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1. INTRODUCTION

The rectangular hollow conducting waveguides and many of their vari-
ations are widely used in microwave systems. The computation of
the cutoff wavenumbers of these waveguides is one of important issues
for designing the waveguide or analyzing the wave propagation in the
waveguide. There are a variety of methods available in the literature to
calculate the cutoff wavenumbers. Among them, the finite difference,
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finite element and integral methods are used extensively. The early
work has been summarized in [1]. More recently, the same problems
have been studied by Swaminathan et al. [2] using the surface integral
equation method, Sarkar et al [3], Guan and Su [4] using the finite
difference method.

As we know, the finite difference and finite element methods are
low order methods. To obtain accurate numerical results, these low
order methods need to use a large number of grid points. Usually, the
number of interior grid points for the cross section of a waveguide is
equal to the dimension of the resultant eigenvalue equation system,
and then provides the same number of cutoff wavenumbers. Among
all the computed cutoff wavenumbers, only low cutoff wavenumbers
are of practically interest. However, since all the computed cutoff
wavenumbers have the same order of accuracy, one still needs to use
a large number of grid points to obtain the better accuracy of such
low cutoff wavenumbers. As a result, a lot of virtual storage and
computational effort are required.

As will be shown in this paper, the global method of generalized
differential quadrature (GDQ) offers a promising way for the analy-
sis of waveguides. The accurate cutoff wavenumbers can be obtained
by using a considerably small number of grid points. GDQ method
was developed by Shu et al [5, 7] to improve the differential quadra-
ture (DQ) method [6] in computing the weighting coefficients. It is
indicated that GDQ is a global method which is based on the high
order polynomial approximation. So far, the GDQ method has been
efficiently applied to solve the fluid flow problems [7–8] and structural
and vibration problems [9–10]. As shown in [5], GDQ method is equiv-
alent to the highest order finite difference scheme. Thus, like the low
order finite difference schemes, it requires the computational domain
to be rectangular. However, for the practical application, the geometry
of the problem is usually very complex. To apply the GDQ method to
solve complex problems, we need to use the grid generation technique
and the multi-domain approach which are widely applied in the low
order finite difference schemes. In this paper, the efficiency and high
accuracy of GDQ method is demonstrated by its application to a single-
domain rectangular waveguide. Then a multi-domain GDQ approach
is proposed. This approach divides the whole computational domain
into several sub-domains. And in each subdomain, the GDQ method is
used to discretize the derivatives. Globally, the information exchange



Waveguide analysis by GDQ 3

is conducted through the interface of neighboring subdomains. An
overlapped interface topology will be used in this study.

2. MULTI-DOMAIN GDQ APPROACH

2.1 GDQ Formulation

GDQ approach was developed by Shu et al. [5, 7] to improve the
differential quadrature (DQ) technique [6]. It approximates the spa-
tial derivative of a function with respect to a space coordinate at a
given grid point as a weighted linear sum of all the functional values
at all grid points in the whole domain of that space coordinate. The
computation of weighting coefficients by GDQ is based on the analysis
of a high order polynomial approximation and the analysis of a linear
vector space. The weighting coefficients of the first order derivative
are calculated by a simple algebraic formulation, and the weighting
coefficients of the second and higher order derivatives are given by a
recurrence relationship. It has been shown by Shu [5] that GDQ ap-
proach is equivalent to the highest order finite difference scheme. The
details of GDQ method can be found in [5, 7]. Some two-dimensional
results are described as follows. For a smooth function f(x, y) , GDQ
discretizes its n th order derivative with respect to x , and the m th
order derivative with respect to y , at the grid point (xi, yj) as

f (n)
x (xi, yj) =

N∑
k=1

c
(n)
ik · f(xk, yj), n = 1, 2, . . . , N − 1 (1a)

f (m)
y (xi, yj) =

M∑
k=1

c
(m)
jk · f(xi, yk),m = 1, 2, . . . ,M − 1 (1b)

for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M,

where N,M are the number of grid points in the x and y direction
respectively, c(n)

ik , c
(m)
jk are the weighting coefficients to be determined

as follows,

weighting coefficients for the first order derivative

c
(1)
ij =




A(1)(xi)
(xi − xj) ·A(1)(xj)

