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1. INTRODUCTION

There has been an increasing demand for high-capacity fiber-optic
transmission systems covering short to ultra-long distances. This has
led to a rapid development of new hardware components and transmis-
sion technologies. For example, the trans-atlantic systems TAT12/13
provide for bidirectional data transmission of 2× 5 Gb/s using inten-
sity modulation and direct detection (IM/DD) techniques and a single-
channel configuration [1]. The currently installed system Sea-Me-
We-3 will use 4-channel Wavelength-Division Multiplexing (WDM) to
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provide for 10 Gb/s with an overall system length spanning 27,000 km
[2]. Higher bit rates of 40 Gb/s and beyond can be achieved by ei-
ther using ultra-short pulses and Optical Time-Division Multiplexing
(OTDM) and/or by Optical Frequency-Division Multiplexing (OFDM)
with an increased number of channels. OFDM can be divided into
Dense WDM (DWDM) and Coherent Multi-Channel (CMC). Exam-
ples for DWDM submarine systems are UK-Germany-6 (40 Gb/s, to
be installed in 1998) and the trans-atlantic Gemini system (30 Gb/s,
to be installed in 1998/99).

OTDM with ultra-short pulses and OFDM lead to large bandwidths.
Propagation of signals is then limited by frequency-dependent linear
and nonlinear detrimental effects. To calculate these effects correctly
an appropriate nonlinear and dispersive model is needed. Commonly,
one uses the Nonlinear Schrödinger Equation (NLSE) for an analysis
of pulse propagation in the time domain [3–6]. The NLSE can be used
for pulse widths down to 100 fs and nonlinear dispersion is neglected.
A Generalized NLSE (GNLSE) was developed to include effects of
stimulated Raman scattering (SRS) [3, 7, 8]. The GNLSE can be used
for pulses not shorter than 25 fs.

Since the NLSE can be solved analytically in only very few cases
using inverse scattering methods [9, 10], numerical approaches are
needed. Two categories exist, namely pseudo-spectral and finite-diffe-
rences methods [3]. The NLSE and similar approaches neglect the
second derivatives of the signals with respect to the direction of prop-
agation, z . This is called the slowly varying amplitude approximation
and leads to numerical solutions using the pseudo-spectral split-step
Fourier algorithm. If the second derivatives are to be retained, direct
solving of Maxwell’s equations in the time domain by means of the
Finite-Differences Time-Domain method (FDTD) is used [11]. This
method has been applied in nonlinear optics [12], its disadvantage is a
vast requirement of CPU time.

In this paper a broadband fiber model in the frequency domain is
presented. This permits convenient modeling of linear and nonlinear
dispersion using their frequency-dependent characteristics. In contrast
to other models like the GNLSE we use coupled equations for the elec-
tric and the magnetic field, respectively. This leads to special nonlinear
transmission-line equations, either for fast-varying bandpass signals or
for slowly-varying envelopes. These equations can be solved with a fast
pseudo-spectral method neglecting the second derivatives with respect
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to z , or with a special combination of FDTD and pseudo-spectral
methods. As the second derivatives with respect to z are retained
backscattering effects caused by mismatch of the wave impedance and
Stimulated Brillouin Scattering (SBS) can be described.

2. NONLINEAR SCHRÖDINGER EQUATION

The propagation of pulse-envelopes in optical fibers is usually de-
scribed by the Nonlinear Schrödinger Equation (NLSE) [3–6]. The
NLSE contains approximations that limit its use with respect to ultra-
broadband signals. The standard form of the NLSE does not contain
any frequency-dependence in its nonlinear part and scattering effects
are neglected:
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Here, eT = eT(z, t) denotes the complex pulse-envelope in the time
domain, βi = ∂iβ/∂ωi|ω0 are coefficients of a Taylor expansion of the
phase constant β(ω) around a central (carrier) frequency ω0 , α0 is
the attenuation at ω0 , and n0 and n2 are the linear refractive index
at frequency ω0 and the nonlinear refractive index coefficient, respec-
tively. n2 is related to the third-order nonlinear susceptibility χ

(3)
0

by n2 = 3χ(3)
0 /8n0 . A special numerical split-step Fourier algorithm

exists that is a fast and convenient tool for solving the NLSE, making
it a powerful model for pulse propagation with limited bandwidth [3].
The NLSE (1) does not include scattering effects as it only contains
the frequency-independent nonlinearity n2 .

