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1. INTRODUCTION

Electromagnetic scattering from thin arbitrary shaped perfectly conducting
plates is of interest and importance. The moment method is one of the most
popular numerical techniques that exist for its flexibility to analyze the scat-
tering and radiation from the complex geometries. It has been in use over
the past thirty years [1,2]. When the size of scatterers or radiators is elec-
trically large even resonant, the moment method becomes computationally
too expensive (too much memory and CPU time) to analyze them.

In order to overcome the difficulty of the moment method, many types
of hybrid techniques which is based on high-frequency techniques and low-
frequency techniques have been proposed. The review of these hybrid
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techniques can been found in [3–5]. Although these hybrid techniques can
deal with many scattering and radiating from complex objects, they cannot
solve the problem of electrically large complex objects with a high degree of
accuracy. Recently, many researchers tried to solve directly these large com-
putationally intensive problems by the combination of the conventional MoM
and other new techniques because the conventional MoM matrix contains all
of the information required to solve a scattering or radiating problems. In
these new techniques, there are the impedance matrix localization method
(IML) [6–9], the fast multipole method (FMM) [10–12], the complex mul-
tipole beam approach (CMBA) [13], the matrix decomposition algorithm
(MDA) [14], and its multilevel cousin: a multilevel matrix decomposition
algorithm (MLMDA) [15–16], etc. Reference [17] provides a detail discus-
sion of these fast solution methods for efficiently solving electromagnetic
problems.

Another method is the adaptive multiscale moment method
(AMMM) proposed by the authors [18–20]. A special kind of multiscale
basis functions on a bounded interval has been introduced, which is simi-
lar to a wavelet-like basis functions, in order to solve the Fredholm integral
equation of the first-kind in one dimension. From the previous papers on
AMMM, we know that AMMM possesses three characteristics: (1) The mo-
ment matrix on the multiscale basis has to be computed directly from the
original moment matrix utilizing the triangular basis through a basis trans-
formation matrix. (2) When the scale is increased, the initial guess for the
solution utilized in an iterative solver at the new scale, corresponds to the
solution of the original scale. (3) The size of the linear equations can be
automatically reduced through filtering the small coefficient terms by a pri-
ori threshold. Although AMMM is based on solving the one-dimensional
integral equation, the method can be applied to solving the two- or three-
dimension integral equation from the point of view of solving the linear equa-
tion by the matrix transformation. Our motivation in the present paper is
to apply AMMM to analyze scattering by thin, perfectly conducting plates
in the three dimensions.

Since the mid 1970’s, several researchers have proposed different methods
for analyzing the full three-dimensional electromagnetic scattering problem
for a perfectly conducting plate. One method directly discretized the in-
tegral equation by use of the moment method [21–23]. Another type of
method is to first use Fourier transform to deal with the spatial derivation
of the grad-div operation of the hyper-singular integral equation, and then
discretize the integral equation in the spectral Fourier domain. Lastly linear
equations are solved by the conjugate gradient method which has only an
O(N) memory requirement. This method is called (CG-FFT [24–28]. In
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all of these approaches, different types of basis functions have been chosen:
[21–25,27] which have adopted the pulse basis for both expansion and test-
ing functions, where as [26,28] adopted the rooftop functions as expansion
and testing functions which can yield more accurate results at an increased
computational costs.

This paper focuses on analyzing the scattering from perfectly conducting
plates by AMMM. Section 2 directly discretizes the integral equation based
on the pulse basis by the use of the moment method. The impedance ma-
trix and the source terms are then obtained based on a five-point average
point- matching scheme. Section 3 discusses the AMMM to solve the linear
equation discretized from the integral equation. Section 4 presents some
numerical examples for analyzing scattering from the perfectly conducting
rectangular plates.

