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1. INTRODUCTION

Scattering of electromagnetic waves from a cylindrical obstacle which
is buried in a grounded dielectric layer is considered. This geometry is
commonly used while studying the microwave circuits. Grounded di-
electric layer geometry can also be a good model for various scattering
problems such as scattering by a cylindrical object buried in a layer
of ice over sea water where sea water may be considered as a perfect
conductor. Another example of this geometry could be a cylindrical
object above the earth surface camouflaged by dry grass in which earth
is modeled as a perfect conductor.

The exact analytical solution of this problem is not available. To
obtain an approximate solution for the scattered field numerical tech-
niques such as method of moments [1–2] or analytical techniques as
discussed in [3–4] may be employed. In this paper, it is desired to solve
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this problem by an analytical technique. The problem is complicated
due to the presence of interfaces on both sides of the buried object.
Therefore, it is quite difficult to incorporate all the multiple reflections
among the buried object and interfaces surrounding the object.

Hongo and Hamamura [3] have obtained an asymptotic solution for
a cylindrical object buried in a dielectric half-space. They considered
a perfectly conducting strip of finite width buried in a dielectric half-
space. They obtained an asymptotic solution for the far-zone scattered
field from the buried strip which contains a pattern function. The
pattern function is the only factor in the scattered field expression
which is dependent on the shape of the buried object. They replaced
the pattern function of the strip by the pattern function of a circular
cylinder. The solution resulting from their work has been verified using
method of moments by Naqvi et al. [5]. This technique of applying
the boundary conditions on a strip and then replacing the pattern
function of the strip by the pattern function of the desired object in the
final result is very convenient and gives satisfactory results. Therefore
this technique will be adopted to obtain far-zone field scattered by
cylindrical object buried in grounded dielectric layer.

In this paper plane wave spectrum representation of the scattered
fields is considered in different regions in terms of unknown spectrum
functions. Application of boundary conditions on these spectrum func-
tions yields a dual integral equation which is reduced to a matrix equa-
tion. The elements of matrix are definite integrals which are solved
asymptotically for large separation of buried object from both the in-
terfaces. Only the dominant part of reflected scattered fields is consid-
ered. It is assumed that only those reflected scattered fields interact
with the buried object which suffer only one reflection from any of the
interfaces.

2. FORMULATION

Geometry for the scattering problem is illustrated in Fig. 1, along with
the coordinates and notations to be used. A perfectly conducting sheet
lies at y = −d. Space y > 0 has propagation constant k0 and is called
medium 1, while space −d < y < 0 has propagation constant k and is
called medium 2. It is assumed that k > k0. Both media are assumed
to be homogeneous and lossless. A perfectly conducting strip of width
2a resides at y = −h in the medium 2. The strip is of infinite length in
the z -direction. It is assumed that a perpendicularly polarized plane
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Figure 1. Perfectly conducting strip buried in a grounded dielectric
layer.

wave is incident with angle α from medium 1, i.e.,

Eiz = exp{jk0(x cosα+ y sinα)}. (1)

The time factor is taken to be exp(jωt) throughout the present anal-
ysis. At the interface y = 0 the incident plane wave generates two
waves: a reflected wave in medium 1 propagating in direction π − α
and a transmitted wave in the grounded dielectric layer propagating
in direction β. For angle α and β given in Fig. 1, Snell’s law takes
the form

k0 cosα = k cosβ. (2)

When no inhomogeneity is present total field inside the dielectric
layer can be written as
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E2z =
2jk0 sinα sin{k(y + d) sinβ}

k sinβ cos(kd sinβ) + jk0 sinα sin(kd sinβ)
exp(jkx cosβ).

(3)
This field in the dielectric layer shows a standing wave pattern in the
y -direction with zero at the conducting sheet. Now scattered field
from the strip, buried in a geometry shown in Fig. 1, will be calculated
taking E2z as a field incident on the buried strip.

