ)
2

√
(ξ + ζ)2 − 4εµ+ ω2

(
εµ− ξ2 + ζ2

2

)
(53)

respectively. These eigenwaves are precisely the well-known left- and right-
circularly polarized modes which have been obtained in the literature mostly
by employing the Bohren transformation [35]. For both of these modes,
we have cej = 0 reasserting the solenoidal property of the electric field
in source-free regions. Corresponding to each aej and bej , the magnetic
eigenfunctions can be determined from (16) as

ahj =
1
iωµ

(kjbej − iωζaej) (54)

bhj =
1
iωµ

(kjaej − iωζbej) (55)

with the biisotropic admittances given by

η 1
2

=
1
iωµ

(± k 1
2
− iωζ). (56)
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Again, chj = 0 implying that the magnetic field is also divergenceless in
source-free regions. Normalizing aej as unity, we can write the electric and
magnetic eigenfunctions as

E 1
2

=M(kx, ky, kz 1
2
)±N(kx, ky, kz 1

2
), H 1

2
= η 1

2
E 1

2
(57)

E 3
4

=M(kx, ky,−kz 1
2
)±N(kx, ky,−kz 1

2
), H 3

4
= η 1

2
E 3

4
. (58)

Next, we proceed to derive the dyadic Green’s functions in terms of these
eigenfunctions.

Noting that I : ẑẑ = 1 , we can determine the singularities required in
the source region directly from (33)–(34) as

g0
e =

µ

εµ− ξζ
(59)

g0
m =− ζ

εµ− ξζ
. (60)

The eigenfunction expansions of the dyadic Green’s functions for z > z′

and z < z′ will be now determined. In conventional methods, one usually
employs the Lorentz reciprocity theorem [3, 25] to relate the source-free
eigenwaves with sources in a reciprocal medium. For nonreciprocal media,
the theorem cannot be applied directly although a complementary (adjoint)
medium may be introduced in the modified reciprocity theorem [26]. Here,
we provide an alternative approach which is applicable to both reciprocal

and nonreciprocal media to derive G
>
<
e and G

>
<
m directly based on equations

(39)–(40). Using the explicit expressions of (57)–(60), along with vt1 = v1

and vt2 = v2 , we can write (41) as




ieikz1z
′

ieikz2z
′ −ie−ikz1z′ −ie−ikz2z′

−kz1
k1
eikz1z

′ kz2
k2
eikz2z

′ −kz1
k1
e−ikz1z

′ kz2
k2
e−ikz2z

′

ieikz1z
′
η1 ieikz2z

′
η2 −ie−ikz1z′η1 −ie−ikz2z′η2

−kz1
k1
eikz1z

′
η1

kz2
k2
eikz2z

′
η2 −kz1

k1
e−ikz1z

′
η1

kz2
k2
e−ikz2z

′
η2


 ·



S
′
1

S
′
2

S
′
3

S
′
4




=
e−ikxx

′−ikyy′

4π2k2
t




0
ẑ

µk2
t

ω(εµ−ξζ)
x̂kx + ŷky

−x̂ky + ŷkx − ẑ
ζk2
t

ω(εµ−ξζ)


 .

(61)
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Solving (61), we obtain

S
′
1
2

=
ik 1

2

8π2(η1 − η2)k2
t kz 1

2

[
M
′(−kx,−ky,−kz 1

2
)±N

′(−kx,−ky,−kz 1
2
)
]

(62)

S
′
3
4

=
ik 1

2

8π2(η1 − η2)k2
t kz 1

2

[
M
′(−kx,−ky, kz 1

2
)±N

′(−kx,−ky, kz 1
2
)
]
. (63)

Hence, the complete eigenfunction expansions of the dyadic Green’s func-
tions take the forms

Ge =
µ

iω(εµ− ξζ)
δ(r′ − r)ẑẑ +

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
i

8π2(η1 − η2)k2
t

·
{[

k1

kz1
V (kx, ky, kz1)V

′(−kx,−ky,−kz1)

