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1. INTRODUCTION

T-junctions in rectangular waveguides play a very important role in
the design of microwave circuits, such as multiplexers, power dividers,
directional couplers, filters, and phase shifters in modern communi-
cation systems [1–4]. Since the modeling of T-junctions is a classical
problem, a variety of purely numerical techniques or analytical and nu-
merical methods have been developed during the past decade. Among
them, the mode-matching method is a typical one of analytical and
numerical approaches.

A wide range of waveguide junctions has a configuration in which
several uniform waveguide sections are connected through a cavity re-
gion. The mode-matching method uses the expansions of the fields in
the waveguide sections in terms of their normal modes. The expanded
fields are matched to those of the cavity region to obtain the modal
scattering matrix of the discontinuity. This requires a resonant mode
expansion of the cavity fields [4, 5] or the use of dyadic Green’s func-
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tion in the cavity region [6]. In order to avoid such a sophisticated field
analysis of the cavity, various techniques [1, 2, 7, 8] based on equiv-
alent circuit concepts have been incorporated in the mode-matching
procedure. The cavity problem with multiapertures is reduced [7] to a
superposition of simpler cavity problems by subsequently shorting all
apertures but one, to which the field expansions by the normal modes
can be applied. This principle has been used to analyze asymmetric
series E-plane T-junctions [1] and the magic T-junction [2].

A mode-matching method [3] similar to [7] has been devised to ob-
tain the generalized admittance matrix in closed form for E-/H-plane
three- and four-port junctions. Although the method provides an ac-
curate full-wave analysis for rectangular waveguide junctions, it needs
a larger number of modes with the optimal number ratio for TE and
TM modes in each waveguide port.

In this paper, we present the mode-matching method combined with
the Fourier transform technique for analyzing rigorously E-/H-plane
multiport junctions in rectangular waveguides. The method has been
recently applied [10] to the analysis of E-plane T-junction, H-plane T-
junction, and right-angle corner bend. We discuss here its extension
to the problem of E-/H-plane cross junctions. In this approach, the
multiport junctions are treated as a problem of rectangular apertures
located on the E-/H-planes of a main waveguide. The electric and
magnetic fields in the main waveguide expressed in terms of Fourier
integrals are matched on the apertures to those of arm waveguides
expanded in terms of normal modes. The mode-matching procedure
is performed in the Fourier transformed domain. This yields a system
of linear equations in closed form which relates the modal expansion
coefficients in the arm waveguides to the field of initial excitation. The
main advantage of the method is that the scattering parameters are
calculated at one time by solving matrix equations of relatively small
dimensions without the relative convergence problem.

The proposed method is applied to the analyses of the Magic-T junc-
tion and an asymmetric E-/H-plane three-port junction. It is shown
that the convergence of the numerical solutions is very fast. The re-
sults are compared with available numerical and experimental data
[2,3]. The good agreement between them confirms the validity of the
present method.
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2. THEORY

The configuration of an E-/H-plane four-port junction is shown
schematically in Figure 1, which consists of three rectangular waveg-
uides. For convenience, the waveguide I extending from the port 4 to
the port 1 along the z axis is referred to as the main waveguide, and
the waveguides II and III comprising the ports 2 and 3, respectively,
are referred to the arm waveguides. The cross sectional dimensions
of the waveguides I, II and III are 2a × 2b , 2a × 2t and 2w × 2b ,
respectively. We assume that the TE10 mode expressed by the longi-
tudinal section TMx waves is incident from the right side end of the
main waveguide I. When the left side end of the main waveguide I is
short-circuited at z = 0, the four-port junction is reduced to an E-/H-
plane three-port junction. To treat the problems of the four-port and
three-port junctions by the same formulation, we express the electric
Hertzian vector of the incident field as follows:

