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1. INTRODUCTION

Many problems in electromagnetics involve scattering from arbitrar-
ily shaped, inhomogeneous and lossy bodies. These problems can be
divided into two groups, i.e., unbounded (or exterior) and bounded
(or interior) problems. Some methods, for example, the FEM, are
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suitable for the interior problems while such methods as the BEM
are suited for the exterior problems [1]. A hybrid method combin-
ing the advantages of the above-mentioned methods is able to solve
a more general class of problems [2–3]. The use of the FEM for the
interior problems results in sparse matrices. However, the use of the
conventional BEM for integral equations always results in full matri-
ces. For convolutional boundary the fast Fourier transform (FFT), in
conjunction with an iterative-solution approach, such as the conjugate-
gradient (CG) or biconjugate-gradient (BiCG) method, can be used to
efficiently evaluate the boundary integrals [2]. However, for many prac-
tical electromagnetic (EM) problems, for example, elongated structures
involved, there does not exist a completely convolutional boundary in-
tegral, making the FFT not effective.

Recently, wavelet transform method (WTM) has been widely used
for efficient solutions of EM integral equations because of its obvious
advantages over Fourier-based techniques [4–9]. More recently, the
authors presented a hybrid technique which combined the method of
moments (MoM), the FEM and the WTM for efficient solutions of EM
problems with arbitrarily inhomogeneous materials [10]. The equiva-
lence principle was used to divide the original problem into the interior
and exterior problems. The interior problem was efficiently solved by
the FEM while the exterior problem was handled by the MoM. The
WTM was used to speed the MoM solutions for the exterior problem.

In this paper, alternative hybrid method (called FEM/BEM/WTM
approach) is proposed. The hybrid technique uses the FEM to for-
mulate the fields within a fictitious boundary enclosing the consid-
ered structure and establish a relationship with those on the fictitious
boundary. The fields outside the fictitious boundary are solved by
the BEM involving an integral expression of the fields over the ficti-
tious boundary. A system is then derived by enforcing field continuity
across the boundary. To avoid solving the dense matrix equation from
the BEM, two fast-solving techniques based on the WTM are pre-
sented. The use of the proposed hybrid technique always results in
sparse moment matrices which can be efficiently solved by a sparse
solver. Uniting the advantages of the FEM, BEM and WTM, the pro-
posed hybrid technique can effectively handle unbounded problems in
which arbitrary complex inhomogeneities are involved.
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Figure 1. Scattering from a cylindrical scatterer of arbitrary shape.

2. FORMULATION

We consider the scattering from a cylindrical scatterer of arbitrary
cross section as shown in Fig. 1. The dielectric properties of the scat-
tering object are given as complex functions εr (r) and µr (r) . Assume
an electromagnetic wave is incident in the direction normal to the axis
of the cylinder, i.e., the z -axis. Both TM (E -polarization) and TE
(H -polarization) incident waves are considered, and eiωt time conven-
tion is assumed. Let the fictitious boundary be Γ enclosing the region
of inhomogeneous dielectric cylinder. The region within the fictitious
boundary Γ is the so-called interior region and referred to as region
Ωi , and the region outside the fictitious boundary Γ is the exterior
region and referred to as region Ω∞ .

2.1 Finite Element Analysis for the Interior Region

To formulate the fields in the region Ωi , we begin with the
Helmholtz equation
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u = 0, (x, y) ∈ Ωi (1)

where u = Ez , p = µr and q = εr for E -polarization, and u = Hz ,
p = εr and q = µr for H -polarization, respectively. k0 = ω

√
µ0ε0 is

the wavenumber in the free space. A traditional approach for solving
(1) is to consider the functional
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where Ψ = jk0Z0 (H× n̂) · ẑ for E -polarization, and Ψ = −jk0Y0

(E× n̂)·ẑ for H -polarization, respectively. It can be easily shown that
the solution to (1) can be obtained by solving an equivalent variational
equation via enforcing