To include Stimulated Raman Scattering (SRS), a Generalized
NLSE can be constructed [3, 7, 8]. SRS is included into the GNLSE
by a convolution integral:
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R(t) includes SRS and the instantaneous Kerr effects Self-Phase Mod-
ulation (SPM), Cross-Phase Modulation (XPM) and Four-Wave Mix-
ing (FWM). The shock term (j/ω0)(∂/∂t) accounts for the frequency
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dependence of the transverse modal field [7] by means of a truncated
Taylor series. The GNLSE neglects SBS, and again a Taylor series is
used for modeling (higher order) dispersion in the time domain. The
GNLSE (2) cannot be solved with the split-step Fourier algorithm re-
sulting in increased numerical complexity. If these problems are to be
circumvented, a full-signal approach in the frequency domain including
conservation of momentum should be used.

3. FIBER EQUATIONS IN THE FREQUENCY DOMAIN

The derivation of a model for calculating pulse-envelope propagation
in single-mode fibers starts with the source-free Maxwell’s equations
in the frequency domain:

∇×H(r, ω) = jωD(r, ω) (3)
∇×E(r, ω) = −jω µ0 H(r, ω) (4)

with electric and magnetic field vectors E and H . Linear and nonlin-
ear dispersion effects are included via the electric displacement D =
ε0 E + P . We now consider linearly polarized vector fields so that
equations (3)/(4) and the polarization P may be reduced to scalar
quantities. Nonlinear susceptibilities of even order are negligible due
to inversion symmetry [3, 5] of the media considered. Suppressing
higher order nonlinearities as well the polarization P can be written
as:

P (r, ω) = ε0 X
(1)(r, ω)E(r, ω) +

1
4π2

∫∫ ∞
−∞

ε0 X
(3)(r, ω1, ω2, ω3)

· E(r, ω1)E(r, ω2)E(r, ω3) dω1 dω2 (5)

where ω3 = ω − ω1 − ω2 . The susceptibility X(1)(ω) = n2(ω) −
1 is responsible for (linear and higher order) dispersion and can be
described by the Sellmeier series [3]:

n2(ω) = 1 +
3∑
i=1

Bi ω
2
i

ω2
i − ω2

(6)

In equation (6), the resonance frequencies and their weighting coeffi-
cients are: B1 = 0.6961663, λ1 = 0.0684043 µm , B2 = 0.4079426,
λ2 = 0.1162414 µm , and B3 = 0.8974794, λ3 = 9.8961610 µm . The
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Sellmeier series provides for an ultra-broadband description of disper-
sion in the frequency domain. Next, appropriate expressions for the
transverse field of the fundamental mode must be inserted [6]. This
will introduce the frequency-dependent effects of wave guidance to
our model. Combining these with X(1) and X(3) of bulk silica as
used in (5) leads to effective system parameters X

(1)
eff (ω) , n2

eff(ω) , and
X

(3)
eff (ω1, ω2, ω3) which consider material and wave-guiding effects in

an inherently broadband way.
Inserting the transverse modal distribution in weakly guiding fibers,

Maxwell’s equations can be reduced to one spatial dimension (i.e., the
direction of propagation z ). Using effective system parameters the
following pair of coupled equations in the frequency domain can be
derived:

∂
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E(z, ω) = jω µ0 H(z, ω) (7)
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Equations (7)/(8) are found in [13], where they are referred to as
the nonlinear fiber equations. They are cubic nonlinear transmission-
line equations, adapted to the characteristics of signal propagation in
(single-mode) optical fibers. Note that the integrand in (8) contains
both, E and H . This leads to the conservation of momentum even in
the nonlinear part of (8). To prove this property, one has to consider
the total energy W (z) propagating along the fiber:

W (z) =
1
π

∞∫
−∞

∞∫
0

2π∫
0

1
2

Re {E(r, ω)×H∗(r, ω)} · z ρdϕdρdω (9)

where z, ρ, ϕ are cylindrical coordinates. Necessary for conservation of
momentum is that the transmitted energy be constant in the direction
of propagation, i.e., dW (z)/dz = 0 . Neglecting attenuation for the
moment and inserting the fiber equations (7)/(8) into (9) gives the
following condition for the phase constants:

β(ω)− β(ω1) + β(ω2)− β(ω3) = 0 (10)
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Considering the signs of the phase constants (i.e., the wave vectors),
equation (10) is identical to the conservation law of momentum and, for
example, describes the relationship between wave vectors in Brillouin
scattering. As a consequence of this the fiber equations (7)/(8) can
be used to calculate backscattering effects. This holds as long as the
momentum of the excited phonons is taken into account. Otherwise
(7)/(8) like the GNLSE provide for the conservation of the total photon
number [8].

Equations (7)/(8) are valid for any given z -dependent real band-
pass signals. In order to obtain a numerically efficient algorithm it
is important to separate the carrier wave and to introduce complex
pulse-envelopes. To simplify calculations it is necessary to restrict
the considered frequencies to one octave of bandwidth centered about
a central (carrier) frequency ω0 , i.e., E(ω) = 0 for |ω − ω0| ≥ Ω
and Ω ≤ ω0/2 . This corresponds to a maximum wavelength range
670...2000 nm which imposes no serious limitation on our broadband
fiber model.

If complex pulse-envelope spectra

ET(z, ω) :=
{

2E(z, ω + ω0) ejk0z |ω| < Ω
0 |ω| ≥ Ω

(11)

are introduced to the nonlinear fiber equations (7)/(8), this yields:
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Figure 1. Nonlinear system e(t)→ p(t) .

k0 is the wave number at frequency ω0 , and the asterisk denotes com-
plex conjugation. Equations (12)/(13) together with (14) provide a
description of pulse-envelope propagation in single-mode fibers includ-
ing linear and nonlinear dispersion and backscattering effects. They
can be used to model any of the linear and nonlinear effects without
practical limitations concerning bandwidth.

4. MODELING OF NONLINEAR EFFECTS

Nonlinear effects in optical fibers are well documented, e.g., [3, 5, 14–
16]. SPM, XPM, and FWM can be described by a constant Kerr
coefficient X

(3)
Kerr(ω1, ω2, ω3) = X(3)(ω0, ω0, ω0) = χ

(3)
0 = 3.5 · 10−20

m 2 /V 2 [17]. This approximation is valid since the corresponding
pulse response decays within 1 fs [8, 18]. In the time domain this
corresponds to the product of three delta functions, χ(3)

Kerr(t1, t2, t3) =
χ

(3)
0 δ(t1) δ(t2) δ(t3) .
The corresponding polarization pKerr(t) can be considered as the

upper part of the nonlinear polarization p(t) in Fig. 1 which shows a
block model of the nonlinear system. The coefficients αK , αR , and
αB are adjusted for energy conservation. Their exact values must be
fitted to measured data.

Stimulated Raman scattering has its origin in molecular vibrations.
Its intensity-dependent susceptibility has the form χ

(3)
SRS(t1, t2, t3) =

χ̂(3) hR(t1, t2) δ(t3) . Here, χ̂(3) is a weighting coefficient, and hR is a
normalized response function where

∫
hR(t1, t1) dt1 = 1 . The resulting
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Figure 2. Normalized Raman gain: a) single Lorentzian approxima-
tion, b) computed by modified Sellmeier series (17).