2. THE CONVENTIONAL MONENT METHOD

Let S denote the surface of an arbitrary perfectly conducting plate in the
xy plane. Let �Ei be the electric field, defined by an impressed source in the
absence of the scatterer. The field is incident on the structure and induces
surface currents �J on S . The scattered electric field �Es can be computed
from the surface currents by:

�Es(�r) = −jω�A(�r)−∇φ(�r) (1)

with the magnetic vector potential defined by

�A(�r) =
µ

4π

∫
S

�J(�r′)
exp(−jkR)

R
ds′ (2)

and the scalar potential as

φ(�r) =
1

4πε

∫
∇ · �J(�r′)

exp(−jkR)
R

ds′ (3)

A harmonic time dependence according to exp(jωt) is assumed and is
suppressed for conveniences, and k = ω

√
µε = 2π/λ , where λ is the wave-

length.
We can define an integro-differential equation for �J by applying the

boundary condition n̂ × (�Ei + �Es) = 0̂ on the surface S , obtaining the
following equation (EFIE)

−�E(�r)|tan = [−jω�A(�r)−∇φ(�r)|tan �r on S (4)
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Because the surface of S is an arbitrary plate in the xy plane, the
induced current �J can be written as

�J(�r) = Jx(�r)x̂ + Jy(�r)ŷ (5)

Therefore, (4) can be rewritten in the following form




jkη0

4π

∫
s

[L11(GJx) + L12(GJy)] ds′ = Ei
x

jkη0

4π

∫
s

[L12(GJx) + L22(GJy)] ds′ = Ei
y

(6)

where

L11 = 1 +
1
k2

∂2

∂x2
, L12 =

1
k2

∂2

∂x∂y
, L22 = 1 +

1
k2

∂2

∂y2
,

G =
exp

[
−jk

√
(x− x′)2 + (y − y′)2

]
√

(x− x′)2 + (y − y′)2
,

�Ei = (Eθθ̂ + Eϕϕ̂) exp [jk(x sin θ cos ϕ + y sin θ sin ϕ)]

Ei
x = x̂ · �Ei, Ei

y = ŷ · �Ei.

Suppose the plate S is divided into a set of small rectangular plates
{sn} , �rn = (xn, yn) is the centroid of the cell sn , whose length and width
are 2∆xn , 2∆yn .

The unknown currents Jx , Jy are expanded by the pulse function on
{sn} and the point marching carried out at the centroid (xn, yn) of the cell
sn is performed through the conventional moment method, which gives rise
to the following matrix equation

(
A11 A12

A12 A22

) (
Jx

Jy

)
=

4π

jkη0

(
E
i
x

E
i
y

)
(7)
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where

A11(i, j) =
∫
sj

L11(G|(xi,yi))ds′; A12(i, j) =
∫
sj

L12(G|(xi,yi))ds′;

A22(i, j) =
∫
sj

L22(G|(xi,yi))ds′ (i = 1, 2, . . . , N, j = 1, 2, . . . , N)

Jx = (Jx(�r1), · · · , Jx(�rN ))′ , Jy = (Jy(�r1), · · · , Jy(�rN ))′

E
i
x =

(
Ei
x(�r1), · · · , Ei

x(�rN )
)′

, E
i
y =

(
Ei
y(�r1), · · · , Ei

y(�rN )
)′

A12(i, j) =
1
k2

(
G(xj + ∆xj − xi, yj + ∆yj − yi)

−G(xj −∆xj − xi, yj + ∆yj − yi)
−G(xj + ∆xj − xi, yj −∆yj − yi)

+ G(xj −∆xj − xi, yj −∆yj − yi)
)

∫
sj

G|(xi,yi)ds′ =
∆xj∆yj

9

[
G(xj −∆xj − xi, yj −∆yj − yi)

+ 4G(xj − xi, yj −∆yj − yi)
+ G(xj + ∆xj − xi, yj −∆yj − yi)
+ 4G(xj −∆xj − xi, yj − yi) + 16G(xj − xi, yj − yi)
+ 4G(xj + ∆xj − xi, yj − yi)
+ G(xj −∆xj − xi, yj + ∆yj − yi)
+ 4G(xj − xi, yj + ∆yj − yi)
+ G(xj + ∆xj − xi, yj + ∆yj − yi)] (j 	= i)