Π e
in =

x̂

k2
0

sin a1(y + a)
[
ejβ0z + Γe−jβ0z

]
(1)

where a1 = π/(2a) , β0 =
√

k2
0 − a2

1 , k0 = ω
√
ε0µ0 is the wavenumber

of free space, Γ = 0 for the original four-port junction, and Γ = −1 for
the modified three-port junction. The first term in the right-hand side
of (1) denotes the original incident wave with a unit amplitude, and the
second term with Γ = −1 gives the reflected wave caused by the short-
circuited conductor at z = 0 . The scattered fields into arm waveguides
II and III are expanded using the normal modes of (TEy, TMy) and
(TEx, TMx) of each waveguide, respectively, as follows:

Πe
II =

ŷ

k2
0

∞∑
m=0

∞∑
n=1

Amne
−jkmn(x−b) cos am(y + a) sin tn(z − d + t)

(2)

Πh
II =

ŷ

k2
0Z0

∞∑
m=1

∞∑
n=0

Bmne
−jkmn(x−b) sin am(y + a) cos tn(z − d + t)

(3)

Πe
III =

x̂

k2
0

∞∑
m=1

∞∑
n=0

Cmne
−jgmn(y−a) sinwm(z − c + w) cos bn(x + b)

(4)
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Figure 1. (a) Schematic of an E-/H-plane four-port junction and its
cross-sectional views (b) in the plane x = b and (c) in the plane y = a.

Πh
III =

x̂

k2
0Z0

∞∑
m=0

∞∑
n=1

Dmne
−jgmn(y−a) coswm(z − c + w) cos bn(x + b)

(5)

where am = mπ/(2a) , wm = mπ/(2w) , bn = nπ/(2b) , tn = nπ/(2t) ,

kmn =
√

k2
0 − a2

m − t
2
n , gmn =

√
k2

0 − w2
m − b

2
n, Z0 =

√
µ0/ε0 is the

intrinsic impedance of free space, and Amn, Bmn, Cmn and Dmn are
unknown expansion coefficients of the transmitted waves.

The Fourier transform technique is used to represent the scattered
fields in the main waveguide I. The technique can be directly applied
to the problem of the four-port junction with the main waveguide of
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an infinite extent in the z direction. For the problem of the three-
port junction with the short-circuited conductor at z = 0 , we intro-
duce an image waveguide structure [10] in z < 0 and transform the
semi-infinite waveguide I into an infinite uniform waveguide. Using a
similar analytical procedure as described in [10], the electric and mag-
netic Hertzian vectors representing the scattered waves in the main
waveguide I are expressed by the Fourier integrals as

Πe
I =

∞∑
ν=0

1
2πk2

0

∫ ∞
−∞

{
x̂Ae

ν(ζ) cos bν(x + b) sin ην(y + a)

+ ŷBe
ν(ζ) sin ξν(x + b) cos aν(y + a)

}
e−jζzdζ (6)

Πh
I =

∞∑
ν=0

1
2πk2

0Z0

∫ ∞
−∞

{
x̂Ah

ν(ζ) sin bν(x + b)

+ ŷBh
ν (ζ) cos ξν(x + b) sin aν(y + a)

}
e−jζzdζ (7)

where ην =
√

k2
0 − b

2
ν − ζ2, ξν =

√
k2

0 − a2
ν − ζ2 , and an infinitesi-

mal small loss has been assumed in the wavenumber k0 of free space
which is finally reduced to zero. In (6) and (7), Ae

ν(ζ) and Ah
ν(ζ)

represent unknown spectral functions for the scattered fields produced
by the discontinuity on the E-plane, whereas Be

ν(ζ) and Bh
ν (ζ) repre-

sent those by the discontinuity on the H-plane. Note that the electric
fields derived from (6) and (7) satisfy the boundary conditions on the
conducting walls at x = −b and y = −a.