Raman polarization is:

pSRS(t) = ε0 χ̂
(3) e(t)

t∫
−∞

hR(t1, t1) e2(t− t1) dt1 (15)

In equation (15) the square of the electric field is convolved by the Ra-
man response function hR(t1, t1) and then multiplied with the electric
field again. This is shown in the middle part of Fig. 1.

The Raman susceptibility X
(3)
SRS can be derived from the measured

Raman gain gR(∆ω) [3, 8]. This Raman gain is proportional to the
imaginary part of the Raman susceptibility,

gR(∆ω) ∝ Im{X(3)
SRS(∆ω)}

The real part of X(3) must be calculated from the imaginary part
through Hilbert transform to guarantee causality. If we combine Ra-
man and wave-guiding effects, we obtain an effective Raman suscepti-
bility:

X
(3)
SRS(ω1, ω2, ω3) = X

(3)
SRS(∆ω)

=
β0 n

2
0

2Zeff(ω0)

∞∫
0
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t (ρ, ω0) ρdρ

∞∫
0

R2
t (ρ, ω0) ρdρ

[
jgR(∆ω) +H

{
gR(∆ω)

}]
(16)

where Zeff is the wave impedance of the fiber, Rt describes the trans-
verse modal distribution [13], and H denotes the Hilbert transform.
The Stokes shift ∆ω is given by ∆ω = ω − ω1 .
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It is customary to approximate the Raman frequency response gR

by a single Lorentzian [3, 7, 8]. The Lorentzian is fitted to the main
resonance of the gain curve and neglects further resonances, see Fig. 2a.
The maximum of the gain curve is given for a Stokes shift of ∆f ≈
13 THz, where gR ≈ 10−13 m/W [16].

For a more detailed description of the Raman susceptibility, we
choose a specially modified Sellmeier series instead of a single Lorent-
zian:

X
(3)
SRS(∆ω) =

6∑
i=1

bi

1−
(

∆ω

Ωi

)2

+ j
∆Ωi

Ωi

∆ω

Ωi

(17)

Here, ∆Ωi is the spectral full-width at half-maximum (FWHM) of the
corresponding resonance. The frequencies Ωi/2π and their coefficients
bi result from curve fitting to gR(∆ω) , their values are summarized
in Tab. 1.

The Raman gain as modeled by equation (17) and Tab. 1 is shown
in Fig. 2b.

Ωi/2π [THz] 5.5 12.1 14.7 18.2 24.2 30.3

bi [m2/V2] 2.65 8.90 0.50 0.05 0.11 0.05

∆Ωi/2π [THz] 5.6 7.5 1.4 0.7 1.8 2.0

Table 1. Coefficients of the modified Sellmeier series.

Stimulated Brillouin scattering arises from density fluctuations in-
side optical fibers caused by electrostriction. The corresponding Bril-
louin susceptibility χ

(3)
SBS can be modeled in a similar way to χ

(3)
SRS as

both are functions of intensity. The Brillouin gain is proportional to
the imaginary part of the susceptibility,

gB(∆ω) ∝ Im {X(3)
SBS(∆ω)}

The Brillouin susceptibility can formally be obtained from (16) by
replacing X

(3)
SRS and gR with X

(3)
SBS and gB . The measured Brillouin

gain can also be approximated by a Lorentzian spectral profile [3]:

gB(∆ω) =
(∆ωB/2)2

(∆ω − ωB)2 + (∆ωB/2)2
gB(ωB) (18)
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∆ωB < 100 MHz is the spectral FWHM, ωB/2π = fB ≈ 11 GHz is
the Stokes shift, and gB(ωB) ≈ 4 · 10−11 m/W is the maximum of the
gain [16]. These are typical values that depend on the fiber type as
well as on the center wavelength.

The main difference between SRS and SBS is that the latter gen-
erates signals propagating counter to the initial (pump) signal. SBS
is therefore significant in bidirectional transmission systems where it
provides for energy flow into the Stokes band, and for crosstalk. Due to
the low intensity threshold it can be severely limiting in multichannel
systems with narrowband channels.

