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1. INTRODUCTION

Rectangular waveguides with various kinds of discontinuity are widely
used in the design of microwave components, such as multiplexers,
power dividers, and filters in modern communication systems. The
accurate analysis of waveguide discontinuities has been one of impor-
tant subjects to establish the design method for several decades. A
variety of purely numerical techniques or analytical and numerical ap-
proaches have been developed for analyzing the bends and T-junctions
in rectangular waveguides. The finite element method [1], the bound-
ary element method [2], and the method of lines [3, 4] are versatile
numerical techniques and have been successfully applied to solve the
H-plane or E-plane discontinuities. However these methods require
considerable computational effort.

The mode-matching method is typical of analytical and numerical
approaches. A wide range of waveguide discontinuities has a configura-
tion in which several uniform waveguide sections are connected through
a cavity region. The mode-matching method uses the expansions of
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the fields in the waveguide sections in terms of their normal modes.
The expanded fields are matched to those of the cavity region to ob-
tain the modal scattering matrix of the discontinuity. This requires a
resonant mode expansion of the cavity fields [5, 6] or the use of dyadic
Green’s function in the cavity region [7]. In order to avoid such a so-
phisticated field analysis of the cavity, various techniques [8, 13] based
on equivalent circuit concepts have been incorporated in the mode-
matching procedure. The cavity problem with multiapertures can be
reduced [8] to a superposition of simpler cavity problems by subse-
quently shorting all apertures but one, to which the field expansions
by the normal modes can be applied. This principle has been used
to analyze asymmetric series E-plane T-junctions [9] and generalized
rectangular aperture-coupled T-junctions [10]. The three plane mode-
matching technique [11] has been presented for characterizing symmet-
ric E- and H-plane T-junctions. This technique reduces the problem of
T-junctions to a waveguide discontinuity problem of three waveguides,
and the scattering matrix of the original T-junction can be calculated
by analyzing the discontinuity problem three times with different po-
sitions of the short circuit on the side arm. Recently this approach has
been extended to the port reflection coefficient method [12] for mul-
tiport waveguide junctions. A mode-matching technique [13] similar
to [8] has been developed to obtain the generalized admittance ma-
trix in closed form for three- and four-port waveguide junctions. The
mode-matching method combined with the equivalent-circuit concepts
[8–13] provides a rigorous and efficient technique for analyzing rectan-
gular waveguide junctions, without using the dyadic Green’s function
in the cavity region. However the method requires that the reduced
waveguide structures with the short circuit in different positions be
repeatedly treated.

In this paper, we present the mode-matching method combined with
the Fourier transform technique for analyzing rigorously rectangular
waveguide junctions. In this method, the fields of the main wave-
guide represented by the Fourier integral are matched to those of the
side arm expressed in term of an infinite set of normal modes. The
mode-matching process in the spatial domain has been discussed [14]
for the E-plane T-junction to derive a singular integral equation for
the aperture field, which leads the variational form for the equiva-
lent circuit parameters. When the mode-matching is performed in the
Fourier transformed domain, on the other hand, a set of linear alge-
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braic equations for the field expansion coefficients is obtained, from
which the circuits parameters are numerically determined. Recently
this approach has been successfully applied to the aperture problems
[15, 16] in parallel-plate waveguides and a problem of open junctions
[17] in a rectangular waveguide. However one notes a difficulty in ap-
plying the approach to general configurations of waveguide junction in
which there is no uniform waveguide section of infinite extent. Here the
image theory based on the equivalence principle is adopted. We intro-
duce an image waveguide to the side-arm of the junction and transform
the original problem into an aperture problem in a uniform rectangu-
lar waveguide of infinite extent. Then the fields in the cavity region
are expressed by Fourier integrals, which can be evaluated in closed
form by a simple residue-calculus. The fields are matched to those of
other arms expanded by the respective normal modes. This yields a
system of linear equations to determine the scattering parameters of
the junction. The main advantage of the method is that the scatter-
ing parameters are calculated at one time by solving matrix equations
of relatively small dimensions, without repeating the analyses for the
reduced waveguide structures with several short circuit conditions.