∫
si

G|(xi,yi)ds′ =

∆yi∫
−∆yi

dy

∆xi∫
−∆xi

exp
[
−jk

√
x2 + y2

]
√

x2 + y2
dx

=

2π∫
0

dθ

r∗∫
0

exp[−jkr]
r

rdr

=2π
1− exp[−jkr∗]

jk
, r∗ = 2

√
∆xi∆yi

π
, i = j
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∫
xj

∂2G

∂x′2

∣∣∣∣
(xi,yi)

ds′ =

yj+∆yj∫
yj−∆yj

dy′
[

∂G

∂x′

]∣∣∣∣
xj+∆xj

xj−∆xj

=

yj+∆yj∫
yj−∆yj

[
xi − x′

R3
(1 + jkR) exp(−jkR)

]∣∣∣∣
x=xj+∆xj

x′=xj−∆xj

dy′

R =
√

(x′ − xi)2 + (y′ − yi)2 i 	= j

∫
si

∂2G

∂x′2

∣∣∣∣
(xi,yi)

ds′ =

yi+∆yi∫
yi−∆yi

[
xi − x′

R3
(1 + jkR) exp(−jkR)

]∣∣∣∣
x′=xi+∆xi

x′=xi−∆xi

dy′

=− 4

∆yi∫
0

∆xi
∆x2

i + y2


 1√

∆x2
i + y2

+ jk




· exp
[
−jk

√
∆x2

i + y2

]
dy i = j

∫
sj

∂2G

∂y′2

∣∣∣∣
(xi,yi)

ds′ =

xj+∆xj∫
xj−∆xj

dx′
[

∂G

∂y′

]∣∣∣∣
yj+∆yj

yj−∆yj

=

xj+∆xj∫
xj−∆xj

[
yi − y′

R3
(1 + jkR) exp(−jkR)

]∣∣∣∣
y=yj+∆yj

y′=yj−∆yj

dx′

R =
√

(x′ − xi)2 + (y′ − yi)2 i 	= j

∫
si

∂2G

∂y′2

∣∣∣∣
(xi,yi)

ds′ =

xi+∆xi∫
xi−∆xi

[
yi − y′

R3
(1 + jkR) exp(−jkR)

]∣∣∣∣
y′=yi+∆yi

y′=yi−∆yi

dx′

=− 4

∆xi∫
0

∆yi
∆y2

i + x2


 1√

∆y2
i + x2

+ jk




· exp
[
−jk

√
∆y2

i + x2

]
dx i = j
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The radar cross section (RCS) can be shown to have the following form

σ(θ, φ) =
k2η2

0

4π




∣∣∣∣∣
n∑
n=1

(Jx,n cos θ cos φ + Jy,n cos θ sin φ)) ζ(θ, φ, n)

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑
n=1

(−Jx,n sin φ + Jy,n cos φ) ζ(θ, φ, n)

∣∣∣∣∣
2



(8)

where ζ(θ, φ, n) = exp[jk sin θ(xn cos φ + yn sin φ)] .
When one takes only the point-matching value at the centroid, the compu-

tational accuracy, in general, is not very good. So in this paper, we take the
average of five point matched values in the cell to construct the impedance
matrix and the source terms. The five points are the centroid point (xn, yn)
and (xn ± 1

2∆xn, yn ± 1
2∆yn) .

3. ADAPTIVE MULTISCALE ALGORITHM

3.1 Adaptive Multiscale Moment Method

A brief description of the adaptive multiscale moment method is provided
to illustrate on how to solve the first-kind Fredholm integral equation

1∫
0

K(u, v)X(v)dv = g(u) u ∈ [0, 1] (9)

Detailed computational derivation may be found in [18, 19].
In the conventional moment method, the triangular basis functions

{ϕi(u)} are taken as expansion functions and testing functions. The above
integral equation can be transformed into the following matrix equation

AX = B (10)

where

A = {ai,j}N×N , B = (b1, b2, . . . , bN ), X = (x1, x2, . . . , xN )

ai,j =

1∫
0

ϕj(u)du

1∫
0

K(u, v)ϕi(v)dv, bj =

1∫
0

ϕj(u)g(u)du
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Figure 1. The illustration of coefficient matrices, the right arrays and the
unknowns.

