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1. INTRODUCTION

Recently, there has been an increasing public concern about the health
effects of human head exposed to electromagnetic energy emitted from
mobile handset antennas. An important motivation for researchers
is to gain a detailed understanding of the EM field distribution and
power absorption distribution inside the human head [1–3]. There
exists a variety of techniques which can be used to perform the required
analysis, each with its own strength and weakness. In the analysis,
the model obtained from medical imaging serves as a realistic model
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but requires a lot of computational time as in the methods of finite
element [4], finite difference [5–9] and moments [10, 11]. To increase
computational speed, the spherical human head model is also often
adopted as an idealized representation of real biological human head
in the analysis [12–15], but it is less accurate. In view of the fact
that the geometry of a human head can be better approximated by a
prolate spheroid than a simple sphere and that the computational time
can be saved as compared with those using the Finite Difference Time
Domain (FDTD) technique and the Finite Element Method (FEM),
a dielectric prolate spheroidal model serves as a compromise for the
full-wave analysis of EM field distributions.

The EM waves scattered by a single spheroid or two spheroids have
been well-investigated and some analytic solutions have been obtained
to date [16–19]. There are, however, only few reports on the analysis
of EM field distributions inside the human head based on the prolate
spheroidal model, basically due to two difficulties in analyzing the EM
fields inside and outside the spheroids. One of the difficulties is the very
complicated calculation of the spheroidal angular and radial functions
[20, 21]. The other is the difficulty in obtaining analytic solutions of
the scattering and transmission coefficients of the TE and TM modes of
the EM fields due to the lack of the orthogonality of spheroidal vector
wave functions [22, 23]. The perturbation theory has been applied
to prolate spheroidal models to obtain internal EM absorbed power
distributions, but the convergence is generally slow and the equations
are valid only when the semi-axial lengths of the spheroid are much
longer than the wavelength [24]. Iskander and Lakhtakia et al. have
studied the exposure of a prolate spheroidal model to the near field
of a short dipole or a small loop antenna, using the spherical vector
harmonics and the extended boundary condition method (EBCM) [25–
27]. The formulas used in the EBCM failed to provide convergent
and accurate results for sources located at very small distances to the
model. The recent investigation of the radiated fields inside a prolate
spheroidal human body model due to a loop antenna is limited to the
scalar analysis and the φ̂-component of fields only [28].
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Figure 1. Modeling of the problem.

2. FORMULATION OF THE PROBLEM

2.1 Dielectric Prolate Spheroidal Human Head Model

In the present analysis, the human head together with the mobile
handset is modeled as a dielectric prolate spheroid with a dipole an-
tenna positioned a short distance away from it, as shown in Fig. 1,
where η is an angular coordinate, ξ is a radial one, and φ is an
azimuthal one. The focal distance is denoted by d . The regions in-
side and outside the human head are labeled as I and II, in which the
wave propagation constants are k1 and k2 , respectively. To make
reasonable assumptions, the major and minor semi-axial lengths of the
spheroid are chosen as 10 cm and 7.5 cm, respectively. The antenna
is modeled as a λ/4 dipole located at a distance of s away from the
spheroid. In this paper, two frequencies are studied, namely the GSM
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(Pan European Cellular System-Group Special Mobile, the center fre-
quency is 900 MHz) and the PCN (Personal Communications Network,
the center frequency is 1800 MHz) frequencies. The dielectric constants
of the spheroidal head are chosen as the average values of the tissue
parameters at the respective frequencies ( σ = 1.25 S/m and εr = 59
for GSM; and σ = 1.38 S/m and εr = 55 for PCN) [12, 29–31]. For
various sources and the boundary surfaces, different confocal spheroids
are assumed according to Flammer’s formulations for the Green’s func-
tion in the spheroidal system [20]. To simplify the computation with
reasonable assumptions, the orientation of the dipole is chosen to be
on the plane paralleled to the zoy plane, and the feed center of the
dipole is located at η′ = 0 and φ′ = 0 . The inclination angle of the
dipole is denoted by β , which is the angle between the linear dipole
and the z-axis .