In order to calculate the scattered field from the buried strip, whole
space is subdivided into three subregions for convenience of imposing
the required boundary conditions. Region I is y > 0 and the scattered
field in region I is denoted by E

(I)
z , region II is −h < y < 0 and the

scattered field is denoted by E
(II)
z while region III is −d < y < −h

and the scattered field is denoted by E
(III)
z . The fields E(I)

z , E
(II)
z

and E(III)
z satisfy homogeneous Helmholtz’s equation and they can be

expressed in terms of spectrum of plane waves. The explicit expression
for the scattered field in each region is given by [3]

E(I)
z =

√
πx

2a

∫ ∞
0
fe1(ξ)J−1/2

xξ
a

 exp
−η0y

a

√
ξdξ + CO (4a)

E(II)
z =

√
πx

2a

∫ ∞
0
J−1/2

xξ
a


{
fe2(ξ) exp

ηy
a


+ fe3(ξ) exp

−ηy
a


}√

ξdξ + CO (4b)

E(III)
z =

√
πx

2a

∫ ∞
0
J−1/2

xξ
a


[
fe4 exp

{
(y + h)

η

a

}

+ fe5(ξ) exp
{
−(y + h)

η

a

}]√
ξdξ + CO (4c)

where

η0 =
√
ξ2 − κ2

0, R(η0) > 0

η =
√
ξ2 − κ2, R(η) > 0

κ0 = k0a, κ = ka. (5)

R stands for real part while J−1/2(x) is the Bessel function of order
−1/2 and is given as √

πt

2
J−1/2(t) = cos t.
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CO in (4) means corresponding odd function terms which are given
by replacing

√
πxξ/2aJ−1/2(xξ/a) = cos(xξ/a) and fei(ξ), with√

πxξ/2aJ1/2(xξ/a) = sin(xξ/a) and foi(ξ) respectively, where i =
1, 2, 3, 4 and 5. Functions fei(ξ) and foi(ξ) are unknown and will be
determined from the boundary conditions.

3. IMPOSITION OF BOUNDARY CONDITIONS

Using the boundary conditions that Ez and Hx are continuous at
y = 0, and Ez is continuous at y = −h the following relations among
the spectrum functions are obtained

f e1
o1

(ξ) = f e2
o2

(ξ) + f e3
o3

(ξ) (6a)

− ηof e1
o1

(ξ) = η
{
f e2
o2

(ξ)− f e3
o3

(ξ)
}

(6b)

f e2
o2

(ξ) exp
− ηh

a

 + f e3
o3

(ξ) exp
ηh

a

 = f e4
o4

(ξ) + f e5
o5

(ξ). (6c)

Condition E
(III)
z + E2z = 0 for |x| ≤ a in the plane y = −h, yields

the following relation
√
πx

2a

∫ ∞
0

{[
fe4(ξ) + fe5(ξ)

]
J−1/2

xξ
a


+

[
fo4(ξ) + f05(ξ)

]
J1/2

xξ
a


} √

ξdξ

= E0 exp(jkx cosβ) (7a)

where

E0 =
−2jk0 sinα sin{k(d− h) sinβ}

k sinβ cos(kd sinβ) + jk0 sinα sin(kd sinβ)
.

At y = −d, tangential component of the total field E(III) + E2z = 0.
This boundary condition yields the following

f e4
o4

(ξ) = −f e5
o5

(ξ) exp
{

2
η

a
(d− h)

}
. (7b)

Equations (6) and (7) are dual integral equations. In order to reduce
these integral equations into matrix equations consider the following
expansion
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f e2
o2

exp
− ηh

a

− f e4
o4

(ξ) =
∑

m(even)

1
η
AemJem(ξ) +

∑
m(odd)

1
η
AomJom(ξ)

=
m=∞∑
m=0

1
η
A em
om
J em
om

(ξ) (8)

where Jem(ξ) = J2m(ξ) and Jom(ξ) = J2m+1(ξ) and Aem and Aom
are expansion coefficients. The unknown functions fei(ξ) and foi(ξ)
can be expressed in terms of expansion coefficients Aem and Aom. It
is convenient to express f e3

o3
(ξ) directly in terms expansion coefficients

and the other spectrum functions can be expressed in terms of f e3
o3

(ξ).
This results in the following expressions for f ei

oi
(ξ).

f e1
o1

(ξ) =
2η

η + η0
f e3
o3

f e2
o2

(ξ) = R(ξ)f e3
o3

f e3
o3

(ξ) =
1
L(ξ)

[
exp

η
a
h

− exp
{
η

a
(2d− h)

}] ∞∑
m=0

1
η
A em
om
J em
om

(ξ)

f e4
o4

(ξ) = f e3
o3
R(ξ) exp

− ηh
a

−
m=∞∑
m=0

1
η
A em
om
J em
om

(ξ)

f e5
o5

(ξ) = f e3
o3

exp
ηh

a

 +
m=∞∑
m=0

1
η
A em
om
J em
om

(ξ)

where

R(ξ) =
η − η0
η + η0

, L(ξ) =
η − η0
η + η0

+ exp
2
d

a
η

.
Trigonometric factors in (7a) which are function of x are expanded
in Jacobi series [6]. Substituting the value of functions f e4

o4
(ξ) and

f e5
o5

(ξ) in equation (7a) after some manipulation yields the following
∫ ∞

0

[
1− exp

{
2
η

a
(d− h)