δF (u) = 0 (3)

where δF (u) denotes the first-order variation of F about u . To
discretize the functional (2), the interior region Ωi is subdivided into
N small triangular or quadrilateral elements, and consequently, the
fictitious boundary Γ is broken into Ms short segments. On the
assumption that the field distribution within each element is linear, or
quadratic, or higher order function, the field of the e -th element can
be expressed as

ue (x, y) =
3n∑
i=1

N e
i (x, y)uei (4)

where N e
i (x, y) is the interpolation function, uei represents the nodal

field and n stands for the order of the interpolation function. For the
discretization of the line integral in (2), on the s -th segment of the
fictitious boundary Γ , the field can be expressed as

us (x, y) =
2m−1∑
i=1

N s
i (x, y)usi (5)

where N s
i (x, y) represents the shape function for the s -th segment, usi

denotes the nodal field on the fictitious boundary, and m defines the
order of the shape functions. Furthermore, assuming that the fictitious
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boundary Γ is smooth contour, the Ψ is well defined at each nodal
on Γ and can be expressed as

Ψs (x, y) =
2m−1∑
i=1

N s
i (x, y) Ψs

i (6)

Substituting (4)–(6) into (2) and applying the Galerkin’s procedure to
enforce (3), we can obtain a system of equations as follows:

Ku+ CΨ = 0 (7)

where u and Ψ are the column vectors to be solved, and the elements
in matrices K and C are given by
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dx dy, (8)

Csij =
∮

Γs
N s
i N

s
j dΓ (9)

2.2 Boundary Element Analysis for the Exterior Region

As we know, at the fictitious boundary the electric and magnetic
fields satisfy the continuity conditions as follows:

uin = uex,
1
p

∂uin
∂n

=
∂uex
∂n

on Γ (10)

which are realized by the following boundary integral equation

u (r) = uinc (r) +
∮

Γ
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where uinc (r) stands for the incident field and G0 denotes the two-
dimensional Green’s function in the free space. G0 is expressed in
term of the zeroth-order Hankel function of the second kind as follows:
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1
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(
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)
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Substituting (5) and (6) into the boundary integral equation (11) and
applying Galerkin’s procedure, we obtain the matrix equation as fol-
lows:

CTu = B + Pu+QΨ (13)

where T denotes the transpose of a vector, the matrix elements of C
are the same as those in (9), and the other matrix elements are given
by

P stij =
∮

Γs
N s
i (x, y)

[∮
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N t
j

(
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) ∂G0 (r, r′)
∂n′
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]
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Bs
i =

∫
Γs
N s
i u

incdΓ, (16)

where s , t = 1, 2, 3, ...,Ms . The combined system of (7) and (13) now
forms a complete system equation, i.e.,

AX = B0 (17)

where

A =
[
K C
P0 −Q

]
, X =

(
u
Ψ

)
, B0 =

(
φ
B

)
, (18)

where P0 = CT − P and φ is a M × 1 zero matrix. A is a square
matrix of order M + Ms , in which the sub-matrix K is a M ×M
square matrix; C is a M ×Ms rectangular matrix; P0 is a Ms ×M
rectangular matrix; Q is a Ms×Ms square matrix where M and Ms

denote the total node number and boundary node number respectively.
Both B and Ψ are the column vectors of Ms elements, and u is a
column vector of M elements.

To minimize the computation, the fictitious boundary should be
carefully chosen. First of all, in order to minimize the FEM computa-
tion for the interior problem and the BEM computation for the exterior
problem, the fictitious boundary should be chosen to make the interior
region as small as possible. Secondly, the fictitious boundary should be
as smooth as possible to obtain the most sparse moment matrix while
using the WTM. This is because the smoother the integral bound-
aries, the sparser the moment matrices by using wavelet transforms
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[8]. Notice that the system matrix A in (18) is only dependent of the
structure of the scatterer, which means that one only need to evaluate
A once to solve the scattering problem by different incident fields.

2.3 Wavelet Transforms for Effective Solution of Boundary
Integral Equations

As mentioned above, the FEM for the interior problem results in a
very sparse matrix. However, using the traditional basis and weighting
functions to deal with the boundary integral by using the BEM always
generates a dense matrix. In this paper, the wavelet matrix transform
(WTM) method [11–14] is used to overcome the difficulties. An ef-
fective wavelet transform basis matrix is specially constructed for our
problem. Using the constructed wavelet matrix, one can transform the
partly-full matrix to a completely sparse one which can be efficiently
solved by a sparse solver.