2.2 Expansions of EM Fields using Spheroidal Vector Wave
Functions

The electromagnetic waves excited by the dipole can be expressed in
terms of the appropriate spheroidal vector wave functions by means of
the formulated dyadic Green’s functions in the spheroidal coordinate
system and the method of scattering superposition [32–35] as follows:
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where an exp(−jωt) time dependence is assumed for the EM field
quantities and it is suppressed throughout the analysis. A

(z,±)M
e
omn

,

A
(z,±)N
e
omn

, B(z,±)M
e
omn

and B(z,±)N
e
omn

are unknown coefficients to be deter-

mined from the boundary conditions. Ia = I(ξ′) · â (where â = ẑ, ŷ) ,
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where Smn(c, η) and R
(i)
mn(c, ξ) stand for the angular function and

the radial function of the i-th kind, respectively. It is worth noting
that in the limit when the focal distance d becomes zero or the ξ
approaches infinity ( η=constant), Smn(c, η) and R(i)

mn(c, ξ) reduce to
the Legendre and Bessel functions in the spherical system, respectively.
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The unknown coefficients A(z,±)M
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conditions at the spheroidal interface ξ = ξ0 :
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where the magnetic permeabilities of the two regions are assumed as
µ1 = µ2 = µ0 , and the following relations are used:
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2.3 Determination of Unknown Coefficients

Because of the orthogonality of the trigonometric functions, the co-
efficients of the same φ-dependent trigonometric function in (5a) and
(5b) must be equal, component by component; the equalities must hold
for each corresponding term in the summation over m . For the sum-
mation over n , however, the individual terms in the series cannot be
decomposed term by term. This causes the difficulty in determining
the unknown coefficients. To solve for the unknown coefficients, the
following expanded intermediate forms [22, 36, 37] are introduced:
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where the intermediates Imnt,� ( t = 0, 1, 2, · · · and $ = 1, 2, · · · , 12 )
have been provided in closed form in the Appendix A. The individ-
ual terms in the summation over t must be matched term by term,
by considering the orthogonality of the associated Legendre functions
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m−1+t(η) . By substitution of the above equations, all factors that

are functions of η are replaced by a series of the associated Legendre
functions, which are orthogonal functions in the interval −1 ≤ η ≤ 1 .
Thus, the equations used to determine the unknown coefficients con-
stitute an infinite system of coupled linear equations as follows:
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In principle, by making t sufficiently large an adequate number

of relations satisfied by unknown coefficients are formulated and the
unknown coefficients can be solved for uniquely.
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3. NUMERICAL COMPUTATION AND RESULTS

3.1 Numerical Computation

The tabulated numerical values of the angular and radial functions
in the spheroidal coordinate system that have been published to date
are not enough, particularly, for large and complex values of c [38–40].
The MathematicaTM package capable of calculating the angular and
radial functions with large c values and complex arguments has been
developed in [40]. This package has been used in this paper in order
to obtain more accurate values of the angular and radial harmonics
and the scattering coefficients of the electromagnetic fields. Practi-
cally, a system of infinite equations is truncated to a finite number of
equations, i.e., the same number of unknowns. The standard numer-
ical techniques for matrix manipulations are employed at a specified
accuracy of relative error 0.1%. Finally, the specific absorption rate
(SAR), which quantifies the power absorbed per unit mass of tissue,
is calculated. SAR is defined as σ|E|2/2ρ , where σ and ρ represent
the average conductivity and density (∼= 1050 kg/m 3 ) of the human
head model, respectively. To simplify the calculation, the transmitted
power of the dipole is assumed to be 1 watt at both the GSM and PCN
frequencies.

3.2 Results and Discussion

The various SAR distributions inside the prolate spheroidal human
head model for GSM and PCN dipoles are calculated and the results
are shown in Fig. 2–Fig. 9. The inner SAR distributions of the spherical
human head model are depicted in Fig. 10 and Fig. 11 for comparisons.
The peak SAR values in the human head models vary with the incli-
nation and location of the dipole; such variations in various cases are
also illustrated in Fig. 12 and Fig. 13. In all these figures, the dipole
is placed on the right of the model and the SAR values for each figure
are normalized to the peak value of SAR in the model.

The EM field distribution inside the spheroidal head model for a
GSM dipole differs from that for a PCN dipole, as shown in Fig. 2 and
Fig. 3. It is also seen that the inner field due to the PCN dipole exhibits
an obvious resonant effect and the normalized peak value is smaller
than that of its GSM counterpart. This is because the dimension of
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(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 2. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 GSM dipole), normalized to 3.38 W/kg. s = 1.5 cm, β =
30◦ , the unit of the coordinate is in cm.

(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 3. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 PCN dipole), normalized to 1.02 W/kg. s = 1.5 cm, β =
30◦ , the unit of the coordinate is in cm.
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(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 4. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 GSM dipole), normalized to 6.08 W/kg. s = 0.75 cm,
β = 30◦ , the unit of the coordinate is in cm.

(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 5. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 GSM dipole), normalized to 1.16 W/kg. s = 2.5 cm, β =
30◦ , the unit of the coordinate is in cm.
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(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 6. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 GSM dipole), normalized to 2.89 W/kg. s = 1.5 cm, β =
0◦ , the unit of the coordinate is in cm.

