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1. INTRODUCTION

It is well known that the high frequency ray solution of the backscat-
tered field from a coated conducting sphere which can be obtained from
an asymptotic evaluation of the rigorous eigenfunction series solution
consists of the reflected field and the diffracted field. The diffracted
field from a convex surface such as the cylinder or the sphere is entirely
associated with the creeping wave which propagates along the geodesic
path on the curved surface. It is shown from the asymptotic evaluation
of the creeping wave diffraction via the residue solution of the problem
that there exists infinite number of creeping wave modes.

For a perfectly conducting convex surface, the first creeping wave
mode is always dominant over all other modes and therefore only the
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first mode is adequate in practice. This is because the first mode has
a lower attenuation constant and a larger diffraction coefficient than
other higher modes. However this is not always true when the con-
ducting surface is coated with a lossless dielectric material. For the
coated cylinder, the dominance of the creeping wave mode changes as
the thickness of the coating changes [1–3]. Thus, for some thickness
of coating, the second or even higher mode is dominant over the first
mode. The characteristics of the creeping wave on a conducting cylin-
der and a coated conducting cylinder were also investigated by Elliott
[4], Paknys [5], Pearson [6], and Albertsen [7], Krasnojen [8].

For the case of a coated sphere, the diffracted field in the backscat-
tering direction can not be cast in the format of the ordinary ray
solution such as GTD (Geometrical Theory of Diffraction) since the
backscattering is on the caustic line where infinite rays merge. Nev-
ertheless the diffracted field is entirely associated with the creeping
wave and therefore has a similar property as that of the diffracted field
from a coated cylinder. The rigorous numerical calculations of RCS of a
conducting sphere with a thin lossless coating were carried out by Rhe-
instein [9]. The high frequency ray solution of EM bistatic scattering
from a coated conducting sphere was given by Kim [12]. It is observed
from numerical results given by Rheinstein [9] that groups of resonance-
like peaks occur as the size parameter of the coated sphere increases.
Even though he obtained these resonance effects from the eigenfunc-
tion series solution, the effects can be explained by the changes of the
attenuation coefficient of the surface wave. In this paper the resonance
effects are analyzed in terms of the creeping wave diffraction obtained
from the asymptotic solution of the backscattered field of a coated
sphere and the groups of resonance peaks are explained as the change
in the dominance of the creeping wave modes.

2. THE ASYMPTOTIC RAY SOLUTION OF THE
CREEPING WAVE

Let us consider a coated conducting sphere illuminated by an incident
plane wave. As illustrated in Fig. 1, the coated sphere with outer
radius b and inner radius a is located at the coordinate origin. On
the surface of the inner conducting sphere, the composite material with
permittivity (ε1 = εrεo) and permeability (µ1 = µrµo) is coated with
thickness d(= b−a) . The x̂-polarized and ẑ-travelling incident plane
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Figure 1. Geometry of the coated sphere.

wave can be expressed as

Ēi = x̂Eoe
−jkoz = x̂Eoe

−jkor cos θ (1)

An ejωt time dependence is assumed and suppressed in the expression
of field. The eigenfunction series solution for the scattered field is given
in [10]. Based on the Watson’s transformation techniques [11, 12], the
eigenfunction series solution for the scattered field can be transformed
into a contour integral. This contour integral may then be separated
into two integrals. The asymptotic evaluation of the first line inte-
gral results in the reflected field from the specular point on the coated
sphere and the Cauchy residue evaluation of the second integral repre-
sents the diffracted field of the creeping wave. The asymptotic solution
of the creeping wave diffraction for the far-zone backscattered field is
given by [12, 13]

Ec.w.θ = ETE, c.w.θ + ETM, c.w.
θ (2)

Ec.w.φ = ETE, c.w.φ + ETM, c.w.
φ (3)
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(2)
ν (k1a)− Ĥ(2)
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The superscripts s and h in (4)–(11) denote the TE and TM case,
respectively and Z1 and k1 represent the intrinsic impedance and
the wave number of the coating material (i.e., Z1 =

√
µ1/ε1 , k1 =

ω
√
ε1µ1) . The subscript m denotes the mode of the creeping wave and

the notation “∞” in (4)–(7) denotes that in actual calculation only
one or two dominant modes are required to obtain an accurate result.
Ĥ

(1),(2)
ν and Ĥ

(1)′,(2)′
ν are the alternative spherical Hankel function

and its derivative with respect to the argument, respectively [14].
Fig. 2 shows the comparison between RCS from the asymptotic

ray solution and that from the eigenfunction series solution as the
radius of the inner conducting sphere increases with the fixed thickness
of coating. It is observed that two results show excellent agreement
with each other when the inner radius of the sphere is larger than
1λo . It should be noted that the asymptotic solution is valid for large
scatterers. Thus, the investigation here is confined to a coated sphere
whose radius is large in terms of the wavelength i.e., a = 3λo .
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Figure 2. RCS from a coated sphere with the coating material εr =
(2.5,−0.2) and µr = (1.6,−0.1) and the thickness of coating d =
0.05λo .