The tangential components of electric and magnetic fields derived
from (1)–(7) should be continuous across the boundary planes x = b
and y = a . Taking into account the relations of symmetry [10] of the
fields in the original and image waveguides, these boundary conditions
may be expressed as follows:

EI,y(b, y, z) =

{
EII,y(b, y, z) |y| < a, |z − d| < t
ΓEII,y(b, y,−z) |y| < a, |z + d| < t
0 otherwise

(8)

EI,z(b, y, z) =

{
EII,z(b, y, z) |y| < a, |z − d| < t
−ΓEII,z(b, y,−z) |y| < a, |z + d| < t
0 otherwise

(9)

EI,x(x, a, z) =

{
EIII,x(x, a, z) |x| < b, |z − c| < w
ΓEIII,x(x, a,−z) |x| < b, |z + c| < w
0 otherwise

(10)
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EI,z(x, a, z) =

{
EIII,z(x, a, z) |x| < b, |z − c| < w
−ΓEIII,z(x, a,−z) |x| < b, |z + c| < w
0 otherwise

(11)

HII,y(b, y, z) = HI,y(b, y, z) + Hin,y(b, y, z) |y| < a, |z − d| < t

(12)
HII,z(b, y, z) = HI,z(b, y, z) + Hin,z(b, y, z) |y| < a, |z − d| < t

(13)
HIII,x(x, a, z) = HI,x(x, a, z) + Hin,x(x, a, z) |x| < b, |z − d| < w

(14)
HIII,z(x, a, z) = HI,z(x, a, z) + Hin,z(x, a, z) |x| < b, |z − d| < w

(15)

where Hin,x to Hin,z represent the components of magnetic field of
the incident wave deduced from (1). The boundary conditions for the
electric fields are first applied. From (6) and (2), the y-components of
the electric fields on the plane x = b are derived as follows:

EI,y(b, y, z)

=
∞∑
ν=0

1
2πk2

0

∫ ∞
−∞

Be
ν(ζ)

k2
0 − a2

ν

k2
0

sin(2bξν) cos aν(y + a)e−jζzdζ

(16)

EII,y(b, y, z) =
∞∑
m=0

∞∑
n=1

Amn
k2

0 − a2
m

k2
0

cos am(y + a) sin tn(z − d + t).

(17)

Equations (16) and (17) are substituted into the boundary condition
(8). Then (8) is integrated from y = −a to y = a after multiplying
both sides by the trigonometric functions cos aµ(y + a) , where µ is
nonnegative integer. The Fourier transform of the resulting expression
is calculated with respect to z- coordinate. This leads to an equation
which relates the unknown spectral function Be

µ(ζ) to the expansion
coefficient Aµn as

Be
µ(ζ) =

∞∑
n=1

Aµn
tnΘn(d, t, ζ)

sin(2ξµb)
(18)
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where

Θn(d, t, ζ) = Un(d, t, ζ) + ΓUn(d, t,−ζ) (19)

Un(d, t, ζ) =
ejζd

[
(−1)nejζt − e−jζt

]
ζ2 − t

2
n

. (20)

The z-component of electric fields derived from (2), (3),(6) and (7) are
substituted into the boundary condition (9), and the similar procedure
described above is applied to obtain the following relation:

Bh
µ(ζ) =

∞∑
n=0

Bµn
kµnζΘn(d, t, ζ)
ξµ sin(2ξµb)

(21)

The boundary conditions (10) and (11) are applied in a similar way.
The x- and z-components of the electric fields derived from (4)–(7)
are substituted into (10) and (11), respectively. For this case, the
trigonometric functions cos bµ(x+b) are multiplied, and (10) and (11)
are integrated from x = −b to x = b . The Fourier transforms of the
resulting expressions lead to the equations which relate the spectral
functions Ae

µ(ζ) and Ah
µ(ζ) to the expansion coefficients Cmµ and

Dmµ , respectively, as follows:

Ae
µ(ζ) =

∞∑
m=1

Cmµ
wmΘm(c, w, ζ)

sin(2ηµa)
(22)

Ah
µ(ζ) =

∞∑
m=0

Dmµ
gmµζΘm(c, w, ζ)

ηµ sin(2ηµa)
. (23)

Next, the boundary conditions (12)–(15) for the magnetic fields are
applied. From (1)–(7), the y-components of the magnetic fields on the
plane x = b are given by

HI,y(b, y, z)

=
∞∑
ν=0

(−1)ν

2πZ0

∫ ∞
−∞

[
ζ

k0
Ae
ν(ζ)−

bνην
k2

0

Ah
ν(ζ)