, when j �= i

N∑
k=1,k �=i

c
(1)
ik , when j = i

(2a)
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for i, j = 1, 2, . . . , N,

c
(1)
ij =




B(1)(yi)
(yi − yj) ·B(1)(yj)

, when j �= i

M∑
k=1,k �=i

c
(1)
ik , when j = i

(2b)

for i, j = 1, 2, . . . ,M,

where

A(1)(xi) =
N∏

j=1,j �=i
(xi − xj),

B(1)(yi) =
M∏

j=1,j �=i
(yi − yj).

weighting coefficients for the second and higher order derivatives

c
(n)
ij =




n ·
(
c
(n−1)
ii · c(1)ij −

c
(n−1)
ij

xi − xj

)
, when j �= i

N∑
k=1,k �=i

c
(n)
ik , when j = i

(3a)

for i, j = 1, 2, . . . , N, n = 2, 3, . . . , N − 1,

c
(m)
ij =




m ·
(
c
(m−1)
ii · c(1)ij −

c
(m−1)
ij

yi − yj

)
, when j �= i

M∑
k=1,k �=i

c
(m)
ik , when j = i

(3b)

for i, j = 1, 2, . . . ,M,m = 2, 3, . . . ,M − 1,

It is obvious from above formulations that the weighting coefficients of
the second and higher order derivatives can be completely determined
from those of the first order derivatives. When the coordinates of grid
points are known, the weighting coefficients for the discretization of
derivatives can be easily calculated from formulations (2), (3). Then
using equation (1), all the spatial derivatives can be discretized using
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Figure 1. Topology of two overlapped subdomains.

a similar form. The difference for the respective derivatives is to use
different weighting coefficients, which are usually computed in advance.
This avails as an easily implementable scheme on the computer with
greatly simplified code-editing features.

2.2 Multi-Domain Approach

Like the conventional low order finite difference schemes, GDQ ap-
proach requires the computational domain to be rectangular. However,
in practical applications, the physical domain is usually complex. For
this case, the GDQ approach cannot be applied directly. This difficulty
can be removed by the choice of grid generation and multi-domain tech-
nique. In the following, a multi-domain GDQ approach is presented.

The multi-domain GDQ approach, firstly, decomposes the whole
computational domain into several subdomains. Then in each subdo-
main, a local mesh is generated and a local GDQ technique is applied
in the same fashion as the application of GDQ in a single domain.
Globally, the information exchange between neighboring subdomains
is conducted through the interface. Since any complex geometry can
be transformed into a rectangular domain or a combination of rectan-
gular subdomains, a rectangular domain is chosen for demonstration
without losing generality. As shown in Fig. 1, in this study, the two
neighboring subdomains are overlapped by one mesh point. The sub-
domain ABCD is overlapped with the subdomain EFGH (shaded area).
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It is noted that the right boundary of the subdomain Ωi , BC, is in
the interior of the subdomain Ωj , and the left boundary of the sub-
domain Ωj , EH, is in the interior of the subdomain Ωi . Obviously,
the information between the two subdomains Ωi and Ωj is exchanged
through the boundaries BC and EH. In each subdomain, the govern-
ing equation is discretized at all interior points. Since the boundary of
a subdomain is in the interior of another subdomain, so, globally, the
governing equation is discretized in the interior of whole computational
domain.

3. FORMULATION AND NUMERICAL ALGORITHMS

It is well known that the propagation characteristics of the hollow con-
ducting waveguides with homogeneous permittivity and permeability
distributions can be fully determined by the following Helmholtz equa-
tion

∇2φ+ k2
cφ = 0 in Ω (4)

where kc is the cutoff wavenumber, φ is the longitudinal component
of electric or magnetic field defined in the two-dimensional domain Ω
surrounded by the boundary Γ , ∇2 is the Laplacian operator given
by

∇2 =
∂2

∂x2
+

∂2

∂y2

The corresponding boundary conditions are the Dirichlet and Neu-
mann conditions at Γ for the guiding TM and TE modes. The
boundary conditions for the TM modes are

φ = 0 at Γ (5)

and the boundary conditions for the TE modes are

∂φ

∂n
= 0 at Γ (6)