}
+

1
L(ξ)

{
exp

2η
a
h

 + exp
{

2η
a

(2d− h)
}

− 2 exp
2η
a
d


}] ∞∑

m=0

A em
om

1√
ξ2 − κ2

J en
on

(ξ)J em
om

(ξ)dξ

=δ en
on
E0J en

on
(κ cosβ) (9)
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where δen = 1, δon = j .
It is assumed that thickness d of dielectric layer is very large and

strip is far away from both interfaces. To utilized this assumption a few
words about (9) are in order. The R.H.S. is the incident field on the
strip and hence the L.H.S. is negative of field scattered by the strip
and evaluated at the strip. The expression in square brackets may
expanded in powers of R. The resulting series of integrals represents
the scattered waves which hit the strip after multiple reflections from
the surrounding interfaces. Since the scattered waves diverge after a
reflection, therefore each reflection contribute less and less to the total
scattered field. Only those integrals are retained which contributes
to the scattered field after suffering at most one reflection from any
interface. After this approximation (9) reduces to the following

∫ ∞
0

[
1− exp{2η

a
(d− h)}+R(ξ) exp

2
η

a
h


]

·
∞∑
m=0

A em
om

1√
ξ2 − κ2

J en
on

(ξ)J em
om

(ξ)dξ

=δ en
on
E0J en

on
(κ cosβ). (10)

Above expression will now be used to calculate the unknown expansion
coefficients A em

om
. If needed higher order multiple reflections may also

be considered to calculate the unknown expansion coefficients.

4. APPROXIMATE SOLUTION FOR THE EXPANSION
COEFFICIENTS

It is difficult to get the exact solutions for Aem and Aom except
for the case in which reflected scattered field has no interaction with
the buried strip. This situation has been discussed by Naqvi [2] for
the case of a circular cylinder. An iterative method can be used to
obtained approximate solutions for Aem and Aom when the conditions
k(d−h), kh� 1 are satisfied. Equation (10) is written in matrix form
as

[Ge][Aem] = E0[Jen] + [Me][Aem]
[Go][Aom] = jE0[Jon] + [Mo][Aom] (11)

where [Aem], [Aom], [Jen] and [Jon] are the column matrices with
elements Aem, Aom, J2n(κ cosβ) and J2n+1(κ cosβ), respectively.



256 Naqvi et al.

Matrices Ge, Go, Me and Mo have order (n,m) with elements
G(2n, 2m), G(2n + 1, 2m + 1), M(2n, 2m) and M(2n + 1, 2m + 1)
respectively. In general, matrix elements G(n,m) and M(n,m) are
given by

G(n,m) =
∫ ∞

0

Jn(ξ)Jm(ξ)√
ξ2 − κ2

dξ (12a)

M(n,m) =
∫ ∞

0

Jn(ξ)Jm(ξ)√
ξ2 − κ2

·
[
exp

2η
a

(d− h)
−R(ξ) exp

2η
a
h


]
dξ. (12b)

It is obvious from (12) that [G e
o
] and [M e

o
] are symmetric matrices.

[M e
o
] considers the interaction effects of the reflected scattered field

with the buried strip. Each element of the matrix M e
o

has two terms.
The asymptotic expression of first term for k(d− h)� 1 and second
term for kh � 1 is now derived. The series expression for Bessel
function of the first kind, of order n is

Jn(ξ) =
∞∑
l=0

(−1)lξn+2l

2n+2ll!(l + n)!
.

It may be noted that in expression (12) both m and n can either be
even or odd. Using the fact that the integrand of (12b) is even function
of ξ, since m + n is always even number, the limit of integration is
extended to (−∞,∞). Making the transformation of variable, ξ =
κ cos θ and using the steepest descent method of integration [7] yields
the following

M(n,m) = C{2k(d− h)}Pd(D)Q1

π
2

− C(2kh)Pd(D)Q2

π
2


(13a)

where

Q1(θ) = Jm(κ cos θ)Jn(κ cos θ)
Q2(θ) = Jm(κ cos θ)Jn(κ cos θ)R(θ) (13b)

Pd(D) =
m=∞∑
m=0

(1 + 4D2)(9 + 4D2) · · · ([2m− 1]2 + 4D2)
(−j8kd)mm!