5. NUMERICAL EXAMPLES

To calculate pulse-envelope propagation along nonlinear fibers, one
has to use a discrete version of the nonlinear fiber equations (12)/(13).
Two different algorithms were developed. The first one neglects SBS
and consists of a pseudo-spectral method using fast convolutions and a
central-differences approach with a second-order integration rule. The
nonlinearity is calculated partly in the time and in the frequency do-
main whereas linear effects are calculated in the frequency domain only.
This is illustrated in Fig. 3. The second algorithm is described in the
next chapter.

ET(z,jω)
❝

❢ ❢×✲

❢IFT •
eT(z,t)

✲
✻

❄
FT χ

(3)
0

×

×

•

•
✻

✲

❄
FT gR IFT ✲ FT

✻
❢

+

+
❝

PNL(z,jω)

Figure 3. Calculation of the nonlinear susceptibility using fast convo-
lution.

Using the first algorithm, calculating the propagation of a given
broadband signal along a distance of 50 m with steps of 1 m and 16 k
samples from the signal’s spectrum takes approximately 10 min. on
a PowerPC 601 machine with 66 MHz clock rate. Calculations over
100 km with 512 samples and steps of 5 m take about 15 min. on the
same machine. Considering the same step width, this is almost as fast
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Figure 4. Crossing of two fundamental solitons and spectrum during
maximum interaction (same result with both algorithms).
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Figure 5. Spectra of FWM, Bmax = 3.6 THz. a) Fiber equations, b)
NLSE.

as the same computation with the NLSE/split-step Fourier algorithm.
We solved the NLSE with a symmetrized split-step Fourier algorithm
[3] including third order dispersion but omitting SRS. Due to the use
of a rather simple second-order finite differences algorithm for solving
the fiber equations, larger step widths in the direction of propagation
can be used with the split-step Fourier algorithm resulting in faster
calculations.

To compare both models, we calculated the propagation of various
signals of different bandwidth along ITU-T G.652 single-mode fibers.
We started with single fundamental solitons of 100 ps FWHM pulse
width. A quantitative comparison showed that the maximum deviation
∆ of the field level of both models lies within |∆| < 0.01 dB (compared
to the maximum).

Next, XPM/FWM of signals of two and three carrier frequencies was
investigated. Again, fundamental solitons were used as other pulses
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Figure 6. Spectra showing soliton self-frequency shifting.

tend to get destroyed by nonlinear interactions. As a first example
Fig. 4 shows two solitons passing each other. Also shown is the spec-
trum calculated at the position where maximum interaction occurs. As
can be seen, sidebands are generated during the interaction that vanish
as soon as the pulses separate from each other. Again, both models
produce very nearly the same results ( |∆| < 0.05 dB) although the
overall bandwidth was increased to 400 GHz.

To consider increasing bandwidth we investigated FWM effects with
different channel spacings. Our simulations show that up to a band-
width of 2.5 THz both models exhibit little deviations ( |∆| < 0.5 dB).
If the bandwidth is increased beyond this value, significant deviations
occur that can exceed 8 dB. This is shown in Fig. 5 where an overall
bandwidth of 3.6 THz is covered resulting in differences of the values
of the mixing products of about 5 dB.

Next, we studied Raman effects with bandwidths beyond 5 THz.
We compared modeling the Raman gain by using a single Lorentzian
spectral profile [3, 7, 8, 18] to our modified Sellmeier approach (17).

As the first test of our Sellmeier approach, soliton self-frequency
shifting [19] was investigated. We used a fundamental soliton of T =
90 fs FWHM and a peak power of 50 W. Fig. 6 shows that the center
frequency of the pulse has been down-shifted nearly 15 THz within a
propagation length of 1000 m. Additional SPM occurs, resulting in a
slight narrowing of the pulse. A small fraction of the power density
remains at the initial center frequency.