If we utilize the multiscale triangular basis functions using the moment
method, then the matrix equation can be written as

AMXM = BM (11)

There are various relations between A, X, B and AM , XM , BM . They
are as follows:

AM = TAT ′, BM = TB, X = T ′XM

where T is the transformation matrix from the triangular basis to the mul-
tiscale triangular basis.

We should note that some elements of the solution XM are zero or rela-
tively smaller, particularly where the solution X(v) is linear in some local
interval. According to the characteristics of the expansion function through
the use of multiscale triangular basis, we can omit these terms so as to re-
duce the size of the linear equations. The coefficient matrix AM and the
unknown XM , and the source terms BM are arranged in the form of the
scaled-block (see Fig. 1) where MM denotes the block actually computed
using the method of moments. The rest of the values are extrapolated.

The linear equation in (10) can be transformed to the linear equations
of (11), through a matrix transformation and it has no relation with the
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integral equation. Therefore, AMMM can be used for solving the matrix
equation (7).

3.2 AMMM to Solve the Matrix Equation (7)

Although AMMM can be used directly to solve the matrix equation (7),
some changes are needed because the current Jx and Jy have no relation
between them. Jx and Jy can be expressed separately in the multiscale
form, that is

Jx = T ′J
M
x , Jy = T ′J

M
y

So the matrix equation (7) can be written in the following form as

(
AM

11 AM
12

AM
21 AM

22

) (
J
M
x

J
M
y

)
=

(
BM

1

BM
2

)
(12)

where

AM
11 = TA11T ′, AM

12 = TA12T ′, AM
21 = TA21T ′, AM

22 = TA22T ′

BM
1 =

4π

jkη0
T E

i
x, BM

2 =
4π

jkη0
T E

i
y

All of the matrices AM
i,j , BM

i are arranged in the form of the scaled-block
like Fig. 1.

Because AMMM is based on solving the integral equation in one dimen-
sion, the unknowns in two dimension should be arranged in a certain se-
quence in order to solve the scattering from the plates in three dimension,
that is, the center of the elements has to be arranged in a certain sequence.
The unknown current vectors Jx and Jy can be viewed as the vectors
constructed by the one-dimensional functions Jx(l) and Jy(l) at some dis-
cretized points {ln} . The vector currents J

M
x and J

M
y can be considered

as the coefficient vectors which Jx(l) and Jy(l) are for the multiscale tri-
angular basis. Suppose the functions of Jx(l) and Jy(l) on V -scale are
represented by XJx

V (l) and X
Jy
V (l) , whose coefficients on the multiscale tri-

angular basis are denoted by X
Jx,Jy
V = (τJx,JyV,1 , τ

Jx,Jy
V,2 , · · · , τ

Jx,Jy
V,2V−1N

)T The
procedure of solving the problem from a V -scale to a (V +1) -scale has four
steps.

The first step is to predict the solution on (V + 1) -scale from the known
solution on V -scale by the interpolation method.
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Between the unknown approximation functions on (V + 1) -scale and the
known approximation functions on V -scale, there is the following relation:

X
Jx,Jy
V+1 (l) = X

Jx,Jy
V (l) +

2V N∑
i=1

τ
Jx,Jy
V+1,iφV+1,i(l)

Hence, the known solution X
JxJy
V (l) at the V -scale can be chosen as

an initial guess for the unknown solution X
Jx,Jy
V+1 (l) for the (V + 1) -scale

if {τJx,JyV+1,i} are set to be zero. However, τ
Jx,Jy
V+1,i can be estimated from