+
k2

kz2
W (kx, ky, kz2)W

′(−kx,−ky,−kz2)
]
U(z − z′)

+
[
k1

kz1
V (kx, ky,−kz1)V ′(−kx,−ky, kz1)

+
k2

kz2
W (kx, ky,−kz2)W ′(−kx,−ky, kz2)

]
U(z′ − z)

}
(64)

Gm =− ζ

iω(εµ− ξζ)
δ(r′ − r)ẑẑ +

∫ ∞
−∞

dkx

∫ ∞
−∞

dky
i

8π2(η1 − η2)k2
t

·
{[

η1k1

kz1
V (kx, ky, kz1)V

′(−kx,−ky,−kz1)

+
η2k2

kz2
W (kx, ky, kz2)W

′(−kx,−ky,−kz2)
]
U(z − z′)

+
[
η1k1

kz1
V (kx, ky,−kz1)V ′(−kx,−ky, kz1)

+
η2k2

kz2
W (kx, ky,−kz2)W ′(−kx,−ky, kz2)

]
U(z′ − z)

}
(65)

where we have employed the notations of V = M + N and W = M −N .
These results obviously agree with those found in the literature, where it
is known that the dyadic Green’s function for an unbounded biisotropic
medium can be expressed as combinations of two equivalent isotropic ones
[36].
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5. OTHER COORDINATE SYSTEMS

So far, the dyadic Green’s functions have been expanded in Cartesian coor-
dinate system in terms of the Cartesian vector wave functions. Occasionally,
one may wish to express the expansions in other coordinate systems, e.g.,
cylindrical and spherical. By using the plane wave expansion in cylindri-
cal and spherical wave functions, the Cartesian vector wave functions can
be transformed readily to those of cylindrical and spherical types. For in-
stance, the commonly employed cylindrical vector wave functions are defined
as [4]

Mm(r; kρ, kz) =
[
ρ̂
im

ρ
Jm(kρρ)− φ̂

∂

∂ρ
Jm(kρρ)

]
eimφ+ikzz (66)

Nm(r; kρ, kz) =
1
k

[
ρ̂ikz

∂

∂ρ
Jm(kρρ)− φ̂

mkz
ρ

Jm(kρρ) + ẑk2
ρJm(kρρ)

]
· eimφ+ikzz, k2 = k2

ρ + k2
z (67)

Lm(r; kρ, kz) =
[
ρ̂
∂

∂ρ
Jm(kρρ) + φ̂

im

ρ
Jm(kρρ) + ẑikzJm(kρρ)

]
eimφ+ikzz (68)

Using the rectangular-cylindrical coordinate transformation of the wave
numbers together with the plane wave identity [16]

kx = kρ cosφk, ky = kρ sinφk (69)

eikρρ cos(φ−φk) =
∞∑

m=−∞
imJm(kρρ)eim(φ−φk), (70)

the Cartesian vector wave functions (46)–(48) can be related to the cylin-
drical vector wave functions (66)–(68) as

M(kx, ky, kz) =
∞∑

m=−∞
ime−imφkMm(kρ, kz) (71)

N(kx, ky, kz) =
∞∑

m=−∞
ime−imφkNm(kρ, kz) (72)

L(kx, ky, kz) =
∞∑

m=−∞
ime−imφkLm(kρ, kz). (73)

Returning to the dyadic Green’s functions for biisotropic media (64)–(65),
their integrals are then transformed as∫ ∞

−∞
dkx

∫ ∞
−∞

dky =
∫ ∞

0
kρdkρ

∫ 2π

0
dφk (74)
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V (kx, ky,±kz1)V ′(−kx,−ky,∓kz1)

=
∞∑

m=−∞

∞∑
m′=−∞

im−m
′
e−i(m−m

′)φkV m(kρ,±kz1)V ′−m′(−kρ,∓kz1) (75)

W (kx, ky,±kz2)W ′(−kx,−ky,∓kz2)