The second example of Raman interaction is energy conversion from
a strong pump wave to signals located in the Stokes band of the pump.
This mechanism can be observed in Raman amplifiers and with detri-
mental results in WDM systems with large channel spacings. Pumping
of the Stokes signal is most efficient when the pump and probe signals
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Figure 7. Raman pumping of probes spaced 5.5 and 13 THz apart
from the pump. Raman gain spectrum modeled by a single Lorentzian
resp. by the modified Sellmeier series (MSS) according to equation (17)
and Tab. 1.

are spaced ∆f ≈ 13 THz apart, as this is the frequency difference
where the Raman gain has its maximum, see Fig. 2. On the other
hand, the Lorentzian and Sellmeier approaches differ significantly for
frequency differences below 10 THz.We thus examined the pumping of
two probe signals located 5.5 resp. 13 THz below the pump wave. Re-
sults of the propagation over a distance of 120 m are shown in Fig. 7.
Stronger energy conversion towards lower frequencies occurs when the
gain spectrum is modeled by the modified Sellmeier series according
to equation (17) and Tab. 1. In this particular case the level of the
∆f = 13 THz probe signal exceeds the pump after propagating over
a distance of 120 m. This is caused by pumping the ∆f = 5.5 THz
probe signal more efficiently compared to the Lorentzian approach.
This leads to even more efficient pumping of the ∆f = 13 THz probe
signal by the pump and the ∆f = 5.5 THz probe signal.

Close correlation has therefore been shown between our fiber equa-
tions and the NLSE/split-step Fourier algorithm for bandwidths not
exceeding 2.5 THz. The NLSE can be extended to include SRS, but
this results in the need for a new algorithm and consequently slower
calculations as the split-step Fourier algorithm cannot be used any-
more. The pseudo-spectral algorithm based on the fiber equations is
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still applicable and, together with a more detailed modeling of SRS,
yields fast, convenient, and precise calculations of Raman effects. How-
ever to accurately describe SBS, which produces counter propagating
waves, an improved bidirectional algorithm has to be incorporated.

6. PROPOSAL OF AN EFFICIENT BIDIRECTIONAL
ALGORITHM

The major approximation of the NLSE and the split-step Fourier al-
gorithm is omitting the second derivative with respect to z . This
derivative is required for the calculation of bidirectional signal prop-
agation. The Finite-Differences Time-Domain method (FDTD) has
been developed to directly solve Maxwell’s equations in the time do-
main thus retaining the second derivative. The FDTD method has
been used previously in nonlinear optics [11, 12]. The disadvantage is
that it is a very slow method and that it requires large memory. Here
we propose a new algorithm that is able to increase the simulation
speed by at least a factor of 1000. This algorithm is based on Yee’s
algorithm [20] and additionally uses a pseudo-spectral approach.

We start by transforming the fiber equations (7)/(8) into the time
domain. This yields:

∂e(z, t)
∂z

= µ0
∂h(z, t)

∂t
(19)

∂h(z, t)
∂z

= ε0
∂e(z, t)
∂t

+
∂p(z, t)
∂t

(20)

For simplicity, we now neglect Raman scattering. The polarization
p(z, t) can then be written as:

p(z, t) = ε0

∞∫
−∞

χ
(1)
eff (t− τ) e(z, τ) dτ + ε0 χ

(3)
0 e3(z, t)

+ ε0 e(z, t)

∞∫
−∞

hB(t− τ) e2(z, τ) dτ (21)

XPM and FWM between signals of anti-parallel directions of prop-
agation is neglected to split the signals into forward (index F) and
backward (index B) propagating signals that will be coupled by Bril-
louin scattering only. The bandpass signals can then be expressed by
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the corresponding complex envelopes (index T) as follows:

e(z, t) = eTF(z, t) ej(ω0t−k0z) + eTB(z, t) ej(ω0t+k0z) (22)

and similar for h(z, t) and p(z, t) .
Neglecting Raman scattering and in view of

∣∣∣eTF(z, t) ej(ω0t−k0z) + eTB(z, t) ej(ω0t+k0z)
∣∣∣2

= |eTF(z, t)|2 + |eTB(z, t)|2 + mixed terms (23)

the polarization in forward direction can be written as:

pTF(z, t) = ε0

∞∫
−∞

χ(1)(t− τ) eTF(z, τ) dτ

+ ε0 χ
(3)
0 |eTF(z, t)|2 eTF(z, t)