X
Jx,Jy
V (l) by the functional interpolation method (such as the polynomial in-

terpolation, the spline interpolation, etc.), denoted as X
(0)Jx,Jy
V+1 =

(τ (0)Jx,Jy
v+1,1 , τ

(0)Jx,Jy
v+1,2 , · · · , τ

(0)Jx,Jy
V+1,2V N

)T . Therefore, the initial guess for the ar-

ray (XJxJx
0 , X

Jx,Jy
1 , · · · , X

JxJy
V , X

JxJy
V+1 ) can be constructed from the known

array (XJxJy
0 , XJx,Jx

1 , · · · , X
JxJy
V ) by the solution of the function X

JxJy
V (l)

and the array X
(0)Jx,Jy
V+1 can be estimated from X

Jx,Jy
V (l) by the functional

interpolation method.
The second step is to eliminate the relatively smaller components of

the predicted solution components and omit the corresponding rows and
columns from the system matrix obtained from the moment
method. If

∣∣∣τ (0)Jx,Jy
v,i

∣∣∣ ≤ ε ( v = 1, 2 · · · , V + 1, i = 1, 2, · · · , 2vN , ε is

a given threshold), we set τ
(0)Jx,Jy
v,i = 0 , and omit the corresponding ar-

rays and columns of the system matrix with respect to (v, i) . This is an
important step to reduce the size of the linear equation. In actual com-
putation, we choose the following criterion

∣∣∣τ (0)JxJy
v,i

∣∣∣ ≤ εT Jx,Jy (T Jx =

max
∣∣∣τ (0)Jx
v,i

∣∣∣, T Jy = max
∣∣∣τ (0)Jy
v,i

∣∣∣) .
The third step is to solve the modified linear equation after the above two

steps by use of the Gauss method or the iterative methods.
The final step is to obtain the solution (XJxJy

0 , X
Jx,Jy
1 , · · · , X

JxJy
V ,

X
Jx,Jy
V+1 ) on the (V + 1) -scale by adding some of the terms which have

been eliminated by the second step.
The flow chart for solving the matrix equation utilizing the results from

the V -scale to obtain the results for the (V + 1) -scale is given in Fig. 2.

4. NUMERICAL RESULTS

In this section, we discuss some numerical examples for analyzing scattering
from the perfectly conducting plates by use of AMMM. In the following
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Figure 2. Flow chart of the adaptive multiscale moment method.
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(a) The helix shape (b) The parallel shape

Figure 3. The center of elements is arranged in the helix and parallel shapes.

(a) The bistatic RCS for (b) The bistatic RCS for
parallel arranged form Helix arranged form

Figure 4. The circle, square, triangle, and cross signals denote the results
for the threshold ε = 0, 0.01, 0.05, 0.1 . The Bistatic RCS on φ = 0◦ and
φ = 90◦ for the two kind of arranged forms.
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examples, the center of the elements is arranged in two different forms. One
is the helix form, the other is the parallel form (see Fig. 3).
First example: consider the scattering from a 1λ×1λ perfectly conduct-
ing plate. The plate is discretized into 20 × 20 cells. The center of the
elements is arranged in two different forms as seen in Fig. 3. Total number
of nodes is 400. Total unknowns for the linear equations are 800. The largest
scale is taken as 3. So the number of unknowns for Jx and Jy is 50, 100,
200, 400 from 0-scale to 3-scale, respectively.

For the different thresholds and the arrangement of elements, the reduced
number of Jx and Jy , the actual size of the linear equations, and the
condition number on the 3-scale are given in the following table, when the
conducting plate is illuminated by a normally incident plane wave with the
magnetic field vector oriented along the +y axis.

The condition numbers for the coefficient matrices for the helix arrange-
ment form and the parallel arrangement form are 30140 and 26504, respec-
tively. The bistatic RCS are shown in Fig. 4

Table 1

From table 1, it is shown that the smaller the threshold, the less the
number of the unknowns that have been eliminated, and the larger is the
condition number of the modified linear equation. When the threshold is
taken 0.1, the size of the linear equation is reduced by about 81%, 80%
respectively for the helix and parallel arrangement forms. And the errors of
the bistatic RCS are admissible (see Fig. 4).