The proposed method is applied to the analyses of right-angle cor-
ner bends in rectangular waveguides, symmetric E- and H-plane T-
junctions, asymmetric E- and H-plane T-junctions, and asymmetric
series E-plane T-junctions. It is shown that the convergence of our nu-
merical solutions is very fast. The results are compared with available
numerical and experimental data [2, 4, 6, 9, 11]. The good agreement
between them confirms the validity of the present method.

2. FORMULATION OF THE PROBLEM

Figure 1(a) shows a cross sectional view in the y - z plane of an asym-
metric T-junction, which consists of three rectangular waveguides I ,
II , and III . The cross sectional dimensions of three waveguides are
2a× 2wI , 2a× 2wII , and 2a× 2b in the x - y plane, respectively. The
left side end of semi-infinite waveguide III is short-circuited at y = 0 .
This junction represents a E-plane T-junction when a > b and a H-
plane T-junction when a < b . In order to apply the Fourier transform
technique to the fields in the semi-infinite waveguide III , we introduce
an image waveguide structure in y < 0 . Figure 1(b) shows the whole
waveguide structure constituted from the original waveguides in y > 0
and the image waveguides in y < 0 . The configuration is symmetric
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(a)

(b)

Figure 1. Longitudinal cross section of an asymmetric T-junction;
(a) original T-junction and (b) equivalent structure with image waveg-
uides.

with respect to y = 0 . The electric and magnetic fields in y < 0 are
defined through the following relations of symmetry:

ŷ ×Eν(x,−y, z) = −ŷ ×Eν(x, y, z) (1)

ŷ ×Hν(x,−y, z) = ŷ ×Hν(x, y, z) for ν = I, II, III. (2)

By introducing the image waveguides, the semi-infinite waveguide III
was transformed into an infinite uniform waveguide to which we can
apply the Fourier transform technique.
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2.1 E-plane Asymmetric T-junction

We discuss first the case of E-plane T-junction with a > b . For
the analysis of series T-junctions discussed later, we consider a general
situation in which both TE1m and TM1m modes are incident in the
waveguides I and II . Since the E-plane T-junction has the common
dimension 2a in the x direction, the fields scattered into waveguides
I , II , and III have the same x dependence as the incident waves. We
use the field representation by the longitudinal section TEx1m waves
[9]. Then the incident and scattered waves in waveguides I and II
are expressed by the magnetic Hertzian vectors as follows:

Πν =
x̂

k2
0Z0

sin
[ π
2a

(x+ a)
] ∞∑
m=0

[
Aνme

∓jβeνm(z±b) +Bνme±jβ
e
νm(z±b)

]
× cos [ξνm(y − dν + wν)] for ν = I, II (3)

where βeνm =
√
k2

0 − (π/2a)2 − ξ2νm, ξνm = mπ/2wν , k0 = ω
√
ε0µ0

and Z0 =
√
µ0/ε0 are the wave number and intrinsic impedance in free

space, Aνm are the amplitudes of incident TEx1m modes in waveguide
ν , and Bνm are unknown expansion coefficients for scattered waves.
The upper (lower) sign in exponential functions corresponds to ν = I
( ν = II ). Note that the electric fields derived from the Hertzian vectors
(3) satisfy the boundary conditions on the conducting walls at x = ±a
and y = dν ± wν .

The Fourier transform technique is used to represent the transmit-
ted fields in waveguide III on the basis of discussion in the preceding
subsection. The magnetic Hertzian vector in waveguide III are then
expressed by using the Fourier integrals as follows:

ΠIII =
x̂

2πk2
0Z0

sin
[ π
2a

(x+ a)
]

×
∫ ∞
−∞
{A(η) cos [γe(z + b)] +B(η) cos [γe(z − b)]} e−jηydη

(4)
where γe =

√
k2

0 − (π/2a)2 − η2 , and A(η) and B(η) are unknown
spectral functions. The electric field derived from (4) satisfies the
boundary conditions on the conducting walls at x = ±a .