(13c)

C(x) = −j
√
π

2x
exp

[
j

x− π
4


]
. (13d)
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In the above equation D = ∂/∂θ, and Pd(D)Q(π/2) means Pd(D)
·Q(θ)|θ=(π/2). It is important to note that the matrix M(n,m) may
be written as

[M ] =C{2k(d− h)}Pd(D)[Jn(κ cos θ)][Jm(κ cos θ)]T

− C(2kh)Pd(D)R(θ)[Jn(κ cos θ)][Jm(κ cos θ)]T . (14)

Expression (11) may be solved in an iterative manner. The zeroth order
approximation for A(0)

em and A(0)
om, and the first-order corrections A(1)

em

and A
(1)
om are given by

[A(0)
em
om

] = Eoδ en
on

[G e
o
]−1[J en

on
]

[A(1)
em
om

] = [G e
o
]−1[M e

o
][A(0)

em
om

]
∣∣∣
θ=(π/2)

. (15a)

It may be noted that zeroth order solution [A(0)
em
om

] corresponds to so-
lution for the case in which the scattered fields after reflection from
the interfaces have no interaction with the buried strip. First order
correction [A(1)

em
om

] considers the first order reflection of scattered field
from both the interfaces towards the buried strip. In this way higher
order multiple reflections between the buried strip and the interfaces
may be considered, but in this work only the first reflection, of scat-
tered field by each interface, towards the buried strip is considered.
Substituting the value of [A(0)

em
om

] from (15a) in the above expression
yields the following

[A em
om

](1) = E0δ en
on

[G e
o
]−1[M e

o
][G e

o
]−1[J en

on
]
∣∣∣
θ=(π/2)

Substituting the value of [M e
o
] in the above expression and taking the

transpose of both sides of resulting expression, yields the following

[A(1)
em
om

]T =E0δ en
on
Pd(D)

[
C{2k(d− h)} − C(2kh)R(θ)

]

· Γ e
o
(β, θ)[J en

on
(κ cos θ)]T [G e

o
]−1

∣∣∣
θ=(π/2)

(15b)

where
Γ e
o
(θ, φ) = [J e

o
(κ cos θ)]T [G e

o
]−1[J e

o
(κ cosφ)]. (15c)
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Zeroth order solution [A(0)
em
om

] and first order correction [A(1)
em
om

] will now
be used to calculate the far-zone scattered field from the buried strip,
i.e., [A em

om
] ∼ [A(0)

em
om

] + [A(1)
em
om

].

5. FAR-FIELD EXPRESSION FOR THE SCATTERED
FIELD

It is desired to calculate the far-zone scattered field from the buried
obstacle. Substituting the functions f e1

o1
in terms of expansion coeffi-

cients A em
om

in (4a) and using the saddle point method of integration
[7] yields the following expression for the far-zone scattered field

E(I)
z =

2k0 sinφ
L2(φ)

C1(k0ρ)[f(φ′, β) + ζ(β, φ′)] (16)

where

L2(φ) = 2j
[
β1 cosβ1d+ jk0 sinφ sinβ1d

]

β1 =
√
k2 − k2

0 cos2 φ

C1(x) =
√
π

2x
exp

[
−j

x− π
4


]

f(φ′, β) = P (φ′, β) exp{−jβ1(d− h)} − P (−φ′, β) exp{jβ1(d− h)}
P (φ′, β) = E1Γ(φ′, β) exp{jk(d− h) sinβ}

− E1Γ(φ′,−β) exp{−jk(d− h) sinβ}
Γ(φ′, β) = Γe(φ′, β)− Γo(φ′, β)

E1 =
k0 sinα

k sinβ cos(kd sinβ) + jk0 sinα sin(kd sinβ)

φ′ = tan−1
√

(k/k0 cosφ)2 − 1

ζ(β, φ′) = Pd(D)
{
C{2k(d− h)} − C(2kh)R(θ)

}
Γ(β, θ)f(θ, φ′)

∣∣∣
θ=(π/2)

Far-zone scattered field from the buried cylindrical obstacle is written
such that only dominant contribution in the asymptotic series of first
order correction is considered, i.e.,

E(I)
z =

2k0 sinφ
L2(φ)

C1(k0ρ)
[
f(φ′, β)

+
{
C{2k(d− h)} − C(2kh)R(θ)

}
f(θ, φ′)Γ(β, θ)

∣∣∣
θ=(π/2)

]
. (17)
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In the above equation, Γ(φ, β) is the plane wave pattern function of
the strip in a homogeneous medium (see Appendix). β and φ are
the angles of incidence and observation respectively. It is important
to note that all the terms in above expression except pattern function
Γ are independent of the shape of buried cylindrical obstacle. This
observation leads to the conclusion that far-zone scattered field expres-
sion (17) may be utilized to calculate far-zone scattered field for other
cylindrical objects using the technique of Hongo and Hamamura [3] as
discussed previously. This can be done by substituting the plane wave
pattern function of the corresponding object in the far-zone scattered
field expression (17).