]
sin ην(y + a)e−jζzdζ

+
∞∑
ν=0

1
2πZ0

∫ ∞
−∞

k2
0 − ζ2

k2
0

Bh
ν (ζ) cos(2bξν) sin aν(y + a)e−jζzdζ

(24)
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Hin,y(b, y, z) = − β0

Z0k0
sin a1(y + a)

[
ejβ0z − Γe−jβ0z

]
(25)

HII,y(b, y, z) =
∞∑
m=1

∞∑
n=1

Bmn
k2

0 − a2
m

Z0k2
0

sin am(y + a) cos tn(z − d + t).

(26)

Equations (24)–(26) are substituted into the boundary condition (12),
and the unknown spectral functions Ae

ν(ζ) , Ah
ν(ζ) , and Bh

ν (ζ) are
replaced by the series of the modal expansion coefficients given by
(18)–(23). Then (12) is integrated over |y| ≤ a and |z − d| ≤ t
after multiplying both sides by the trigonometric functions sin ap(y +
a) cos tq(z − d + t) , where p and q are nonnegative integers. This
leads to a set of linear equations for the expansion coefficients Bmn ,
Cmn , and Dmn as follows:

k2
0 − a2

p

k2
0

Bpqt(1 + δq0)

= −
j(k2

0 − a2
p)

k2
0

∞∑
n=0

kpnBpnI1 −
∞∑
m=1

∞∑
n=0

j(−1)p+napwm
a

CmnI2

+
∞∑
m=1

∞∑
n=0

j(−1)p+napbngmn
k0a

DmnI2 +
jβ2

0δp1
k0

Θq(d, t, β0)

(27)
for p = 1, 2, · · · , q = 0, 1, 2, · · ·

with

I1 =
∫ ∞
−∞

ζ2Θn(d, t, ζ)Uq(d, t,−ζ)
2πk0ξp tan(2ξpb)

dζ (28)

I2 =
∫ ∞
−∞

ζ2Θm(c, w, ζ)Uq(d, t,−ζ)
2πk0(η2

n − a2
p)

dζ (29)

where δmn denotes the Kronecker’s delta. The integrals in (28) and
(29) are evaluated in closed form by a simple residue-calculus (See
Appendix). Applying the same procedure as described above to (13),
we have another set of linear equations:
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[
kpq
k0

Apq −
aptq
k2

0

Bpq

]
t(1 + δp0)

= (1 + δp0)
∞∑
n=1

jtntqApnI3 − j(1 + δp0)
∞∑
n=0

aptqkpn
k0

BpnI1

−
∞∑
m=1

∞∑
n=0

j(−1)n+pwmtq
a

CmnI4 −
∞∑
m=1

∞∑
n=0

j(−1)n+p gmnbntq
k0a

DmnI2

− ja1β0δp1
k0

Θq(d, t, β0) (30)

for p = 0, 1, 2, · · · , q = 1, 2, · · ·

where

I3 =
∫ ∞
−∞

ξpΘn(d, t, ζ)Uq(d, t,−ζ)
2πk0 tan(2ξpb)

dζ (31)

I4 =
∫ ∞
−∞

η2
nΘm(c, w, ζ)Uq(d, t,−ζ)

2πk0(η2
n − a2

p)
dζ. (32)

Finally we apply the boundary conditions (14) and (15). The x- and z-
components of the magnetic fields on the plane y = a derived from (1)–
(7) are substituted into (14) and (15). In this case, (14) and (15) are
multiplied by the trigonometric functions sinwp(z−c+w) cos bq(x+b)
and integrated over |x| ≤ b and |z− c| ≤ w . Then we have other two
sets of equations for the expansion coefficients as follows:

k2
0 − b

2
q

k2
0

wb(1 + δp0)Dpq =
∞∑
m=0

∞∑
n=1

j(−1)m+qbqtnAmnJ2

+
∞∑
m=1

∞∑
n=0

j(−1)m+q kmnambq
k0

BmnJ2 − jb
∞∑
m=0

gmn(k2
0 − b

2
q)

k0
DmnJ1

(33)
for p = 0, 1, 2, · · · , q = 1, 2, · · ·
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[
wpbq
k2