Wavelet theory is one of the systematic and rapidly developing
mathematic branches. It is not possible to give a complete description
here because of the limited space. A compact version of description for
the wavelet theory is given in the Appendix. More knowledge about
the wavelet theory can be found in [11–13].

For our problem we propose two fast-solving ways based on the
WTM. The two solving procedures are compared by solving the same
EM problem in numerical experiment section. Their advantages will
be revealed and compared. Non-orthonormal cardinal spline wavelets
(NCSW) [12, 13] are used. It has been shown by the author [9] that
a non-similarity wavelet transform, for example, non-similarity NCSW
(NS-NCSW) transform, could obtain much higher compression rate for
the same threshold and much better accuracy for the same compression
rate than a similarity wavelet transform such as Daubechies’ orthonor-
mal wavelet (DOW) for EM problems. The first way is to directly solve
equation (17) by using wavelet matrix transform method [9]. However,
a specific wavelet basis matrix has to be constructed for equation (17).
Notice that the sub-matrices Q and P are generated from the inte-
grals with kernels H(2)

0 (k0|r− r′|) and H
(2)
1 (k0|r− r′|) , respectively;

the basis and weighting functions in the BEM are generally chosen to
be linear or quadratic. Therefore, it is enough to choose 8-order van-
ishing moment of the wavelets for the considered problems. Let Ũ be
the Ms ×Ms wavelet basis matrix constructed by the method in [9],
and define a (M +Ms) × (M +Ms) square matrix W for equation
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(17) as follows:

W =
[
I φ1

φ2 Ũ

]
(19)

where I stands for the M ×M unit matrix, φ1 the M ×Ms zero
matrix and φ2 the Ms ×M zero matrix. Applying the constructed
wavelet matrix W to transform (17) one can obtain a completely
sparse matrix equation as follows:

A′X ′ = B′0 (20)

where X ′ =
(
W T

)−1
X , B′0 = WB0 and A′ = WAW T . X ′ in (20)

can be efficiently solved by a sparse solver. Once X ′ is solved, one can
use the reconstruction algorithm of the wavelets to obtain the needed
result for our problem, i.e., X = W T

(
W T

)−1
X = W TX ′ .

Another efficient way is possible if one observes the matrix equation
(17) carefully and carries out a simple matrix manipulation. Instead
of directly dealing with a combination matrix equation (17), we first
factorize the banded sparse matrix K in (7) from the FEM to obtain
the expression of u as follows:

u = −K−1CΨ, (21)

then substitute u into (13) to obtain a smaller-size matrix equation
with matrix variable Ψ as follows:

AΨ = B, (22)

where
A =

(
P − CT

)
K−1C −Q. (23)

Note that in this case the order of matrix A is equal to the number
of the discretized points on the fictitious boundary, and A is a full
matrix. Furthermore, C is trivial matrix and K is a regular matrix.
From the expression of A in (23) we know that the singularity property
of dense matrix A is completely determined by the properties of both
dense matrices P and Q because A is only a linear combination of P
and Q . According to the recommendation in [9] one can obtain a good
compression rate with at least single precision approximate solutions if
choosing 8-order vanishing moment of wavelets for wavelet transforms.
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Here, we can directly apply the wavelet basis matrix Ũ to transform
(23) to obtain [

A′
]
{Ψ′} = {B′} (24)

where Ψ′ =
(
ŨT

)−1
Ψ , B′ = ŨB and A′ = ŨAŨT . For a given

threshold value A′ is a sparse matrix, and therefore, Ψ′ in (24) can
be efficiently solved by a sparse solver. Once Ψ′ is solved, one can
use the reconstruction algorithm of the wavelets to obtain Ψ , i.e.,

Ψ = ŨT
(
ŨT

)−1
Ψ = ŨTΨ′ . Finally, substituting Ψ into (21) one

can obtain u . Once the values of u and Ψ on the fictitious boundary
Γ are solved, one can use them to compute the interested RCS.