+ ε0 eTB(z, t)

∞∫
−∞

hB(t− τ) |eTB(z, t)|2 dτ (24)

The polarization in backward direction follows by simply replacing all
indices F by B, and vice versa. Now discrete equations are derived
where the samples of the electric and the magnetic field are shifted
with respect to each other. The resulting lattice of width ∆z and ∆t
is shown in Fig. 8.
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Figure 8. Lattice of the numerical algorithm [20].
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Introducing discrete signals e(i∆z, n∆t) = e|ni , h((i−1/2)∆z, (n−
1/2)∆t) = h|n−1/2

i−1/2 , p(i∆z, n∆t) = p|ni and central differences, we ob-
tain an algorithm for calculating the propagation of complex envelopes
(again only the forward traveling part is shown):

hTF|n+1/2
i−1/2 = hTF|n−1/2

i−1/2 +
1
µ0

1
∆z
− j

k0

2
1

∆t
+ j

ω0

2

(
eTF|ni − eTF|ni−1

)
(25)

eTF|n+1
i = eTF|ni −

1
ε0

(
pTF|n−1

i − pTF|ni

−
1

∆z
− j

k0

2
1

∆t
+ j

ω0

2

(
hTF|n+1/2

i+1/2 − hTF|n+1/2
i−1/2

))
(26)

The polarization can be computed using fast convolution:

pTF|in = e−jω0i∆t ε0 IFFT
{
X

(1)
eff (jk∆ω)FFT {eTF(n∆z, k∆t)}

}
+ ε0 χ

(3)
0 |eTF(n∆z, i∆t)|2 eTF(n∆z, i∆t)

+ ε0 eTB(n∆z, i∆t)

· IFFT
{
X

(3)
SBS(jk∆ω)FFT

{
|eTB(n∆z, k∆t)|2

}}
(27)

Considering complex envelopes and using fast convolutions leads to a
fast numerical algorithm that is superior to common FDTD methods.
By extracting the rapidly varying optical carrier the simulation time
can be reduced by at least a factor of 1000. One problem of this
algorithm is that it may require very large RAM in the order of 2 Gb.
As a consequence, we only were able to carry out some very simple tests
showing that the algorithm works. Extensive studies of the algorithm
can be done when large-RAM workstations become more available in
the near future.

7. CONCLUSIONS

We have presented a full-signal approach for describing broadband
pulse-envelope propagation in the frequency domain by means of gen-
eralized nonlinear transmission-line equations. These nonlinear fiber
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equations use Sellmeier’s series in the frequency domain instead of a
truncated Taylor series for modeling linear dispersion. Raman scat-
tering is included by a complex third-order susceptibility that is mod-
eled using a specially modified Sellmeier series leading to an improved
broadband description of Raman effects. Brillouin scattering can be
accounted for in the same way provided that a numerical algorithm
can handle bidirectional signal propagation.

Numerical comparisons between the nonlinear fiber equations solved
by a second-order pseudo-spectral method and the NLSE solved by a
symmetrized split-step Fourier algorithm showed increasing deviations
for bandwidths exceeding 2.5 THz. It was also shown that proper mod-
eling of the Raman susceptibility by means of a modified Sellmeier se-
ries is important for the description of Raman effects between signals
that are spaced 5...6 THz. Finally we showed that an efficient nu-
merical algorithm for calculating bidirectional signal propagation can
be derived based on the nonlinear fiber equations with complex enve-
lope spectra. Given a workstation with large RAM capacities this will
provide for a full-signal description of bidirectional signal propagation
under nonlinear conditions.
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