(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 7. SAR distributions (in dB) of the prolate spheroidal head
model ( λ4 GSM dipole), normalized to 5.39 W/kg. s = 1.5 cm, β =
60◦ , the unit of the coordinate is in cm.
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(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 8. SAR distributions (in dB) of the prolate spheroidal head
model (GSM small dipole), normalized to 6.18 W/kg. s = 1.5 cm,
β = 30◦ , the unit of the coordinate is in cm.

(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 9. SAR distributions (in dB) of the prolate spheroidal head
model (PCN small dipole), normalized to 2.49 W/kg. s = 1.5 cm,
β = 30◦ , the unit of the coordinate is in cm.
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(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 10. SAR distributions (in dB) of the spherical head model ( λ4
GSM dipole), normalized to 3.43 W/kg. s = 1.5 cm, β = 30◦ , the
unit of the coordinate is in cm.

(a) φ = 0 and π (rear view) (b) φ = π/2 and 3π/2 (side view)

Figure 11. SAR distributions (in dB) of the spherical head model ( λ4
PCN dipole), normalized to 1.64 W/kg. s = 1.5 cm, β = 30◦ , the
unit of the coordinate is in cm.
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Figure 12. Peak SAR value versus s and f (spheroidal and spherical
models).

Figure 13. Peak SAR value versus s and β (prolate spheroidal
model).
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the head model is close to the PCN antenna wavelength (about 17
cm). This fundamental and important aspect of the overall interaction
of microwaves with biological objects possessing a closed surface area or
containing a finite volume has been illustrated using spherical models
by many other authors [12, 14, 15]. In contrast to that of the spherical
model (as shown in Fig. 10 and Fig. 11), the cross sectional SARs
around the two poles of the spheroidal model (Fig. 2(b) and Fig. 3(b))
are much lower. It is apparent that there exist obvious differences in
the inner field distributions between the prolate spheroidal head model
and the spherical head model.

It is found that the EM field inside the head model is more con-
centrated around the central part (near the right ear and temple), but
the peak value decreases when the distance between the head and the
dipole becomes larger (as shown in Fig. 2(a), Fig. 4(a), and Fig. 5(a)).
The SAR distributions in the cross section of the head in Fig. 2(b),
Fig. 4(b), and Fig. 5(b) (side view) are similar for various distance
s , but the corresponding value decreases when the s increases. The
EM field distributions at the GSM frequency at different inclination
angles of the dipole exhibit a similar attenuation rate along the direc-
tion of wave propagation, except that the peak value of SAR increases
with the inclination angle (as illustrated in Fig. 2(a), Fig. 6(a), and
Fig. 7(a)). Apparently, there are somewhat changes of the cross sec-
tional SAR distributions due to the different inclination angles β of
the dipole (shown in profiles of Fig. 2(b), Fig. 6(b), and Fig. 7(b)).

The results of the inner SAR distributions for λ/4 dipoles and
small dipoles at the same frequencies are similar but the normalized
peak values for the small dipoles are larger (shown in Fig. 2, Fig. 3,
Fig. 8 and Fig. 9). This is due to less radiation resistance of the small
dipole antenna (the radiation power is assumed to be unchanged).

From Fig. 12 and Fig. 13, it is clear that the peak SAR values in
all the cases decay fast when the distance between the dipole and the
head model becomes larger. For the spheroidal model at the GSM
frequency, the peak value of SAR is much smaller than its spherical
counterpart when the distance s is less than 1 cm, but the value is a bit
higher when s > 3 cm. For the PCN dipole, the peak value of SAR of
the spheroidal model is always smaller than its spherical counterpart.
The peak SAR value increases with the inclination angle of the dipole
and such a difference is illustrated larger when the distance s becomes
smaller (shown in Fig. 13).
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4. CONCLUSIONS

The EM field distributions inside a dielectric prolate spheroidal human
head model are calculated using spheroidal vector wave functions and
the coupled unknown coefficients are obtained numerically. The final
results of the internal SAR distributions in various cases are presented.
It is apparent that significant differences in the inner field distribution
do exist between the prolate spheroidal head model and the spherical
head model. In view of the fact that the human head should be better
approximated by a prolate spheroid than a simple sphere, the full-wave
analysis of the EM field distribution inside the human head using the
prolate spheroidal model is more accurate and relevant to the actual
case than that using the simple spherical model.