3. DOMINANCE OF CREEPING WAVE MODES

It is well known that for a planar dielectric slab on a ground plane
there exists a cutoff thickness below which a surface wave mode can not
exist and the strength of each surface mode changes with the thickness
of the dielectric slab [15]. Meanwhile the coated sphere supports an
infinite number of creeping wave modes regardless of the thickness of
coating. For a bare conducting sphere the contribution from the first
creeping wave mode to the total diffracted field is always dominant over
other higher modes. However for the coated sphere the dominance of
creeping wave mode changes with the thickness of coating. In the
actual calculation of the diffracted field, one or two dominant modes
are enough to obtain a numerically accurate result. It is important
therefore to determine which mode is dominant over the other modes.

3.1 Roots of the Transcendental Equation

As discussed in [11–13], the eigenfunction series solution of a back-
scattered field from a coated sphere can be transformed into a contour
integral. The evaluation of the contour integral using Cauchy’s residue
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theorem leads to another series expression which converges much more
quickly than the eigenfunction series solution. Before the evaluation
of the contour integral, the poles of the integrand must be found. The
TE poles (νsm) and the TM poles (νhm) are determined from the roots
of the transcendental equation given as

[
Ĥ(2)
ν (kob)−As,hν Ĥ(2)

ν (kob)
]
ν=νs,hm

= 0 (12)

where the subscript m in ν denotes the mode of the creeping wave
and As,hν is in (10) and (11). The roots of the transcendental equation
can be numerically searched via the Newton-Raphson method [12]. For
a more details regarding the roots of the transcendental equation, the
reader is referred to [1, 5–7, 12].

3.2 The Attenuation and the Propagation Constant

As the creeping wave travels along the geodesic path on the coated
surface there exists the shift of its phase and the exponential decay of
its strength. The propagation constant determines the phase velocity
of the creeping wave and the attenuation constant represents the loss of
the electromagnetic energy on the surface of the sphere. From (4)–(7)
it is noted that

e−j(νm+ 1
2)π

1 + e−j2π(νm+ 1
2)

= e−j(νm+ 1
2)π

[
1 + j2e−j2πνm + . . .

]
≈ e−j(νm+ 1

2)π (13)

The physical significance of (13) is that the diffracted field is due to
the creeping wave which travels the shortest geodesic path on the sur-
face of the coated sphere whose angular range is π and the multiple
encirclements of the creeping waves. However since its strength decays
exponentially as the creeping wave propagates on the coated surface,
it is seldom necessary to include the multiple encirclements terms of
the creeping wave. Comparing the phase term of the asymptotic ray
solution of the creeping wave in (4)–(7) with that of the ordinary GTD
ray format of the diffracted field, it can be easily seen that

e−j(νm+ 1
2 )π = e

−j
[
νm+1

2
b

]
bπ

= e−αml1e−jβml1 (14)
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where

αm = −Im

[
νm + 1

2
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]
(15)

βm = Re

[
νm + 1

2

b

]
(16)

l1 = bπ (17)

b is the radius of the outer sphere and l1 is the length of travel of
the creeping wave on the surface of the coated sphere. αm and βm
denote the attenuation constant and the propagation constant of the
creeping wave mode, respectively.

3.3 The Diffraction Coefficient

As mentioned before the diffracted field in the direction of backscat-
tering is on the caustic line where infinite rays merge. Thus the asymp-
totic solution of the creeping wave diffraction can not be given in a ray
format as in an ordinary GTD ray format of creeping wave diffraction.
Nevertheless, Ds

m and Dh
m in (8) and (9) can be defined as the diffrac-

tion coefficients which are related to the attachment and the launching
effect of the creeping wave. As seen in (8) and (9), Ds,h

m are the func-
tions of the roots of the transcendental equation νs,hm , the inner radius
of the sphere a , the thickness of coating d , and the coating material
ε1 and µ1 . It is clear from (4)–(7) and (13)–(14) that the magnitude
of each mode of the creeping wave is determined by two factors: the
diffraction coefficient and the attenuation coefficient. The diffraction
coefficient is related to the amount of incident field attached to the
surface of the coated sphere and the field shed to the field point after
the creeping wave propagates along the great circle path on the coated
sphere. The attenuation constant αm determines the amount of field
decayed exponentially as the creeping wave propagates on the geodesic
path. Thus the contribution of each mode to the total diffracted field
depends on both the diffraction coefficient and the attenuation con-
stant of each mode for the given size parameters of the coated sphere
and the given coating material.
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4. NUMERICAL RESULTS

Fig. 3–6 show the attenuation constant and the diffraction coefficient
which were defined in the previous section. The relative permittivity
and permeability of the coating are εr = (2.56, 0.) and µr = (1., 0.) ,
respectively and the radius of the inner conducting sphere is 3λo .
Fig. 3 and 4 are the results for the TM case and Fig. 5 and 6 are for
the TE case.