The monostatic RCS and the size of actual size of the linear equation on
the 3-scale versus the angle of incidence with E-polarized and H-polarized
plane wave are plotted in Fig. 5.
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(a) The monostatic RCS and the (b) The monostatic RCS and the
size of the linear equation size of the linear equation
for V-polarized plane wave for H-polarized plane wave

Figure 5. The circle, triangle, and cross signals denote the results for the
threshold ε = 0, 0.01, 0.05 . The monostatic RCS and size of the linear
equation for V-polarized and H-polarized plane wave.

Second example: consider the scattering from a 2λ × 2λ perfectly con-
ducting plate. The plate is discretized into 20 × 20 cells. The center of
the cells is arranged in the same two different forms which have been ex-
plained for the first example. Total number of nodes is 400. Total number
of unknowns for the linear equations is 800.

For the different thresholds and arrangement cells, the reduced number
of Jx and Jy the actual size of the linear equations, and condition number
on the 3-scale are given in the following table, when the conducting plate
is illuminated by a normally incident plane wave with the magnetic field
vector oriented along the +y axis.

The condition numbers of coefficient matrices for the helix arrangement
form and the parallel arrangement form are 2874 and 2123, respectively.
The bistatic RCS has been shown in Fig. 6.
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Table 2

(a) The bistatic RCS for (b) The bistatic RCS for
parallel arranged form Helix arranged form

Figure 6. The circle, square, triangle, and cross signals denote the results
for the threshold ε = 0, 0.01, 0.05, 0.1 . The Bistatic RCS on φ = 0◦ and
φ = 90◦ for the two kind of arranged forms.
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(a) The monostatic RCS and the (b) The monostatic RCS and the
size of the linear equation size of the linear equation
for V-polarized plane wave for H-polarized plane wave

Figure 7. The circle, triangle, and cross signals denote the results for the
threshold ε = 0, 0.01, 0.05 . The monostatic RCS and size of the linear
equation for V-polarized and H-polarized plane wave.

The monostatic RCS and the size of actual size of the linear equation on
the 3-scale versus the angle of incidence with E-polarized and H-polarized
plane wave are plotted in Fig. 7.

Third example: consider the scattering from a 2λ × 3λ perfectly con-
ducting plate on the x - y plane (the length on x -axis is 2λ , the length on
the y -axis is 3λ ). The plate is discretized into 20×30 cells. The center of
the cells is arranged in the helix form. Total number of nodes is 600. Total
number of unknowns in the linear equations is 1200. The largest scale is
taken to be 3. So the number of unknowns for Jx and Jy is 75, 150, 300,
600 from 0-scale to 3-scale, respectively.

Fig. 8 shows the monostatic RCS and the size of the actual size of the
linear equation on the 3-scale versus the angle of incidence plane wave with
the magnetic field vector oriented along the +y axis on φ = 0 plane.
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Figure 8. The circle, triangle, and cross signals denote the results for the
threshold ε = 0, 0.01, 0.05 . The monostatic RCS and size of the linear
equation for H-polarized plane wave.

5. CONCLUSIONS

AMMM has been used to analyze scattering from the perfectly conducting
plates. By use of the matrix transformation, the impedance matrix and
the source terms constructed by the conventional moment method can be
arranged in the form of different scales. From one scale to another scale,
the initial guess can be predicted according to the properties of the mul-
tiscale technique. Some examples have been presented that clearly shows
that AMMM can reduce adaptively the size of the linear equations and
can improve the efficiency over that of the conventional moment method.
Although the pulse basis and point-matching technique is adapted in this
paper, the AMMM can be used to improve the efficiency when other basis
functions (such as the rooftop functions, Rao’s basis functions) are chosen
in the moment method to study the scattering problems. The extension of
this technique to three dimensional case is underway and the results will be
reported in due time.
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