APPENDIX A: INTERMEDIATES Imnt,� IN CLOSED FORM

A.1 The Case: m ≥ 1

In the case m ≥ 1 , the intermediates in closed form are expressed
as follows for odd (n−m) + t :

Imnt,1 = Imnt,2 = Imnt,3 = Imnt,4 = Imnt,11 = Imnt,12 = 0, (A-1a)

Imnt,5 = [N1]−1

∫ +1

−1
η(1− η2)−1/2Smm+r(c, η)P

m−1
m−1+t(η)dη

= tdmnt−1 + (2t+ 2m− 1)
∞∑

r=t+1

′
dmnr , (A-1b)

Imnt,6 = [N1]−1

∫ +1

−1
η(1− η2)1/2Smm+r(c, η)P

m−1
m−1+t(η)dη (A-1c)

=
(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)
·
[

(t+ 2m+ 1)
(2t+ 2m+ 3)

dmnt+1 +
t · dmnt−1

(2t+ 2m− 1)

]

− t(t− 1)
(2t+ 2m− 3)

·
[

(t+ 2m− 1)
(2t+ 2m− 1)

dmnt−1 +
(t− 2)

(2t+ 2m− 5)
dmnt−3

]
,
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Imnt,7 = [N1]−1

∫ +1

−1
η(1− η2)3/2Smm+r(c, η)P

m−1
m−1+t(η)dη

=
(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)(t+ 2m+ 2)(t+ 2m+ 3)

(2t+ 2m+ 1)(2t+ 2m+ 3)(t+ 2m+ 5)

·
[

dmnt+1

(2t+ 2m+ 3)
− dmnt+3

(2t+ 2m+ 7)

]

− t(t− 2m)(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)
(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

·
[

dmnt−1

(2t+ 2m− 1)
− dmnt+1

(2t+ 2m+ 3)

]

− t(t− 1)(t− 2)(t+ 2m− 1)(t+ 4m− 1)
(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)

·
[

dmnt−3

(2t+ 2m− 5)

− dmnt−1

(2t+ 2m− 1)

]
+

t(t− 1)(t− 2)(t− 3)(t− 4)
(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)

·
[

dmnt−5

(2t+ 2m− 9)
− dmnt−3

(2t+ 2m− 5)

]
, (A-1d)

Imnt,8 = [N1]−1

∫ +1

−1
(1− η2)1/2dS

m
m+r(c, η)
dη

Pm−1
m−1+t(η)dη

= −t(t+m− 1)dmnt−1 +m(2t+ 2m− 1)
∞∑

r=t+1

′
dmnr , (A-1e)

Imnt,9 = [N1]−1

∫ +1

−1
(1− η2)3/2dS

m
m+r(c, η)
dη

Pm−1
m−1+t(η)dη

=
(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)

[
(t+m+ 2)(t+ 2m+ 1)

(2t+ 2m+ 3)
dmnt+1

− t(m+ t− 1)
(2t+ 2m− 1)

dmnt−1

]
− t(t− 1)

(2t+ 2m− 3)

·
[
(t+m)(t+ 2m− 1)

(2t+ 2m− 1)
dmnt−1 −

(t− 2)(t+m− 3)
(2t+ 2m− 5)

dmnt−3

]
, (A-1f)
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Imnt,10 = [N1]−1

∫ +1

−1
(1− η2)5/2dS

m
m+r(c, η)
dη

Pm−1
m−1+t(η)dη

= Imnt,9 −
{

(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)
(2t+ 2m+ 1)(2t+ 2m+ 3)(2t+ 2m+ 5)

·
[
(t+ 1)(t+ 2m+ 2)(t+ 2m+ 3)

2(2t+ 2m+ 3)
dmnt+1

+
(t+ 2)(t+ 3)(t+ 2m+ 1)

2(2t+ 2m+ 3)
dmnt+1

+
(t+ 2m+ 2)(t+ 2m+ 3)(t+m+ 4)

(2t+ 2m+ 7)
dmnt+3

]

− t(t− 2m)(t+ 2m− 1)
(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

·
[
t(t+ 1)(t+ 2m− 1) + (t− 1)(t+ 2m)(t+ 2m+ 1)

2(2t+ 2m− 1)
dmnt−1

+
(t+ 2m)(t+ 2m+ 1)(t+m+ 2)

(2t+ 2m+ 3)
dmnt+1

]}

+
m(t+ 2)(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)

(2t+ 2m+ 1)(2t+ 2m+ 3)2
dmnt+1

+
t(t− 1)(t− 2)(t+ 4m− 1)(t+ 2m− 1)(t+m)

(t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m− 1)(2t+ 2m+ 1)
dmnt−1

+
mt(t+ 2m− 1)

2t+ 2m+ 3
·
[

t+ 1
2t+ 2m+ 1

− t(t− 2m)
(2t+ 2m− 3)(2t+ 2m− 1)