2.4 Formulation for Radar Cross Section (RCS)

For our problem, the interested parameter is the radar cross section
(RCS) which is defined by

σ = lim
r→∞

(
2πr
|Es|2
|Ei|2

)
(25)

for the TM case, and by

σ = lim
r→∞

(
2πr
|Hs|2
|Hi|2

)
(26

for the TE case. For the considered problems, it can be evaluated as
follows:

σ =
4
k0
|P (ϕ) |2 (27)

where ϕ is observation angle and P (ϕ) is the far-field coefficient given
by

P (ϕ) =
1
4

∮
Γ

[Ψ + ik0u (n̂ · r̂)] eik0(x cosϕ+y sinϕ)dΓ (28)

where n̂ and r̂ denote the normal unit vector on Γ and the unit
vector in the direction of the observation, respectively. Substituting
the values of u and Ψ on the fictitious boundary Γ into (28), one
can compute the interested RCS.
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Figure 2. Scattering from a coated conducting cylinder.

3. NUMERICAL RESULTS

In this section, we will show the validity and the effectiveness of the
proposed hybrid FEM/BEM/WTM method by the numerical exam-
ples.

We first consider the scattering from a coated conducting circular
cylinder, shown in Fig 2. The parameters of the scatterer are given as
follows: the relative permittivity εr = 4−4i ; the relative permeability
µr = 1 ; the outer radius b = 3.0λ0 ; the inner radius a = 2.9λ0 ,
where λ0 is the wavelength in the free space. Assuming a plane wave
is excited, and the incident angle ϕi = 0 .

To minimize the computation, the fictitious boundary Γ is chosen
to be the natural boundary of the structure, i.e., the outer boundary.
Since the boundary integral is convolutional, it is only necessary to
compute, respectively, one row or column of the sub-matrices P and
Q in (13), thus reducing the computing time significantly to form the
complete system equation (17).
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Figure 3. The remaining nonzero elements by using the first method
after setting to zero each element whose magnitude is smaller than a
selected threshold τ. (a) shows A before the WTM, and (b)–(d) show
A′ with different threshold values after the WTM.

We discretize the interior region, i.e., the coated layer, into small tri-
angular elements by dividing the radial direction into 2 equi-thickness
layers and the angular direction into 512 equal segments, i.e., Ms =
512 . Fig 3 shows non-zero element distributions of the resultant ma-
trices A from (17) and A′ from (20) by setting the threshold τ/m =
10−10 , 10−9 or 10−8 for the TM case, where m stands for the largest
magnitude of the elements in A′ . The black dots represent the re-
maining nonzero elements and R stands for the ratio of number of
the remaining nonzero elements to the total elements. In Fig. 3(a),
there are two 512×512 full sub-matrices which are generated from the
boundary integral equation. They become sparse by wavelet transform
after setting even a small threshold value, as shown in Fig. 3(b)–(d).
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Figure 4. Distributions of fields and their normal derivatives on Γ
for the conducting cylinder coated with lossy material (µr = 1 and
εr = 4− 4i ) obtained by using the first method. The thicker line: the
analytical solution; the thin line: the WTM solution. (a) and (b) for
TM wave incidence (τ/m = 1E − 8), and (c) and (d) for TE wave
incidence (τ/m = 1E − 7).

Figure 4 gives the distribution of the fields and their normal deriva-
tives, and Fig. 5 shows the RCSs of the scatterer for TM and TE
incidence, respectively. Even with so sparse matrices A′ s (R = 3.46%
for TM incidence and R = 3.51% for TE incidence) can the hybrid
method obtain an accurate solution by a sparse solver.
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Figure 5. RCS for the conducting clyinder coated with lossy material
( µr = 1 and εr = 4−4i ) obtained by using the first method. (a) under
TM wave incidence ( τ/m = 1E − 8 ); (b) under TE wave incidence
( τ/m = 1E − 7 ).

Fig. 6 shows non-zero element distributions of A′ in (24) obtained
by the second wavelet transform way by setting the threshold τ/m =
10−6 or 10−5.5 for both the the TM and the TE cases, where m stands
for the largest magnitude of the elements in A′ . The black dots rep-
resent the remaining nonzero elements and R stands for the ratio of
number of the remaining nonzero elements to the total elements. Ob-
viously, the moment matrices by the second wavelet transform method
are much sparser than those by the first wavelet transform method.