0

Dpq +
gpq
k0

Cpq

]
wb(1 + δq0) = −

∞∑
m=0

∞∑
n=0

j(−1)m+qtnwpAmnJ4

+
∞∑
m=1

∞∑
n=0

j(−1)m+q kmnanwp
k0

BmnJ2 + b(1 + δq0)
∞∑
m=1

jwmwpCmqJ3

+ b(1 + δq0)
∞∑
m=0

j
gmnbqwp

k0
DmqJ1 −

2jba1wpδq0
k0

Θp(c, w, β0)

(34)
for p = 1, 2, · · · , q = 0, 1, 2, · · ·

with

J1 =
∫ ∞
−∞

ζ2Θm(c, w, ζ)Up(c, w,−ζ)
2πk0ηq tan(2ηqa)

dζ (35)

J2 =
∫ ∞
−∞

ζ2Θn(d, t, ζ)Up(c, w,−ζ)
2πk0(ξ2

m − b
2
q)

dζ (36)

J3 =
∫ ∞
−∞

ηqΘm(c, w, ζ)Up(c, w,−ζ)
2πk0 tan(2ηqa)

dζ (37)

J4 =
∫ ∞
−∞

ξ2
mΘn(d, t, ζ)Up(c, w,−ζ)

2πk0(ξ2
m − b

2
q)

dζ (38)

where J1 to J4 denote the integrals characterizing the junction in
H-plane and are the counterpart of I1 to I4 defined by (28), (29),
(31) and (32) for the junction in E-plane. The integrals in (35)–(38)
are easily evaluated in closed form by a residue-calculus, though the
details have been omitted.

Equations (27), (30), (33) and (34) are solved to obtain the un-
known expansion coefficients Amn to Dmn for the scattered waves
into waveguide II and III , after truncating the modal expansion up
to m = n = M . The results are used in (18) and (21)–(23) to deter-
mine the unknown spectral functions Be

µ(ζ) to Ah
µ(ζ) . Using (18) and

(21)–(23), the Fourier integrals in (6) and (7) are evaluated in closed
form by a simple residue-calculus. The parameter Γ discriminating
between the four-port junction and the three-port junction is included
in the function Θn(d, t, ζ) defined by (19). We may take Γ = 0 for
the four-port junction and Γ = −1 for the three-port junction with
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a short-circuited conductor at z = 0. When the junction is excited
by TE10 mode incident from waveguide I, the scattering parameters
S11, S21, S31 , and S41 are calculated in terms of expansion coefficients
rooted by (27), (30), (33) and (34) as follows:

S11 =
M∑
m=1

−ja1wmΘm(c, w, β0)
2aβ0

Cm0 +
M∑
n=0

jk1nβ0Θn(d, t, β0)
4bk0

B1n

(39)

S21 =
√

t/bB10 (40)

S31 =

√
a(k2

0 − w2
1)

3
2

wβ0k2
0

C10 (41)

S41 =
M∑
m=1

−ja1wmUm(c, w,−β0)
2aβ0

Cm0 −
M∑
n=1

jk1nβ0Un(d, t,−β0)
4bk0

B1n

only for Γ = 0 (42)

The other elements of scattering matrix can be obtained by changing
the port of initial excitation.