The tangential components of electric and magnetic fields derived
from (3) and (4) should be continuous across the boundary planes



268 Jia et al.

z = ±b . These boundary conditions may be expressed as

EIIIy(x, y,∓b) =



Eνy(x, y,∓b) |y − dν | ≤ wν
Eνy(x, |y|,∓b) |y + dν | ≤ wν
0 otherwise

(5)

HIIIx(x, y,∓b) = Hνx(x, y,∓b) |y − dν | ≤ wν for ν = I, II. (6)

The boundary conditions for the electric fields are first applied. The
electric fields derived from (3) and (4) are substituted into (5), and
Fourier transforms of the resulting expressions are calculated. This
leads to a set of equations which relate the unknown spectral functions
A(η) and B(η) to the expansion coefficients Aνm and Bνm as follows:



A(η) =

−1
γe sin(2γeb)

∞∑
m=0

βeIIm (AIIm −BIIm) [CIIm(η) + CIIm(−η)]

B(η) =
−1

γe sin(2γeb)

∞∑
m=0

βeIm (AIm −BIm) [CIm(η) + CIm(−η)]

(7)
where

Cνm(η) =
ηejηdν

η2 − ξ2νm
[
(−1)mejηwν − e−jηwν

]
(8)

Using (7) in (4), the Hertzian vectors in waveguide III and hence the
magnetic fields HIIIx(x, y,∓b) are expressed in terms of the expan-
sion coefficients Aνm and Bνm . The results are substituted into the
boundary conditions (6) for the magnetic fields together with the cor-
responding expressions of Hνx(x, y,∓b) (ν = I, II) derived from (3).
Then we integrate (6) from y = dν − wν to y = dν + wν after multi-
plying both sides by the trigonometric functions cos[ξνn(y−dν +wν)] ,
where n is nonnegative integers. This leads to a set of linear equations
for the expansion coefficients Aνm and Bνm as follows:

− j [AIn +BIn]wI(δn0 + 1)

=
∞∑
m=0

βeIm (AIm −BIm)FI +
∞∑
m=0

βeIIm (AIIm −BIIm)GIII (9)

− j [AIIn +BIIn]wII(δn0 + 1)

=
∞∑
m=0

βeIm (AIm −BIm)GIII +
∞∑
m=0

βeIIm (AIIm −BIIm)FII (10)

for n = 0, 1, 2, · · ·
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where

Fν =
1
2π

∫ ∞
−∞

Cνn(−η)
γe tan(2γeb)

[Cνm(η) + Cνm(−η)] dη (11)

Gµν =
1
2π

∫ ∞
−∞

Cµn(−η)
γe sin(2γeb)

[Cνm(η) + Cνm(−η)] dη (12)

for ν, µ = I, II.

The integrals in (11) and (12) can be evaluated in closed form by a
simple residue-calculus. For example, we have

FI =
−wI(1 + δn0)δmn
γe tan(2γeb)|η=ξIm

−
∞∑
p=0

jηp
[
1− (−1)me−2jηpwI

]
Qmn

b(1 + δp0)(η2
p − ξ2In)(η2

p − ξ2Im)

−
∞∑
p=0

jηp

{
[(−1)m + (−1)n]e−2jηpdI

−(−1)m+ne−2jηp(dI+wI) − e−2jηp(dI−wI)
}

2b(1 + δp0)(η2
p − ξ2In)(η2

p − ξ2Im)

(13)

with

Qmn =

{
1 m+ n

�
= even

0 m+ n
�
= odd

(14)

where ηp =
√
k2

0 − (π/2a)2 − (pπ/2b)2 , and δmn denotes the Kro-
necker delta. Although other details have been omitted, Fν and Gµν
are given in terms of the series with very fast convergence in propor-
tion to η−3

p . When the excitation condition is given, the amplitudes
Aνm of incident TEx1m modes into waveguide ν are specified. Then
(9) and (10) are solved to obtain the unknown expansion coefficients
Bνm for the scattered waves into waveguides I and II , after truncat-
ing the modal expansion up to m =M . The results are used in (7) to
determine the unknown spectral functions A(η) and B(η) . When the
T-junction in Fig. 1 (a) with a > b is excited by TE10 mode incident
from waveguide I , we have AIm = 0 for m > 0 and AIIm = 0 for
m ≥ 0 . For this excitation, the scattering parameters are calculated
in terms of expansion coefficients rooted by (9) and (10) with (7) as
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follows:

s11 =
BI0
AI0

(15)

s21 =
BII0
AI0

√
wII
wI

(16)

s31 =
−j

√
b/wI

4bη0AI0

{
M∑
m=0

βeIm (AIm −BIm) [CIm(η0) + CIm(−η0)]

+
M∑
m=0

βeIIm (AIIm −BIIm) [CIIm(η0) + CIIm(−η0)] .
}

(17)

The other elements of scattering matrix are obtained by changing the
port of initial excitation.