]
· dmnt−1

+
t(t− 1)(t− 2)(t− 3)(t+ 4m− 1)(t+ 2m− 1)
2(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m− 5)2

dmnt−3

− t(t− 1)(t− 2)
(2t+ 2m− 3)(2t+ 2m− 5)2

·
[
(t− 3)(t− 4)(t+m− 2)

2t+ 2m− 7

+m(t− 2)] dmnt−3 +
t(t− 1)(t− 2)(t+ 2m− 3)

(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)

·
[
(t− 2)(t− 1) + 4m(2m− 1) + (t− 2m− 1)(2m+ 1)

2(2t+ 2m− 5)

]
dmnt−3

− t(t− 1)(t− 2)(t− 3)(t− 4)(t+m− 5)
(2t+ 2m− 9)(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)

dmnt−5,

(A-1g)
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and for even (n−m) + t :

Imnt,5 = Imnt,6 = Imnt,7 = Imnt,8 = Imnt,9 = Imnt,10 = 0, (A-2a)

Imnt,1 = [N1]−1

∫ +1

−1
(1− η2)−1/2Smm+r(c, η)P

m−1
m−1+t(η)dη

= (2t+ 2m− 1)
∞∑
r=t

′
dmnr , (A-2b)

Imnt,2 = [N1]−1

∫ +1

−1
(1− η2)1/2Smm+r(c, η)P

m−1
m−1+t(η)dη

=
(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)
dmnt − t(t− 1)

(2t+ 2m− 3)
dmnt−2, (A-2c)

Imnt,3 = [N1]−1

∫ +1

−1
(1− η2)3/2Smm+r(c, η)P

m−1
m−1+t(η)dη

=
(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)(t+ 2m+ 2)

(2t+ 2m+ 1)(2t+ 2m+ 3)

·
[

dmnt
(2t+ 2m+ 1)

− dmnt+2

(2t+ 2m+ 5)

]

− 2t(t− 1)(t+ 2m)(t+ 2m− 1)
(2t+ 2m− 3)(2t+ 2m+ 1)

·
[

dmnt−2

(2t+ 2m− 3)

− dmnt
(2t+ 2m+ 1)

]
+

t(t− 1)(t− 2)(t− 3)
(2t+ 2m− 3)(2t+ 2m− 5)

·
[

dmnt−4

(2t+ 2m− 7)
− dmnt−2

(2t+ 2m− 3)

]
, (A-2d)

Imnt,4 = [N1]−1

∫ +1

−1
(1− η2)5/2Smm+r(c, η)P

m−1
m−1+t(η)dη

= Imnt,3 −
{

(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)(t+ 2m+ 2)
(2t+ 2m+ 5)(2t+ 2m+ 1)

· (t+ 2m+ 3)
(2t+ 2m+ 3)

[
(t+ 1)dmnt

(2t+ 2m+ 1)(2t+ 2m+ 3)

+
(2m+ 1)dmnt+2

(2t+ 2m+ 3)(2t+ 2m+ 7)
− (2m+ t+ 4)dmnt+4

(2t+ 2m+ 7)(2t+ 2m+ 9)

]

− t(t− 2m)(t+ 2m− 1)(t+ 2m)(t+ 2m+ 1)
(2t+ 2m− 3)(2t+ 2m+ 1)(2t+ 2m+ 3)

·
[

(t− 1)dmnt−2

(2t+ 2m− 3)(2t+ 2m− 1)
+

(2m+ 1)dmnt
(2t+ 2m− 1)(2t+ 2m+ 3)
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− (t+ 2m+ 2)dmnt+2

(2t+ 2m+ 3)(2t+ 2m+ 5)

]

− t(t− 1)(t− 2)(t+ 2m− 1)(t+ 4m− 1)
(2t+ 2m− 5)(2t+ 2m− 3)(2t+ 2m+ 1)

·
[

(t− 3)dmnt−4

(2t+ 2m− 7)(2t+ 2m− 5)
+

(2m+ 1)dmnt−2

(2t+ 2m− 5)(2t+ 2m− 1)

− (2m+ t)dmnt
(2t+ 2m− 1)(2t+ 2m+ 1)

]

+
t(t− 1)(t− 2)(t− 3)(t− 4)

(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)

·
[

(t− 5)dmnt−6

(2t+ 2m− 11)(2t+ 2m− 9)
+

(2m+ 1)dmnt−4

(2t+ 2m− 9)(2t+ 2m− 5)

− (2m+ t− 2)dmnt−2

(2t+ 2m− 5)(2t+ 2m− 3)

]}
, (A-2e)

Imnt,11 = [N1]−1

∫ +1

−1
η(1− η2)1/2dS

m
m+r(c, η)
dη

Pm−1
m−1+t(η)dη

= − t(t− 1)(t+m− 2)
(2t+ 2m− 3)

dmnt−2 +m(2t+ 2m− 1)
∞∑

r=t+2

′
dmnr

−
[
t(t− 1)(2t+ 2m+ 1)