For the application of multi-domain GDQ approach, the whole domain
Ω is divided into K subdomains. Then in each subdomain Ωk, k =
1, 2, . . . ,K, the GDQ method is applied to discretize the derivatives in
equation (4). It is supposed that in Ωk there are N grid points in the
x direction and M grid points in the y direction. The corresponding
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weighting coefficients of the second order derivatives in the x and y

directions are noted as w
(2)
in , w(2)

jm respectively.
Using GDQ method, equation (4) can be discretized as

N∑
n=1

w
(2)
in · φnj +

M∑
m=1

w
(2)
jm · φim = −k2

cφij in Ωk (7)

Similarly, the derivative in the Neumann boundary condition can be
discretized by GDQ method. After numerical discretization, the Di-
richlet or Neumann boundary condition can be directly substituted
into equation (7). Applying equation (7) in all the subdomains results
in the following eigenvalue equation system

[A] · {φ} = −k2
c{φ} (8)

For a general case, [A] is considered as a full matrix. From equation (8),
the kc values (cutoff wavenumbers) can be obtained from the eigen-
values of matrix [A]. In this study, the eigenvalues of matrix [A] are
obtained by using HQR subroutine provided by “Numerical Recipes”.

4. RESULTS AND DISCUSSION

The efficiency of GDQ method is first studied by its application to the
rectangular waveguides. For this case, the GDQ method is applied in
the whole computational domain, and the GDQ results are compared
with the analytical solution. Then the multi-domain GDQ approach is
applied to compute the cutoff wavenumbers of the TM and TE modes
for the L -shaped, single-ridged, double-ridged, coaxial rectangular,
and vaned rectangular waveguides. The multi-domain GDQ results
are compared with available data in the literature. It is noted that
for all the cases, when the TE modes are considered, there is a null
mode with the cutoff wavenumber being equal to zero in the computed
GDQ results. However, this null mode does not exist physically and is
removed from the corresponding tables. It was also found that when
the same mesh size is used, the computation time required for TE
modes is almost the same as that for TM modes.

4.1 Rectangular Waveguide

Consider a rectangular waveguide with length a = 4.0 cm and width
b = 3.0 cm as shown in Fig. 2. The cutoff wavenumbers of the TE
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Figure 2. Configuration of a rectangular waveguide.

modes will be computed by GDQ and then compared with exact solu-
tion. For the TE modes, the Neumann condition should be applied
at all the boundaries and the analytical solution can be expressed by

kc = π
√

(m/a)2 + (n/b)2, m, n = 0, 1, 2, . . . (9)

For the GDQ computation, the following mesh point distribution [7] is
applied,

xi =
1
2

[
1− cos

(
i− 1
N − 1

· π
)]

a, i = 1, 2, . . . , N, (10a)

yj =
1
2

[
1− cos

(
j − 1
M − 1

· π
)]

b, j = 1, 2, . . . ,M (10b)

where xi, yj represent the coordinates of mesh points. Table 1 shows
the computed GDQ cutoff wavenumbers of the first ten TE modes
and the corresponding absolute errors. Two mesh sizes of 9 × 9 and
15×15 are used to obtain GDQ results. The analytical solution is also
included in Table 1 for comparison. It is observed that the coarse mesh
of 9× 9 provides the reasonable GDQ results, and as the mesh size is
increased to 15×15 , the accuracy of GDQ results is greatly improved.
This shows that GDQ is a very efficient numerical method with high
accuracy. Apart from the high order accuracy of GDQ results, the
required computational effort is also tiny. For the results shown in
Table 1, the computation time required on LEONIS is less than 1
second for each case.
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In the following, the multi-domain GDQ results are presented for
various waveguides. The TE and TM modes are followed by an
integer subscript in ascending order of the cutoff wavenumbers, and
the mesh sizes indicated in Tables 2–6 represent the mesh sizes in each
subdomain.

Table 1. Analytical and single-domain GDQ results of a rectangular
waveguide.

4.2 Double-Ridged Waveguide

The first example for the application of multi-domain GDQ ap-
proach is the analysis of a double ridged waveguide. For this prob-
lem, the cutoff wavenumbers of the TE1 , TE3 , TE5 , TE7 and
TE9 modes computed by various methods are available in the lit-
erature [4, 11–13]. The configuration of a double-ridged waveguide
with a = 1.27 cm, b = 1.016 cm, c = 0.508 cm, d = 0.3683 cm and
the distribution of subdomains for the multi-domain GDQ computa-
tion are shown in Fig. 3. Seven subdomains are used for this problem.
Table 2 displays the cutoff wavenumbers of the TE1 , TE3 , TE5 ,
TE7 and TE9 modes for a double-ridged waveguide computed by the
multi-domain GDQ approach and other approaches [4, 11–13]. In Ta-
ble 2, the multi-domain GDQ results are given by using five different
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Figure 3. Configuration of a double ridged waveguide and distribution
of subdomains.