=
∞∑

m=−∞

∞∑
m′=−∞

im−m
′
e−i(m−m

′)φkWm(kρ,±kz2)W ′−m′(−kρ,∓kz2). (76)

Since the integrand does not depend on φk except in the exponential terms,
the integral dφk can be evaluated easily by noting∫ 2π

0
dφke

−i(m−m′)φk = 2πδmm′ (77)

where δmm′ is the Kronecker delta symbol. Thus, the resultant dyadic
Green’s functions become

Ge =
µ

iω(εµ− ξζ)
δ(r′ − r)ẑẑ +

∫ ∞
0

kρdkρ

∞∑
m=−∞

i

4π(η1 − η2)k2
ρ

·
{[

k1

kz1
V m(kρ, kz1)V

′
−m(−kρ,−kz1)

+
k2

kz2
Wm(kρ, kz2)W

′
−m(−kρ,−kz2)

]
U(z − z′)

+
[
k1

kz1
V m(kρ,−kz1)V ′−m(−kρ, kz1)

+
k2

kz2
Wm(kρ,−kz2)W ′−m(−kρ, kz2)

]
U(z′ − z)

}
(78)

Gm =− ζ

iω(εµ− ξζ)
δ(r′ − r)ẑẑ +

∫ ∞
0

kρdkρ

∞∑
m=−∞

i

4π(η1 − η2)k2
ρ

·
{[

η1k1

kz1
V m(kρ, kz1)V

′
−m(−kρ,−kz1)

+
η2k2

kz2
Wm(kρ, kz2)W

′
−m(−kρ,−kz2)

]
U(z − z′)

+
[
η1k1

kz1
V m(kρ,−kz1)V ′−m(−kρ, kz1)

+
η2k2

kz2
Wm(kρ,−kz2)W ′−m(−kρ, kz2)

]
U(z′ − z)

}
. (79)
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By the same token, the dyadic Green’s functions can also be cast into
spherical wave representation using the rectangular-spherical or cylindrical-
spherical coordinate transformation together with the appropriate identity
[16, 37].

6. CONCLUSIONS

This paper has presented a novel approach for obtaining the complete eigen-
function expansions of electric and magnetic dyadic Green’s functions for
general linear bianisotropic media. The eigenfunctions have been expressed
in terms of linear combinations of commonly employed solenoidal and irro-
tational vector wave functions. Based on the theory of distributions, the sin-
gularities and discontinuities associated with the eigenfunction expansions of
the dyadic Green’s functions have been derived directly from Maxwell equa-
tions cast in dyadic forms. It is seen that both electric and magnetic dyadic
Green’s functions feature explicit source point dyadic delta function terms
which depend on the constitutive parameters as well as on the preferred di-
rection of eigenfunction expansion. The discontinuity relations describe the
changes undergone in the tangential components of the dyadics across the
source point. These relations constitute the fundamental equations from
which the eigenfunction expansions outside the source point can be con-
structed. This approach is parallel to the utilization of Lorentz reciprocity
theorem for relating eigenwaves with sources and it is applicable directly to
both nonreciprocal as well as reciprocal media. Furthermore, the disconti-
nuity relations have been used to obtain the jump conditions for electric and
magnetic fields across a current sheet. As an illustration of our approach,
the dyadic Green’s functions for biisotropic media have been considered in
detail. The expressions for general uniaxial bianisotropic media have also
been presented in Appendix A showing the feasibility of the method for more
complex media. Although the dyadic Green’s functions have been expanded
mainly in Cartesian coordinate system, they can be transformed readily to
other coordinate systems, e.g., cylindrical and spherical, by employing the
corresponding vector wave functions in these systems. Furthermore, the
approach described above may be extended to bounded medium provided
the corresponding eigenfunctions can be determined readily (via some or-
thogonality relationships) and the infinite integrals are replaced with finite
and/or discrete ones. With the availability of vector wave function repre-
sentations of eigenfunctions, the dyadic Green’s functions for multilayered
bianisotropic media can be solved in a manner resembling those of isotropic
media, e.g., by making use of the well-developed recursive algorithm [4, 15].
This work will be reported in the near future.
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APPENDIX A