2(2t+ 2m+ 1)
+

(t+ 2m)(t+ 2m− 1)
2(2t+ 2m+ 1)

]
dmnt , (A-2f)

Imnt,12 = [N1]−1

∫ +1

−1
η(1− η2)3/2dS

m
m+r(c, η)
dη

Pm−1
m−1+t(η)dη

=
(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)(2t+ 2m+ 3)
·
[(
t(t+ 2m+ 1)(t+ 2m+ 2)

2(2t+ 2m+ 1)

+
(t+ 1)(t+ 2)(t+ 2m)

2(2t+ 2m+ 1)

)
dmnt

+
(t+m+ 3)(t+ 2m+ 1)(t+ 2m+ 2)

(2t+ 2m+ 5)
dmnt+2

]

− 2t(t− 1)
(2t+ 2m− 3)(2t+ 2m+ 1)

·
[(

(t− 2)(t+ 2m− 1)(t+ 2m)
2(2t+ 2m− 3)

+
t(t− 1)(t+ 2m− 2)

2(2t+ 2m− 3)

)
dmnt−2

+
(t+m+ 1)(t+ 2m− 1)(t+ 2m)

(2t+ 2m+ 1)
dmnt

]
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+
t(t− 1)(t− 2)(t− 3)(t+m− 1)

(2t+ 2m− 5)(2t+ 2m− 3)2
dmnt−2

− m(t+ 1)(t+ 2m− 1)(t+ 2m)
(2t+ 2m+ 1)2

dmnt

− mt(t− 1)
(2t+ 2m+ 1)

·
[
1− 2(t− 1)(2t+ 2m− 1)

(2t+ 2m− 3)2

]
dmnt−2

+
t(t− 1)(t− 2)(t− 3)(t+m− 4)

(2t+ 2m− 7)(2t+ 2m− 5)(2t+ 2m− 3)
dmnt−4. (A-2g)

A.2 The Case: m = 0

In the case m = 0 , the intermediates reduce to the following for-
mulas for odd (n−m) + t :

I0nt,2 = I0nt,3 = I0nt,4 = I0nt,11 = I0nt,12 = 0, (A-3a)

I0nt,6 = [N2]−1

∫ +1

−1
η(1− η2)1/2S0

r (c, η)P
1
1+t(η)dη

=
t+ 3
2t+ 5

[
d0nt+1

2t+ 3
− d0nt+3

2t+ 7

]
+

t

2t+ 1

[
d0nt−1

2t− 1
− d0nt+1

2t+ 3

]
, (A-3b)

I0nt,7 = [N2]−1

∫ +1

−1
η(1− η2)3/2S0

r (c, η)P
1
1+t(η)dη

=
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)

·
[

d0nt+1

(2t+ 3)(2t+ 5)
− 2d0nt+3

(2t+ 5)(2t+ 9)
+

d0nt+5

(2t+ 9)(2t+ 11)

]

+
3t(t+ 3)

(2t+ 1)(2t+ 5)

·
[

d0nt−1

(2t− 1)(2t+ 1)
− 2d0nt+1

(2t+ 1)(2t+ 5)
+

d0nt+3

(2t+ 5)(2t+ 7)

]

− t(t− 1)(t− 2)
(2t− 1)(2t+ 1)

·
[

d0nt−3

(2t− 5)(2t− 3)
− 2d0nt−1

(2t− 3)(2t+ 1)
+

d0nt+1

(2t+ 1)(2t+ 3)

]
,

(A-3c)
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I0nt,8 = [N2]−1

∫ +1

−1
(1− η2)1/2dS

0
r (c, η)
dη

P 1
1+t(η)dη

= d0nt+1, (A-3d)

I0nt,9 = [N2]−1

∫ +1

−1
(1− η2)3/2dS

0
r (c, η)
dη

P 1
1+t(η)dη

=
(t+ 3)(t+ 4)

2t+ 5

[
d0nt+1

2t+ 3
− d0nt+3

2t+ 7

]

− t(t− 1)
2t+ 1

[
d0nt−1

2t− 1
− d0nt+1

2t+ 3

]
, (A-3e)

I0nt,10 = [N2]−1

∫ +1

−1
(1− η2)5/2dS

0
r (c, η)
dη

P 1
1+t(η)dη

= I0nt,9 −
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)
·
[

(t+ 1)d0nt+1

(2t+ 3)(2t+ 5)

+
1

2t+ 7

(
t+ 6
2t+ 9

− t+ 1
2t+ 5

)
d0nt+3 −

(t+ 6)d0nt+5

(2t+ 11)(2t+ 9)