Fig. 7 shows the RCSs by using the second method for TM and TE
incidences, respectively. Even with so sparse matrices A′ s (R = 2.14%
for both TM and TE incidences), the second wavelet transform
method can obtain solutions with relative errors much less than 1%
by a sparse solver.
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Figure 6. The remaining nonzero elements of A′ by using the second
method after setting to zero each element whose magnitude is smaller
than a selected threshold τ. (a) and (c) τ/m = 10−6. (b) and (d)
τ/m = 10−5.5.

It can be observed from Fig. 6 and Fig. 7 that using the second
method one can obtain more accurate solutions for both TM and TE
cases by only inverting two smaller-size and sparser matrices K (order
1024 and R = 0.49% ) and A′ (order 512 and R = 0.49% ) compared
with those by using the first method where one relatively large sparse
matrix equation with order 1536 and R = 3.46% (for TM case) or
R = 3.51% (for TE case) has to be inverted.

To demonstrate the effectiveness and the capacity of the proposed
hybrid technique, another more complex electromagnetic scattering
problem is considered. The geometry of the problems under analysis is
shown in Fig. 8. The scatterer consists of two parts: the upper part is
a semi-elliptical conducting cylinder whose major and minor axes are
measured as a and b , respectively; the lower part is a semi-circular
cylinder with radius b . A notch with depth h and φ is symmetrically
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Figure 7. RCS for the conducting cylinder coated with lossy material
( µr = 1 and εr = 4 − 4i ) by using the second method. (a) under
TM wave incidence ( τ/m = 1E − 5.5 ); (b) under TE wave incidence
( τ/m = 1E − 5.5 ).

Figure 8. The geometry of the second problem under analysis. a =
40.63
π λ, b = 20

π λ, εr = 2.5(1−0.01i), µr = 1.0, f = 5GHz, h = 0.3λ,
φ = π.2, ϕi = −π/2, under TM plane wave incidence.
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Figure 9. The remaining nonzero elements of A′ for the second prob-
lem under analysis by using the second method after setting to zero
each element whose magnitude is smaller than a selected threshold τ
for the TM case.

located on the surface of the lower part and filled with complex media
with the permittivity ε and the permeability µ .

For this problem, there is no analytical solution. we use the second
wavelet transform method to solve it. The surface of the whole scat-
terer is chosen as the fictitious boundary and divided into 512 segments
in equal radian. This discretization scheme will results in no more sin-
gularities. From this scheme we can obtain a satisfactory compression
rate for the moment matrix by using the WTM [8]. Along the radial of
the notch we divide the coated medium into three equal-space layers.

Fig. 9 shows non-zero element distributions of A′ in (24) by setting
the threshold τ/m = 10−9 , 10−8 , 10−7 and 10−6 for the TM case.
For the TE case, a similar sparse pattern can be achieved by the NS-
NCSW transform method. It can be observed from Fig. 9 that for such
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Figure 10. The relative error of solutions by the NS-NCSW transforms
versus the populated rate R for the second problem under analysis.
Reference solution is solved from the relevant dense matrix equation.
(a). for u (b). for Ψ.

kinds of complicated EM problems one can still obtain a high compres-
sion rate by setting a small threshold τ/m . Compared with the sparse
pattern in Fig. 6, as expected, the sparse pattern for this problem has
a relatively less sparsity. This less sparsity results from wider range of
radii of curvature of the fictitious boundary and more inhomogeneities.
Nevertheless, one can still obtain accurate solutions to this problem by
solving a sparse matrix equation with high compression rates.

Fig. 10 shows the solution accuracy of the surface magnetic field
(denoted by Ψ ) and electric field (denoted by u ) by the proposed hy-
brid technique, compared with the results by the FEM/BEM method.
It can be observed that in a wide range of populated rates one can
obtain accurate solutions with relative errors less than 1% by sparse
solvers.
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Unlike the other traditional hybrid methods based on the FFT tech-
nique, the proposed hybrid technique can solve a wide range of EM
problems without restriction on the shape or inhomogeneity of the scat-
terer or absorber. Furthermore, unlike the finite element solution using
absorbing boundary conditions, the reliability of the hybrid method is
independent of the scatterer’s shape and composition and the polariza-
tion of the field. Provided that the finite element mesh is sufficiently
fine and the proper threshold value is chosen in the WTM, the results
always approach the true solutions. By controlling the threshold value
in the WTM, one can flexibly trade off efficiency and accuracy.