3. NUMERICAL RESULTS

The proposed Fourier transform technique has been applied to the
analysis of a four-port E-/H-plane junction and a three-port E-/H-
plane junction. The results have been compared with available nu-
merical and experimental data. The scattering parameters were cal-
culated from (39)–(42). The modal expansions of scattered fields in
the arm waveguides II and III were truncated at m = n = M . Then
(27), (30), (33), and (34) are rendered into a matrix equation with
4M(M +1) unknowns. We first consider the Magic-T which is a junc-
tion of four identical waveguides comprising an E-/H-plane T-junction.
The values of geometrical parameters in Figure 1 were chosen to be
2a = 2w = 15.799 mm and 2b = 2t = d = c = 7.899 mm . Table I
shows the convergence of the scattering parameters for f = 16.5 GHz
and the CPU time of computation versus the truncation number M
of modal expansions in waveguides II and III . The numerical compu-
tation was run on Sun Ultra 1 (UltraSPARC 143 MHz) workstation.
We can see that a very good convergence is achieved for all scattering
parameters as the number of modes increases. When the mode number
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Table I. Convergence of the magnitude and phase of scattering pa-
rameters at f = 16.5 GHz versus the truncation number M of modal
expansion for a Magic T-junction with 2a = 2w = 15.799 mm and
2b = 2t = c = d = 7.899 mm.

is truncated at M = 4, the relative errors of the solutions are about
2% for |S11| and less than 1% for |S21|, |S31|, and |S41|. It is worth
noting that the results given in Table I satisfy accurately the energy
conservation relation

∑4
i=1 |Si1|2 = 1 for any truncation of modal ex-

pansion. Figure 2 illustrates |S11| , |S21|, |S31|, and |S41| as functions
of frequency for different numbers of modes used in the analysis. The
scattering parameters converge very fast and no significant difference
is observed between the results for M = 4 and for M = 6. Note that
the total number of modes used is 80 when M = 4. The same struc-
ture has been analyzed [3] by using the generalized admittance matrix
approach. For the sake of comparison, the numerical results of |S11|
given in [3] are reproduced in Figure 3. The curves indicated by the
labels a, b, c, d, e, and f were obtained by using 19, 24, 28, 38,
45, and 60 modes in each of four ports, respectively. It follows that the
generalized admittance matrix approach requires the total 180 modes
at least to obtain the stable and convergent results. Comparing Figure
2(a) with Figure 3, it is seen that the total mode numbers used in
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Figure 2a

Figure 2b
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Figure 2c

Figure 2d

Figure 2. Magnitudes of the scattering parameters for a Magic-T
junction with 2a = 2w = 15.799 mm and 2b = 2t = c = d =
7.899 mm for the different truncation number M of modal expansion;
(a) |S11|, (b) |S21|, (c) |S31|, (d) |S41|. The total number of modes
used in the analysis is 4M(M + 1) for each of M.
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Figure 3. Scattering parameter |S11| calculated using the generalized
admittance matrix approach for the same Magic-T junction as shown in
Figure 2. The results have been reproduced from Fig. 12(a) of reference
[3]. The number of modes used in each of four ports are 19, 24, 28, 38,
45, and 60 for the curves a, b, c, d, e, and f, respectively.

the present method is far less than that of the generalized admittance
matrix approach to obtain the same accuracy. Another important dif-
ference is in the relative convergence problem. For the generalized
admittance matrix approach, there exists an optimal ratio [3] between
the number of TE and TM modes used to achieve a faster and stable
convergence. We have never observed such a situation for the present
method. Using the Fourier integral representation of fields in the main
waveguide I, the modal expansion coefficients in two arm-waveguides
II and III have been directly related through the algebraic equations
(27), (30), (33), and (34). This reduces the number of unknowns to be
determined and removes the problem of relative convergence.

Figure 4 shows the numerical results of the magnitudes of the scat-
tering parameters for the Magic-T with 2a = 2w = 22.86 mm, 2b =
2t = 10.16 mm, and c = d = 11.43 mm. The results are compared
with the measured data [2]. For the analysis of |S22| and |S33| in
Figure 4(b), we have changed the port of initial excitation. It is seen
that the present results agree very well with the measured one.

We consider next an asymmetric E-/H-plane three-port junction.
The magnitudes of scattering parameters of the junction with 2a =
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Figure 4. Magnitude of the scattering parameters for a Magic-T
junction with 2a = 2w = 22.86 mm, 2b = 2t = 10.16 mm, and
c = d = 11.43 mm.
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Figure 5. Magnitude of the scattering parameters for an asymmetric
E-/H-plane three-port junction with 2a = 2w = 15.799 mm, 2b =
2t = 2d = c = 7.899 mm. The left side end of waveguide I in Figure 1
is short-circuited at z = 0.