The present Fourier transform technique is easily extended to two
series T-junctions as shown in Fig. 2. Since waveguides II and I ′ are
common to both T-junctions, we have

ΠII(x, y, z) = ΠI′(x′, y′, z′) (18){
AIIm = B′Ime

−jβeIImh

BIIm = A′Ime
jβeIImh.

(19)

Although the matrix size becomes a little larger, the solutions are
obtained by connecting two systems of linear equations as (9) and (10)
for each isolated single T-junction through the relations (19).

2.2 H-plane T-junction

When a < b , the junction shown in Fig. 1 represents a H-plane
T-junction. In this case, we use the field representation in terms of
TMX waves. Let the TE01 mode with the amplitude A0 be incident
from z = −∞ in waveguide I . Then the incident and scattered waves
into waveguides I , II , and III are expressed by the electric Hertzian
vectors as follows:

ΠI =
x̂

k2
0

∞∑
m=1

sin [ξIm(y − dI + wI)]
[
A0δm1e

−jβhI1(z+b) +Amejβ
h
Im(z+b)

]
(20)
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Figure 2. Longitudinal cross section of two series T-junctions.

ΠII =
x̂

k2
0

∞∑
m=1

sin [ξIIm(y − dII + wII)]Bme−jβ
h
IIm(z−b) (21)

ΠIII =
x̂

2πk2
0

∫ ∞
−∞
{C(η) sin γh(z + b) +D(η) sin γh(z − b)]}e−jηydη (22)

where βhνm =
√
k2

0 − ξ2νm , ( ξνm = mπ/2wν) (ν = I, II) , γh =√
k2

0 − η2 , Am and Bm are unknown expansion coefficients, and C(η)
and D(η) are unknown spectral functions. Following the similar ana-
lytical technique to the E-plane case, we have the following relations:


C(η) =

1
sin 2γhb

∞∑
m=1

Bm [SIIm(η)− SIIm(−η)]

D(η) =
−1

sin 2γhb

∞∑
m=1

(A0δm1 +Am) [SIm(η)− SIm(−η)]
(23)
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where

Sνm(η) =
ξνme

jηdν

η2 − ξ2νm
[
(−1)mejηwν − e−jηwν

]
. (24)

The linear equations to determine the unknown expansion coefficients
Am and Bm are also given by

jwIβ
h
In (A0δn1 −An) =

∞∑
m=1

(A0δm1 +Am)FI −
∞∑
m=1

BmG
I
II (25)

jwIIβ
h
IInBn =

∞∑
m=1

(A0δm1 +Am)GIII −
∞∑
m=1

BmFII (26)

for n = 1, 2, 3 · · ·

where

Fν =
1
2π

∫ ∞
−∞

k2
0 − η2

γh tan(2γhb)
[Sνm(η)− Sνm(−η)]Sνn(−η)dη (27)

Gµν =
1
2π

∫ ∞
−∞

k2
0 − η2

γh sin(2γhb)
[Sνm(η)− Sνm(−η)]Sµn(−η)dη (28)

for ν, µ = I, II.

The integrals in (27) and (28) can be evaluated in closed form by a
simple residue-calculus. Equations (25) and (26) are solved to obtain
the unknown expansion coefficients Am and Bm , after truncating the
modal expansion up to m = M . The results are used in (23) to
determine the unknown spectral functions C(η) and D(η) . Then the
elements of the scattering matrix for the H-plane T-junction are given
as follows:

s11 =
A1

A0
(29)

s21 =

√
wIβhII1
wIIβhI1

B1

A0
(30)

s31 =
ξI1

4bαA0

√
wIα

bβhI1

{
M∑
m=1

Bm [SIIm(α)− SIIm(−α)]

+
M∑
m=1

(A0δm1 +Am) [SIm(α)− SIm(−α)]

}
(31)
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where α =
√
k2

0 − (π/2b)2 .