]

− t(t+ 3)
2t+ 3

(
t+ 4
2t+ 5

− t− 1
2t+ 1

)
·
[

(t− 1)d0nt−1

(2t− 1)(2t+ 1)

+
1

2t+ 3

(
t+ 4
2t+ 5

− t− 1
2t+ 1

)
d0nt+1 −

(t+ 4)d0nt+3

(2t+ 7)(2t+ 5)

]

+
t(t− 1)(t− 2)
(2t+ 1)(2t− 1)

·
[

(t− 3)d0nt−3

(2t− 5)(2t− 3)

+
1

2t− 1

(
t+ 2
2t+ 1

− t− 3
2t− 3

)
d0nt−1 −

(t+ 2)d0nt+1

(2t+ 3)(2t+ 1)

]
,

(A-3f)
and for even (n−m) + t :

I0nt,6 = I0nt,7 = I0nt,8 = I0nt,9 = I0nt,10 = 0, (A-4a)

I0nt,2 = [N2]−1

∫ +1

−1
(1− η2)1/2S0

r (c, η)P
1
1+t(η)dη

=
d0nt

(2t+ 1)
− d0nt+2

(2t+ 5)
, (A-4b)
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I0nt,3 = [N2]−1

∫ +1

−1
(1− η2)3/2S0

r (c, η)P
1
1+t(η)dη

=
(t+ 3)(t+ 4)

(2t+ 5)

[
d0nt

(2t+ 1)(2t+ 3)
− 2d0nt+2

(2t+ 3)(2t+ 7)

+
d0nt+4

(2t+ 7)(2t+ 9)

]
− t(t− 1)

(2t+ 1)

·
[

d0nt−2

(2t− 3)(2t− 1)
− 2d0nt

(2t− 1)(2t+ 3)
+

d0nt+2

(2t+ 3)(2t+ 5)

]
,

(A-4c)

I0nt,4 = [N2]−1

∫ +1

−1
(1− η2)5/2S0

r (c, η)P
1
1+t(η)dη

= I0nt,3 −
(t+ 3)(t+ 4)(t+ 5)(t+ 6)

(2t+ 5)(2t+ 7)(2t+ 9)

·
[

d0nt+2

(2t+ 5)(2t+ 7)
− 2d0nt+4

(2t+ 7)(2t+ 11)
+

d0nt+6

(2t+ 11)(2t+ 13)

]

− (t+ 3)(t+ 4)
2t+ 5

·
[

(t+ 1)(t+ 5)
(2t+ 5)(2t+ 7)

+
3t

(2t+ 1)(2t+ 5)

]

·
[

d0nt
(2t+ 1)(2t+ 3)

− 2d0nt+2

(2t+ 3)(2t+ 7)
+

d0nt+4

(2t+ 7)(2t+ 9)

]

− t(t− 1)
2t+ 1

·
[

3(t+ 3)
(2t+ 1)(2t+ 5)

− (t+ 2)(t− 2)
(2t+ 1)(2t− 1)

]

·
[

d0nt−2

(2t− 3)(2t− 1)
− 2d0nt

(2t+ 3)(2t− 1)
+

d0nt+2

(2t+ 3)(2t+ 5)

]

+
(t(t− 1)(t− 2)(t− 3)

(2t+ 1)(2t− 1)(2t− 3)

·
[

d0nt−4

(2t− 7)(2t− 5)
− 2d0nt−2

(2t− 1)(2t− 5)
+

d0nt
(2t+ 1)(2t− 1)

]
,

(A-4d)

I0nt,11 = [N2]−1

∫ +1

−1
η(1− η2)1/2dS

0
r (c, η)
dη

P 1
1+t(η)dη

=
(t+ 3)
(2t+ 5)

d0nt+2 +
t

(2t+ 1)
d0nt , (A-4e)

I0nt,12 =
∫ +1

−1
η(1− η2)3/2dS

0
r (c, η)
dη

P 1
1+t(η)dη
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=
(t+ 3)(t+ 4)(t+ 5)

(2t+ 5)(2t+ 7)

(
d0nt+2

(2t+ 5)
− d0nt+4

(2t+ 9)

)

+
3t(t+ 3)

(2t+ 1)(2t+ 5)

(
d0nt

(2t+ 1)
− d0nt+2

(2t+ 5)

)

− t(t− 1)(t− 2)
(2t− 1)(2t+ 1)

(
d0nt−2

(2t− 3)
− d0nt

(2t+ 1)

)
. (A-4f)

The normalized coefficients N1 and N2 are given by

N1 = Nm−1,m−1+t =
2

2t+ 2m− 1
(t+ 2m− 2)!

t!
, (A-5a)

N2 = N1,1+t =
2

2t+ 3
(t+ 2)!
t!