4. CONCLUSIONS

In this paper, a hybrid FEM/BEM/WTM method has been proposed.
The hybrid method employs the FEM to formulate the fields within a
fictitious boundary enclosing the considered structure and establish a
relationship with those at the opening. The fields outside the fictitious
boundary are formulated by the BEM involving an integral expression
of the fields over the fictitious boundary. Two wavelet transform basis
matrices have been constructed and used to efficiently speed the solu-
tions of boundary integral equations. The use of the proposed hybrid
technique always results in sparse matrices which can be efficiently
solved by a sparse solver. It has be shown in the literature that using
the WTM one can obtain a solution in about or less than O(N logN)
operations, where N is the number of unknowns in the discretized
boundary integral equation. This is in contrast with a cost of O(N3)
for a dense matrix inversion or O(N2) per dense matrix-vector multi-
plication in an iterative solution such as conjugate-gradient.

Combining the advantages of the FEM, BEM and WTM, the hy-
brid technique is able to effectively handle unbounded problems in
which complex inhomogeneities are involved. For larger-size EM prob-
lems, the hybrid technique is much more effective than the traditional
approaches. Furthermore, by controlling the threshold value in the
proposed hybrid method, one can flexibly trade off efficiency and ac-
curacy at different stages of analysis. Future efforts will be directed
to the problems involving perfect conductors and arbitrarily shaped
three-dimensional structures.

It deserved to be emphasized that both the hybrid FEM/BEM/
WTM method and the FEM/MoM/WTM method [8] have very sim-
ilar properties. First of all, both hybrid methods divide the original
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problems into two problems. The former divides the original problems
into the exterior and the interior problems which share the continuity
conditions on the fictitious boundary; the latter divides the original
problems into two problems by the equivalent current principle. Sec-
ondly, both hybrid methods form the so called interior problem which
is efficiently solved by the FEM and an integral equation for the so
called exterior problem which is effectively solved by the WTM and
the BEM or the MoM. The differences between the two hybrid meth-
ods are the different Green’s functions for the integral equations and
the different boundary value problems for the interior problems. The
computational complexities for both hybrid methods will keep the same
level. Therefore, one can use either the FEM/BEM/WTM method or
the FEM/MoM/WTM method to solve the same EM problems. The
favourite formulations for the problems under analysis will determine
the choice of the hybrid method.

APPENDIX: WAVELET THEORY

Wavelets are the functions that satisfy certain mathematic require-
ments. The very name wavelet comes from the requirement that they
should integrate to zero, “waving” above and below the x -axis. There
are many kinds of wavelets. One can choose among smooth wavelets,
compactly supported wavelets, wavelets with simple mathematical ex-
pressions, wavelets with simple associated filters, etc. According to the
projection relation among the chosen wavelets, we can divide wavelets
into two kinds, i.e., the orthogonal and non-orthogonal wavelets. The
latter is also referred to as the biorthogonal wavelets. Here, we only de-
scribe the the essentials of the theory of wavelets. More details about
wavelets can be found in [11]–[13].

A.1 Orthonormal Wavelets

Define two functions φ(x) and ψ(x) ( φ(x), ψ(x) ∈ L2(R) ) as fol-
lows:

φ(x) =
√

2
∑
n∈Z

hnφ(2x− n), (A1)

ψ(x) =
√

2
∑
n∈Z

gnφ(2x− n), (A2)

where gn = (−1)1−nh1−n . φ(x) and ψ(x) are called scaling func-
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tion and wavelet function, respectively. The sequence {hn} is called
the filter sequence for the scaling function φ , and {gn} the filter se-
quence for the wavelet function ψ . For good approximation and data
compression, the filter sequence for ψ is chosen so that it has certain
number of vanishing moments, i.e.,