It is desired to calculate the far-zone scattered field from a perfectly
conducting circular cylinder buried in a grounded dielectric layer us-
ing the scattered field expression (17). For this purpose, the pattern
function of perfectly conducting cylinder of radius a is required. The
far-zone scattered field from a perfectly conducting circular cylinder of
radius a when it is excited by a plane wave may be written as

Ez = C1(x)Γ(θ1, θ2)

where θ1 is the incidence angle of field incident on the cylinder while θ2
is the observation angle of the scattered field. The plane wave pattern
function of a circular cylinder is given by the following equation

Γ(θ1, θ2) =
−2j
π

n=∞∑
n=−∞

Jn(ka)

H
(2)
n (ka)

exp{jn(θ2 − θ1 + π)}

Substituting above pattern function one can calculate the correspond-
ing far-zone field expression for the case of a circular cylinder of radius
a and buried in a grounded dielectric layer. Scattered field pattern is
presented in Fig. 2 for a perfectly conducting, infinite circular cylinder,
which is buried in a grounded dielectric layer. Comparison of the scat-
tered field pattern is presented in Fig. 3 with the case where reflected
scattered field has no interaction with the buried cylinder.

APPENDIX

Consider a perfectly conducting strip of width a placed in a homoge-
neous medium. The propagation constant of the medium is k. The
strip is excited by a plane wave with field expression given in (1). The
scattered field expression in regions above and below the strip in terms
of spectrum of plane waves is written as
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Figure 2. Scattered field pattern of a perfectly conducting circular
cylinder buried in a grounded dielectric layer.

Figure 3. Comparison of the scattered field patterns of a perfectly
conducting circular cylinder. (a) corresponds to the field without in-
teraction, (b) corresponds to the field with interaction.

E(I)
z =

√
πx

2a

∫ ∞
0
fe1(ξ)J−1/2

xξ
a

exp
−ηy
a

√
ξdξ + CO, y > 0

(A1)
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E(II)
z =

√
πx

2a

∫ ∞
0
fe2(ξ)J−1/2

xξ
a

exp
ηy
a

√
ξdξ + CO, y < 0.

(A2)

The application of boundary conditions at the interface y = 0 yields
the following relations between the spectrum functions

f e1
o1

(ξ) = f e2
o2

(ξ) (A3)

√
πx

2a

∫ ∞
0

{
fe1(ξ)J−1/2

xξ
a

 + fo1(ξ)J1/2

xξ
a


} √

ξdξ

= exp(jkx cosα). (A4)

The representation of the spectrum function in terms of unknown ex-
pansion coefficients is assumed as

f e1
o1

(ξ) =
m=∞∑
m=0

1
η
A em
om
J em
om

(ξ). (A5)

Substitution of (A5) in (A1) yields the following resulting expression
for the expansion coefficients

∫ ∞
0

∞∑
m=0

A em
om

1√
ξ2 − κ2

J en
on

(ξ)J em
om

(ξ)dξ = δ en
on
J en
on

(κ cosα). (A6)

The above expression in a matrix form may be written as

[A em
om

] = δ en
on

[G e
o
]−1[J en

on
]. (A7)

It is obvious from expressions (A5) and (A7) that the spectrum func-
tions f ei

oi
(α, θ), i = 1, 2 may be written as

f ei
oi

(α, θ) = δ en
on

1
η
Γ e
o
(α, θ), i = 1, 2 (A8)

where
ξ = κ cos θ

Γ e
o
(α, θ) = [J e

o
(κ cosα)]T [G e

o
]−1[J e

o
(κ cos θ)].
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The dominant contribution of the far-zone field scattered from the strip
is given by

Ez = C1(kρ)Γ(α, φ) (A9)

where
Γ(α, φ) = Γe(α, φ)− Γo(α, φ).

In the expression (A9) factor Γ(α, θ) contains the information about
the shape of the object and is termed as the pattern function of the
object.
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