Table 2. Comparison of cutoff wavenumbers for a double-ridged wave-
guide.

mesh sizes, and the results of the finite difference and simultaneous
iteration with Chebyshev acceleration (FD-SIC) method [4] are given
from two different mesh sizes. It should be indicated that the mesh
size for the FD-SIC solution represents the mesh size for one quar-
ter of the waveguide cross section. It can be observed from the table
that the multi-domain GDQ approach is very efficient. When a very
coarse mesh of 7 × 7 is used in each subdomain, the multi-domain
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GDQ results are very accurate, and the required computation time on
LEONIS is just 2 seconds. As the mesh is refined, the multi-domain
GDQ results are converged to a grid-independent solution. Although
the multi-domain GDQ results are in good agreement with all the data
available in the literature, they are more close to the results of FD-SIC
[4] and scalar-FEM [13]. This can be seen clearly in Table 2.

Figure 4. Configuration of a L-shaped waveguide and distribution of
subdomains.

4.3 L -Shaped Waveguide

The configuration of a L -shaped waveguide with a = b = 1.27 cm,
c = d = a/2 and the distribution of subdomains are shown in Fig. 4.
Three subdomains are used for this problem. In each subdomain, the
same mesh size is used. Table 3 shows the computed cutoff wavenum-
bers of the first ten TM and TE modes by multi-domain GDQ ap-
proach for a L -shaped waveguide. Also included in this table are
the results of the surface integral equation (SIE) method [2], the fi-
nite difference with conjugate gradient method (FD-CGM) [3], and
the FD-SIC method [4]. The multi-domain GDQ results are obtained
by using four different mesh sizes. It can be seen from the table that
the convergence of multi-domain GDQ results is very good, and the
present results agree very well with the results of FD-SIC [4] which are
based on a mesh size of 50× 50 . As shown in [4], analytical solutions
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Table 3. Cutoff wavenumbers of a L-shaped waveguide.

of this problem for TM3 , TM8 , TM9 , TE3 , TE4 , TE7 modes are
available. Their respective values are 6.9967, 11.0627, 11.0627, 4.9474,
4.9474, and 6.9967. Table 3 shows that when the mesh size in each sub-
domain is taken as 13× 13 , the multi-domain GDQ results match the
analytical solution of above modes up to four decimal digits. Clearly,
as the mesh is refined, the accuracy of multi-domain GDQ results is
improved. From the convergence trend, it is believed that the multi-
domain GDQ results with a mesh size of 9×9 are more accurate than
the results of SIE [2], FD-CGM [3], and FD-SIC [4]. It was found that
the calculated cutoff wavenumbers of TM5 and TM6 modes by the
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Figure 5. Configuration of a single ridged waveguide and distribution
of subdomains.

FD-CGM are not close to any of our results for the modes from TM1

to TM10 . This finding has also been discussed in [4]. When the mesh
size of 9×9 is used, the required computation time on LEONIS is just
1 second.

4.4 Single-Ridged Waveguide

The configuration of a single-ridged waveguide with a = 1.0 cm, b =
0.5 cm, c = d = 0.25 cm and the distribution of subdomains are shown
in Fig. 5. Five subdomains are used for this problem. Table 4 displays
the computed cutoff wavenumbers of the first ten TM and TE modes
for a single-ridged waveguide. In the table, the multi-domain GDQ
results using four mesh sizes are compared with the results of SIE [2],
FD-CGM [3], and FD-SIC [4]. It was found that the multi-domain
GDQ results with a mesh size of 9 × 9 are very accurate. For this
case, the computation time on LEONIS is just 2 seconds. As the mesh
is refined, the accuracy of multi-domain GDQ results is improved. The
present multi-domain GDQ results agree very well with the results of
FD-SIC [4]. However, there are some discrepancies between the present
results and the results of SIE [2] and FD-CGM [3]. For all the cases,
the results of SIE [2] and FD-CGM [3] are smaller than our results.
From the comparison in Table 4, it seems that the cutoff wavenumber
of the TM6 mode is lost in the FD-CGM computation.
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Table 4. Cutoff wavenumbers of a single-ridged waveguide.