. (A-5b)

APPENDIX B: EXPRESSIONS OF Uq(i),te
omnθ

,Uq(i),te
omnφ

, Vq(i),te
omnθ

,

AND Vq(i),te
omnφ

(q = z,±, AND i = 1, 2)

Uz(i),te
omnθ

(c) =
(
2mR(i)

mn(c, ξ0)
)

·
[
(ξ20 − 1)2Imnt,5 (c) + 2(ξ20 − 1)Imnt,6 (c) + Imnt,7 (c)

]
, (B-1a)

Vz(i),te
omnθ

(c) =
2
c

{[
(ξ20 − 1)2

dR
(i)
mn(c, ξ0)
dξ0

]
Imnt,11(c)

+

[
(ξ20 − 1)

dR
(i)
mn(c, ξ0)
dξ0

+ 2ξ0R(i)
mn(c, ξ0)

]
Imnt,12(c)

− (ξ20−1) ·
[
ξ0

(
λmn − c2ξ20 −

m2

ξ20 − 1

)
R(i)
mn

−(ξ20 + 1)
dR

(i)
mn(c, ξ0)
dξ0

]
Imnt,2 (c)

−
[
ξ0

(
λmn − c2ξ20

)
R(i)
mn + (ξ20 − 1)

dR
(i)
mn(c, ξ0)
dξ0

]
Imnt,3 (c)

+
[
m2ξ0(ξ20 − 1)R(i)

mn(c, ξ0)
]
Imnt,1 (c)

}
, (B-1b)

Uz(i),te
omnφ

(c) = R(i)
mn(c, ξ0)I

mn
t,12(c)− ξ0

dR
(i)
mn(c, ξ0)
dξ0

Imnt,3 (c), (B-1c)
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Vz(i),te
omnφ

(c) =
m

c

{[
ξ0

ξ20 − 1
R(i)
mn(c, ξ0)

]
Imnt,9 (c) +

dR
(i)
mn(c, ξ0)
dξ0

Imnt,6 (c)

}
,

(B-1d)

U±(i),t
e
omnθ

(c) =

(
dR

(i)
mn(c, ξ0)
dξ0

∓ mξ0
ξ20 − 1

R(i)
mn(c, ξ0)

)

·
[
(ξ20 − 1)2Imnt,2 (c) + 2(ξ20 − 1)Imnt,3 (c) + Imnt,4 (c)

]
, (B-2a)

V±(i),t
e
omnθ

(c) =
1
c

{[
(ξ20 − 1)

(
λmn − c2ξ20 +

m2

ξ20 − 1

)
− 2m(m± 1)

]

·R(i)
mn(c, ξ0)− ξ0(ξ20 − 1)

dR
(i)
mn(c, ξ0)
dξ0

}
Imnt,6 (c)

∓
[
(m± 1)(ξ20 − 1)R(i)

mn(c, ξ0)
]
Imnt,8 (c)

+
[(
λmn − c2ξ20 ∓

m

ξ20 − 1

)
R(i)
mn(c, ξ0)

+ ξ0
dR

(i)
mn(c, ξ0)
dξ0

]
Imnt,7 (c) +

[
ξ0(ξ20 − 1)

dR
(i)
mn(c, ξ0)
dξ0

− (3± 2m)R(i)
mn(c, ξ0)

]
Imnt,9 (c) +

[
ξ0
dR

(i)
mn(c, ξ0)
dξ0

+
(

2∓ m

ξ20 − 1

)
R(i)
mn(c, ξ0)

]
Imnt,10(c)

−
[
m(m± 1)(ξ20 − 1)R(i)

mn(c, ξ0)
]
Imnt,5 (c)

 , (B-2b)

U±(i),t
e
omnφ

(c) = (ξ20 − 1)
dR

(i)
mn(c, ξ0)
dξ0

Imnt,6 (c) + ξ0R(i)
mn(c, ξ0)I

mn
t,9 (c), (B-2c)

V±(i),t
e
omnφ

(c) =
1
c

{[
m(m± 1)R(i)

mn(c, ξ0)
]
Imnt,1 (c)

+
[
(1±m)R(i)

mn(c, ξ0)
]
Imnt,11(c)−

[
c2R(i)

mn(c, ξ0)
]
Imnt,3 (c)

+
[(
−c2(ξ20 − 1) +

m(m± 1)
ξ20 − 1

)
R(i)
mn(c, ξ0)

]
Imnt,2 (c)

−
[
(1±m)ξ0

dR
(i)
mn(c, ξ0)
dξ0

]
Imnt,2 (c)

}
. (B-2d)
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