3. NUMERICAL EXAMPLES

The proposed Fourier transform technique has been applied to various
kinds of discontinuities in rectangular waveguides, and the results have
been compared with those obtained by other numerical approaches.
Although the present analysis is valid for any excitation, we assumed
that the TE10 mode is incident from z < −b in waveguide I for the
E-plane problem and the TE01 mode is incident for the H-plane prob-
lem. The scattering parameters were calculated from (15)–(17) and
(29)–(31) for the respective cases. We considered first a right angle
corner bend with wII = dII = 0 and dI = wI in Fig. 1. The reflection
coefficient |S11| is plotted in Fig. 3 as functions of the normalized fre-
quency f/fc for the E-plane bend, where fc is the cutoff frequency
of TE10 mode in waveguide I . The marked values show the result
obtained by the mode-matching method with the resonant mode ex-
pansion [6] for b/a = 0.5 . Our result is in good agreement with that
of the mode-matching method. It is seen that the return loss in the
bend is significantly reduced with the decreasing b/a . Figure 4 shows
the scattering parameter |S21|2 for the H-plane bend as a function of
the normalized frequency f/fc , where fc is the cutoff frequency of
TE01 mode in waveguide I . In this case, the scattering parameters
are independent of the waveguide dimension a in the x direction.
The marked values show the result obtained by the boundary element
method [2]. We can see a very close agreement in both results. Table
I shows the convergence of the solutions versus the truncated num-
ber of modal expansion in waveguide I . When the mode number is
truncated at M = 7 (M = 3 ) for E-plane (H-plane) bend, the errors
in computation are achieved to be less than 0.1 %. The convergence
is faster in the H-plane bend than in the E-plane bend. It is worth
emphasizing that the results given in Table I satisfy accurately the
relation |S11|2 + |S21|2 = 1 for energy conservation.

When dI = dII = wI = wII , the waveguide junction in Fig. 1
is reduced to a symmetric T-junction. This symmetric configuration
can be treated by the standard Fourier transform technique in the
z direction along waveguides I and II . To verify the effectiveness
of the proposed method, however, we applied the Fourier transform
in the y direction to the field of waveguide III under the assumed
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Figure 3. Reflection coefficient |S11| as functions of frequency for E-
plane right angle corner-bends with wII = dII = 0 and dI = wI in
Fig. 1.

Figure 4. Power transmission coefficient |S21|2 as a function of fre-
quency for a H-plane right angle corner-bend.
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E-plane b/a = 0.5 f/fc = 1.5
M S11 S21

1 0.523109| −2.22◦ 0.852265| −0.8◦

2 0.539847| −5.89◦ 0.841763| 3.71◦

3 0.544838| −6.06◦ 0.838541| 4.20◦

4 0.546877| −6.07◦ 0.837213| 4.37◦

5 0.547942| −6.06◦ 0.836516| 4.45◦

6 0.548582| −6.05◦ 0.836097| 4.50◦

7 0.549004| −6.04◦ 0.835820| 4.53◦

8 0.549300| −6.03◦ 0.835625| 4.55◦

9 0.549517| −6.02◦ 0.835482| 4.57◦

10 0.549683| −6.02◦ 0.835374| 4.58◦

H-plane f/fc = 1.5
M S11 S21

1 0.434026| −85.43◦ 0.900900| 23.43◦

2 0.417444| −88.59◦ 0.908703| 22.12◦

3 0.415904| −89.04◦ 0.909409| 21.96◦

4 0.415558| −89.19◦ 0.909567| 21.91◦

5 0.415456| −89.26◦ 0.909613| 21.89◦

6 0.415424| −89.30◦ 0.909628| 21.88◦

7 0.415418| −89.32◦ 0.909631| 21.87◦

8 0.415421| −89.34◦ 0.909629| 21.87◦

9 0.415427| −89.35◦ 0.909627| 21.87◦

10 0.415434| −89.36◦ 0.909623| 21.86◦

Table I. Convergence of scattering parameters versus mode numbers
M for E- and H-plane right angle bends.

image waveguide in y < 0 . We have used the lowest nine modes in
waveguides I and II for the junction in E-plane and the lowest five
modes for the junction in H-plane. The same numbers of modes are
used for the E-plane and H-plane problems throughout the numerical
examples in the following. The scattering parameters of the symmetric
E-plane T-junction with a = 2b = 1.7 inch and dI = dII = wI = wII =
0.85 inch are shown in Fig. 5 and compared with those obtained by the
three plane mode-matching technique [10] and the measured data [10].
In Fig. 5, λg denotes the wavelength of TE10 mode in waveguide I.
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Figure 5. Reflection coefficient |S11| as functions of frequency for E-
plane right angle corner-bends with wII = dII = 0 and dI = wI in
Fig. 1.