Figure 6. Configuration of a coaxial waveguide and distribution of
subdomains.
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4.5 Coaxial Rectangular Waveguide

The configuration of a coaxial rectangular waveguide with a =
1.25 cm, b = 1.0 cm, c = 0.25 cm, d = 0.25 cm and the distribu-
tion of subdomains are shown in Fig. 6. Eight subdomains are used
for this problem. Table 5 shows the computed cutoff wavenumbers of
the first ten TM and TE modes by multi-domain GDQ approach for
a coaxial rectangular waveguide. The multi-domain GDQ results are
obtained by using six different mesh sizes, and are compared with the
results of FD-CGM [3]. Obviously, the convergence of multi-domain
GDQ results is excellent. As the number of mesh points is increased a
little, the accuracy of GDQ results is improved a lot. From the conver-
gence trend of GDQ results, it is believed that the multi-domain GDQ
results with a mesh size of 7 × 7 are more accurate than the results
of FD-CGM [3]. For the mesh size of 7× 7 , the required computation
time on LEONIS is just 3 seconds.

4.6 Vaned Rectangular Waveguide

The configuration of a vaned rectangular waveguide with a =
2.0 cm, b = 1.0 cm, c = 0.5 cm and the distribution of subdomains
are shown in Fig. 7. Four subdomains are used for this problem. Ta-
ble 6 exhibits the computed cutoff wavenumbers of the first ten TM
and TE modes for a vaned rectangular waveguide. In Table 6, the
multi-domain GDQ results using five different mesh sizes are compared
with the results of SIE [2] and FD-CGM [3]. Like other problems, the
convergence of multi-domain GDQ results for this problem is also very
good. As the mesh size is refined, the multi-domain GDQ results will
converge to a grid-independent solution. It can be observed from Ta-
ble 6 that for the TE modes, the present results agree well with the
results of SIE [2] and FD-CGM [3]. For the TM modes, the present
results also agree well with the results of SIE [2]. However, there
are some significant discrepancies between the present results and the
results of FD-CGM [3] for the TM modes. It can be seen from the ta-
ble that calculated cutoff wavenumbers of the TM4 , TM5 and TM6

between the two results are quite different. It was found that the cut-
off wavenumber of the TM4 mode in the FD-CGM solution is close
to the cutoff wavenumber of the TM6 , or TM7 mode in the multi-
domain GDQ solution, and the cutoff wavenumber of the TM5 mode
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Figure 7. Configuration of a vaned rectangular waveguide and distri-
bution of subdomains.

Table 5. Cutoff wavenumbers of a coaxial rectangular waveguide.
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Table 6. Cutoff wavenumbers of a vaned rectangular waveguide.

computed by FD-CGM is close to the cutoff wavenumber of the TM8

or TM9 mode computed by the multi-domain GDQ approach. Fur-
thermore, the calculated cutoff wavenumber of the TM6 mode by FD-
CGM is close to the calculated cutoff wavenumber of the TM10 mode
by multi-domain GDQ approach. From this comparison, it seems that
the cutoff wavenumbers of some TM modes are lost in the FD-CGM
computation. From the convergence trend of multi-domain GDQ re-
sults shown in Table 6, it can be seen that accurate GDQ results can
be obtained by using a mesh size of 11 × 11 . And for this case, the
required computation time on LEONIS is just 7 seconds.
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5. CONCLUSIONS

It is demonstrated in this paper that the multi-domain GDQ approach
is very efficient for the analysis of various hollow conducting waveguides
with rectangular boundaries. The present approach combines the high
efficiency of the GDQ method with the flexibility of the multi-domain
technique. For the analysis of double-ridged, L -shaped, single-ridged,
coaxial rectangular, and vaned rectangular waveguides, it is shown that
very accurate cutoff wavenumbers can be computed by multi-domain
GDQ approach using very small mesh size in each subdomain. As
a result, the required computation time is tiny. As the mesh size is
refined, the multi-domain GDQ results will be converged to a grid-
independent solution. The present approach has a potential for the
analysis of complex waveguide.
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