In this Appendix, we give the explicit expressions for the eigenfunction ex-
pansions of the dyadic Green’s functions for a general uniaxial bianisotropic
medium, which can be characterized by the following constitutive relations:

ε =εtIt + εz ẑẑ, µ = µtIt + µz ẑẑ

ξ =ξtIt + ξz ẑẑ, ζ = ζtIt + ζz ẑẑ. (A1)

Choosing p̂ = ẑ , we find that the dispersion equation is biquadratic in kz ,
i.e. kz3 = −kz1 and kz4 = −kz2 ( Im kz1, kz2 > 0 ). The electric (Ej ) and
magnetic (Hj ) eigenfunctions associated with each root can be determined
as (j = 1, 2, 3, 4)

bej =iωaej

{
[µt(εtµz − ξtζz) + ζt(µtζz − µzζt)] k2

zj

+ µt(εtµt − ξtζt)k2
t − ω2µz(εtµt − ξtζt)2

}
/(kjD) (A2)

cej =− kzjaej

{
k2
j (µtk

2
t + µzk

2
zj) + ω4µz(εtµt − ξtζt)2

+ ω2[µz(ξ2
t − εtµt)k2

j + ζt(µtζzk2
t + µzζtk

2
zj)

− εtµt(µtk2
t + µzk

2
zj)− µtξt(ζz − ζt)k2

t ]
}
/(ωk2

jD) (A3)

D =ω2(εtµt − ξtζt)(µzξt − µtζz) + (µtζz − µzζt)k2
zj (A4)

ahj =
1

iωµt
[kjbej − iωζtaej ] (A5)

bhj =
1

iωµtµzk2
j

[(µtk2
t + µzk

2
zj)kjaej − iω(µtζzk2

t + µzζtk
2
zj)bej

− ω(µzζt − µtζz)kjkzjcej ] (A6)

chj =
1

ωµtµzk3
j

[(µz − µt)kjk2
t kzjaej + iω(µtζz − µzζt)k2

t kzjbej

− ω(µzζtk2
t + µtζzk

2
zj)kjcej ]. (A7)

Notice that be 3
4

= be 1
2

, ce 3
4

= −ce 1
2

, ah 3
4

= ah 1
2

, bh 3
4

= bh 1
2

and ch 3
4

=

−ch 1
2

. The source functions S
′
j associated with each eigenfunction can also

be determined as

S
′
1
2

=− 1
8π2(ah1 − ah2)∆k2

t

[
∓ ik 1

2
γe 2

1
(ah1 − ah2)M

′(−kx,−ky,−kz 1
2
)

+
α 1

2
∓ ikz 1

2
∆

k 1
2

N
′(−kx,−ky,−kz 1

2
)
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+
ikz 1

2
α 1

2
∓ k2

t∆

k2
1
2

L
′(−kx,−ky,−kz 1

2
)
]

(A8)

S
′
3
4

=− 1
8π2(ah1 − ah2)∆k2

t

[
∓ ik 1

2
γe 2

1
(ah1 − ah2)M

′(−kx,−ky, kz 1
2
)

+
α 1

2
∓ ikz 1

2
∆

k 1
2

N
′(−kx,−ky, kz 1

2
)

−
ikz 1

2
α 1

2
∓ k2

t∆

k2
1
2

L
′(−kx,−ky, kz 1

2
)
]

(A9)

where

γej =− bejkzj + icejkj , γhj = −bhjkzj + ichjkj (A10)
∆ =γe1γh2 − γh1γe2 (A11)

α 1
2

=∓
(µzγh 2

1
+ ζzγe 2

1
)(ah1 − ah2)k 1

2
k2
t

ω(εzµz − ξzζz)
. (A12)

With Ej , Hj and S
′
j solved explicitly, we thus obtain the complete eigen-

function expansions of the dyadic Green’s functions taking into account the
corresponding source point dyadic delta function terms.
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