∑
n∈Z

njgn = 0, j = 0, ..., N − 1, (A3)

for some positive integer N . Furthermore, for orthonormal wavelets,
the translations {φ(x − n)|n ∈ Z} and {ψ(x − n)|n ∈ Z} are or-
thonormal if and only if

∑
n∈Z

hnhn−2k = δ0,k, k ∈ Z, (A4)

where δ0,k is the Kronecker delta function defined with respect to k .
The filter coefficients of DOW are solved by requiring hn = 0 ( n 	=

0, 1, 2m − 1 ) and {gn} to have m vanishing moments. Generally,
these filter coefficients can only be solved numerically. More details
can be found in Daubechies’ book [11].

A.2 Non-orthonormal Wavelets

Unlike orthonormal wavelet algorithms, there are two scaling func-
tions φ(x) and φ̃(x) for non-orthonormal wavelet algorithms [12], [13].
Since φ(x) and φ̃(x) are in V1 , they can be expressed in the following
forms:

φ(x) =
√

2
∑
n∈Z

ãnφ(2x− n), (A5)

φ(x) =
√

2
∑
n∈Z

anφ̃(2x− n), (A6)

φ̃(x) =
√

2
∑
n∈Z

p̃nφ(2x− n), (A7)

φ̃(x) =
√

2
∑
n∈Z

pnφ̃(2x− n), (A8)

where {an} , {ãn} , {pn} and {p̃n} are called the filter coefficients
for the scaling functions.
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Unlike the orthonormal case, there correspond four wavelet func-
tions ψ(x) , ψ̃(x) , η(x) , η̃(x) which are defined by

ψ(x) =
√

2
∑
n∈Z

b̃nφ(2x− n), (A9)

ψ̃(x) =
√

2
∑
n∈Z

qnφ̃(2x− n), (A10)

η̃(x) =
√

2
∑
n∈Z

q̃nφ(2x− n), (A11)

η(x) =
√

2
∑
n∈Z

bnφ̃(2x− n), (A12)

where
b̃n = (−1)1−na1−n, bn = (−1)1−nã1−n,

q̃n = (−1)1−np1−n, qn = (−1)1−np̃1−n.

Like gn in the orthonormal case, the filter sequences {b̃n} , {bn} ,
{q̃n} and {qn} are chosen so that they have certain numbers of van-
ishing moments to satisfy (31). The biorthogonal conditions satisfy
(32) by replacing hn and hn−2k with ãn and pn−2k , or by replacing
hn and hn−2k with an and p̃n−2k , respectively.

Note that each of the sets {ψ0,n|n ∈ Z} , {ψ̃0,n|n ∈ Z} , {η0,n|n ∈
Z} and {η̃0,n|n ∈ Z} forms a basis for W0 . Furthermore, {ψ0,n|n ∈
Z} and {ψ̃0,n|n ∈ Z} , and {η0,n|n ∈ Z} and {η̃0,n|n ∈ Z} are
biorthogonal bases, respectively. The functions ψ and η and their
duals ψ̃ and η̃ are called non-orthonormal wavelets. Various cases
of multiresolution analysis can be obtained by combining one of the
scaling functions and one of the wavelet functions.

If {φ0,n|n ∈ Z} is an orthogonal basis of V0 , then φ = φ̃ , an =
ãn = pn = p̃n for all n ∈ Z , and ψ = ψ̃ = η = η̃ . Therefore, the
orthonormal wavelet is a specific one of the non-orthonormal wavelets.

One of the most attractive non-orthonormal wavelets is Non-
orthonormal Cardinal Spline Wavelet (NCSW). The two scaling func-
tions of NCSW are defined from the uniform B-spline of order k , i.e.,
Nk(x) , with suppNk = [0, k] [15]. NCSW has several remarkable fea-
tures. For one thing, all the filter coefficients are dyadic rationales.
Since division by 2 can be done very fast by a computer, this makes
them very suitable for fast computations. Another attractive prop-
erty is that the scaling functions and wavelets are known exactly and
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explicitly for all x . Furthermore, each of the filter sequences for the
NCSW has k -order vanishing moments which are important to ob-
tain satisfactory data compression rates and solution accuracies. More
details can be found in [12, 13].
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