2w = 15.799 mm and 2b = 2t = 2d = c = 7.899 mm are plotted in
Figure 5 for the excitation of each of three ports, and are compared
with those [3] obtained by the generalized admittance matrix approach
using 28 modes in each of ports. We note that both results are in good
agreement. A small discrepancy is observed in |S11| and |S21|, since
the number of modes used in [3] was not sufficient for the accurate
computation.

4. CONCLUSION

A rigorous and efficient technique for the analysis of a rectangular
waveguide E-/H-plane junction has been presented. The approach
is a combination of the Fourier transform technique and the mode-
matching method. By introducing an idea of image waveguide, the
problem of the junction was transformed into a problem of rectangular
apertures located on the E-/H-planes of the main waveguide of infinite
extent. When the Fourier transform technique is applied to the fields
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of the main waveguide, a set of linear equations relating the amplitudes
of the normal mode expansion in each of arm waveguides are obtained
in analytically closed form. This technique reduces significantly the
number of unknowns to be determined and removes the problem of
relative convergence. The scattering parameters can be calculated by
solving a matrix equation of relatively small dimension. The numerical
results of the scattering parameters calculated for the Magic-T junc-
tion and an asymmetric E-/H-plane three-port junction were in a very
good agreement with the available numerical and experimental data.

APPENDIX

Using the residue-calculus, the integral in (28) is evaluated as follows:

I1 = − t(1 + δn0)δnq
k0kpn tan(2kpnb)

− j

∞∑
ν=0

ζpν
[
1− (−1)n+qe−j2ζpνt

]
Qqn

k0b(1 + δν0)(ζ2
pν − t

2
n)(ζ2

pν − t
2
q)

+ j
∞∑
ν=0

Γ
ζpν

[
(−1)n+qe−j2ζpνt + e2jζpνt − (−1)n − (−1)q

]
e−j2ζpνd

2bk0(1 + δν0)(ζ2
pν − t

2
n)(ζ2

pν − t
2
q)

(A1)
with

Qqn =

{
1 q + n

�
= even

0 q + n
�
= odd

(A2)

where kpn =
√

k2
0 − a2

p − b
2
n and ζpν =

√
k2

0 − a2
p − b

2
ν . The first term

in (A1) is calculated from the residues at ζ = ±tn, the second term is
from the residues at ζ = ±ζpν which satisfy tan(2ξpb) = 0, and the
third term is from the residues at ζ = ζpν . It is easy to show that the
poles of the integrand in (28) located at ζ = ±tn and at ζ = −ζpν
have no contribution to the result of the integration for a finite value
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of Γ . Similarly, the integral in (29) is evaluated as follows:

I =

(
jζpne

−jζpnw [
(−1)qejζpnt − e−jζpnt

]
×[

(−1)me−jζpn(c−d) + (−1)qejζpn(c−d)])
2k0(ζ2

pn − w2
m)(ζ2

pn − t
2
q)

− jΓ
e−jζpn(c+d)ζpn

[
(−1)me−jζpnw − ejζpnw

] [
(−1)qe−jζpnt − ejζpnt

]
2k0(ζ2

pn − w2
m)(ζ2

pn − t
2
q)

−

(
jwme−jwmw

[
(−1)qejwmt − e−jwmt

]
×[

(−1)qejwm(c−d) + (−1)me−jwm(c−d)])
2k0(g2

mn − a2
p)(w2

m − t
2
q)

(A3)

where ζpn =
√

k2
0 − a2

p − b
2
n and gmn =

√
k2

0 − w2
m − b

2
n. The first

and second terms in (A3) are calculated from the residues at ζ = ±ζpn
and the third term is from the residues at ζ = ±wm. The poles of the
integrand in (29) at ζ = ±tn has no contribution to the result of the
integration. The integrals in I3, I4, and J1 to J4 defined by (31),
(32), and (35) to (38) are evaluated in closed form using the similar
residue-calculus.
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