Figure 3. The attenuation constant of the creeping wave modes (TM-
case) with εr = (2.56, 0.), µr = (1., 0.) and a = 3λo .

It is observed in Fig. 3 that the attenuation constant of the first
mode is smaller than other modes and becomes negligibly small after
the thickness of the coating exceeds 0.2λo . As the thickness increases
to 0.7λo , the attenuation constant of the second mode also becomes
negligibly small. It means that the first and the second mode of the
creeping wave can propagate on the surface of the coated sphere with-
out any attenuation practically when the thickness d is greater than
0.2λo and 0.7λo , respectively. In Fig. 4, the diffraction coefficient of
the first mode and the second mode are significant when the thickness
is less than 0.2λo and 0.7λo , respectively. As stated in the previous
section, the magnitude of the creeping wave depends on two factors:
the attenuation constant and the diffraction coefficient. Thus, it can be
shown that the first mode of the creeping wave is dominant over others
when the thickness is up to 0.2λo because the attenuation constant is
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Figure 4. The diffraction coefficient of the creeping wave modes (TM-
case) with εr = (2.56, 0.), µr = (1., 0.) and a = 3λo .

Figure 5. The attenuation constant of the creeping wave modes (TE-
case) with the coating material εr = (2.56, 0.), µr = (1., 0.) and a =
3λo .

smaller and the diffraction coefficient is larger than other modes. For
the range greater than d = 0.2λo , even the attenuation of the first
mode is negligibly small, the diffraction coefficient of the first mode
becomes smaller than that of the second mode and therefore, the con-
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Figure 6. The diffraction coefficient of the creeping wave modes (TE-
case) with εr = (2.56, 0.), µr = (1., 0.) and a = 3λo .

tribution of the first mode to the backscattered field is insignificant
when compared to that of the second mode. Thus, the second mode of
the creeping wave plays a more important role in the total backscat-
tered field for coating thickness of 0.4λo ∼ 0.8λo . It is expected that
if the coating thickness is increased further, the second mode of the
creeping wave disappears and the third or even higher modes can be
dominant. As shown in Fig. 5 and 6, the characteristics of the creeping
wave modes for TE case are quite similar to those for TM case.

Fig. 7 and 8 show the magnitude of each mode of the creeping wave
for the TM and TE case, respectively. For the TM case, the first mode
and the second mode of the creeping wave are very significant when
d = 0.12λo and d = 0.59λo , respectively. The other modes can be
ignored when d = 0. ∼ 0.8λo . For the TE case, the first mode of
the creeping wave is very significant when d = 0.28λo and the other
modes are negligible when d = 0. ∼ 0.8λo .

Fig. 9 shows the RCS from a coated sphere with εr = (2.56, 0.), µr =
(1., 0.) and a = 3λo . It is found that as the thickness of coating
is increased, the groups of resonances occur. The groups of reso-
nances are resulted from the interaction between the reflected field and
the creeping wave whose dominance depends on the thickness of the
coating.
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Figure 7. The magnitude of creeping wave modes from the attenuation
constant (Fig. 3) and the diffraction coefficient (Fig. 4): TM-case.
The first mode and the second mode of the creeping wave are very
significant when d = 0.12λo and d = 0.59λo , respectively. The other
modes can be ignored when d = 0. ∼ 0.8λo .

Figure 8. The magnitude of creeping wave modes from the attenuation
constant (Fig. 5) and the diffraction coefficient (Fig. 6): TE-case. The
first mode of the creeping wave is very significant when d = 0.28λo
and the other modes are negligible when d = 0. ∼ 0.8λo .
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Figure 9. RCS from a coated sphere with εr = (2.56, 0.), µr = (1., 0.)
and a = 3λo . It is found that as the thickness of coating is increased,
the groups of resonances are occur.

5. CONCLUSIONS

In this study, the dominance of creeping wave modes of the backscat-
tered field from a coated sphere is investigated. From the asymp-
totic evaluation of the eigenfunction series solution of the problem,
the backscattered field is decomposed into the reflected field and the
diffracted field. The diffracted field from the coated sphere is entirely
associated with the creeping wave on the surface of the coated sphere.
The magnitude of the each creeping wave depends on two factors; the
attenuation constant and the diffraction coefficient. The attenuation
constant determines the amount field decayed when the creeping wave
travels along the geodesic path on the coated sphere and the diffrac-
tion coefficient are related to the amount of the incident field attached
to the coated sphere and the field launched from the surface of the
coated sphere to the field point. It is found that as the thickness of
coating is increased, the groups of resonances occur. The groups of
resonances are resulted from the interaction between the reflected field
and the creeping wave whose dominance depends on the thickness of
the coating.
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