Figure 6 shows the similar comparison for the symmetric H-plane T-
junction with b = 2a = dI = dII = wI = wII = 0.45 inch. For
both the E-plane and H-plane T-junctions, the results of the present
method are in close agreement with those obtained by the three plane
mode-matching technique [10] and measurements [10] over the total
waveguide frequency band.

Next we consider the asymmetric T-junction. The scattering param-
eters of the E-plane junction with a = 7.8995 mm, b = 2.19 mm, dI =
wI = 3.95 mm, dII = 5.6945 mm, and wII = 2.205 mm are shown in
Fig. 7 as functions of frequency and compared with those obtained by
the TEx mode-matching method [9] and the method of lines [4]. The
present results agree well with those of the method of lines. Some dis-
crepancy is observed in the results of the TEx mode-matching method.
This is because the number of modes used in [9] was not sufficient for
the accurate computation. Figure 8 shows the similar results for the
asymmetric H-plane T-junction with b = 2a = dI = wI = 0.45 inch
and dII = wII = 0.3375 inch. The scattering parameters change
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Figure 6. Power transmission coefficient |S21|2 as a function of fre-
quency for a H-plane right angle corner-bend.

abruptly in the frequency range f/fc ≤ 1.33 where the dominant
mode in waveguide II becomes cutoff, but otherwise their charac-
teristics are similar to those of the symmetric T-junction shown in
Fig. 6.

Finally we discuss the problem of two series E-plane T-junctions
shown in Fig. 2. The scattering parameters of the series E-plane junc-
tions with a = 3.556 mm, b = 0.75 mm, dI = wI = 1.778 mm,
d′I = w′I = wII = 1.27 mm, dII = 2.286 mm, b′ = 0.805 mm,
d′II = 1.91 mm, w′II = 0.63 mm, and l = 5.12 mm are shown in
Fig. 9 and compared with those obtained by the TEx mode-matching
method [9]. We can see that both results show similar features as func-
tions of frequency. The results of the TEx mode-matching method [9]
include some errors, since the number of modes used in the modal ex-
pansion was not sufficient. The discrepancy with the present accurate
analysis is less than about 4% for the two series case.
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(a)

(b)

Figure 7. Scattering parameters as functions of frequency for an asym-
metric E-plane T-junction with a = 7.8995 mm, b = 2.19 mm,
dI = wI = 3.95 mm, dII = 5.6945 mm, and wII = 2.205 mm.
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Figure 8. Scattering parameters as functions of frequency for an asym-
metric H-plane T-junction with b = 2a = dI = wI = 0.45 inch and
dII = wII = 0.3375 inch.

4. CONCLUSION

A rigorous and efficient method for the analysis of rectangular wave-
guide junctions has been presented. The method is a combination of
the Fourier transform technique and mode-matching. By introducing
an image waveguide to the side-arm of a junction, the problem of wave-
guide junction has been reduced to a simpler aperture problem in a uni-
form rectangular waveguide to which the Fourier transform technique
can be applied. The fields in the cavity region expressed by the Fourier
integrals are evaluated in closed form by a simple residue-calculus. This
reduces significantly the number of unknowns for characterizing the
waveguide junction. The scattering parameters can be calculated by
solving matrix equations of relatively small dimensions. The numer-
ical results for right-angle corner bends, symmetric E- and H-plane
T-junctions, asymmetric E- and H-plane T-junctions, and asymmetric
series E-plane T-junctions agree very well with literatures.
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(a)

(b)

Figure 9. Scattering parameters as functions of frequency for the
asymmetric series E-plane T-junctions shown in Fig. 2. Waveguide
dimensions: a = 3.556 mm, b = 0.75 mm, dI = wI = 1.778 mm,
d′I = w′I = wII = 1.27 mm, dII = 2.286 mm, b′ = 0.805 mm,
d′II = 1.91 mm, w′II = 0.63 mm, and l = 5.12 mm.
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