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1. INTRODUCTION

The wave propagation in a DFB laser (Fig. 1) primarily shows a 2-D na-
ture. The major number of the physical characteristics of a DFB struc-
ture is directly influenced by the 2-D electromagnetic field distribution
inside this structure. Consequently the common one–dimensional (1-
D) models of DFB lasers based on the assumption of longitudinal wave
propagation involve an inherent approximation.

The first reported analysis of a DFB laser by Kogelnik [1] is an
example of a 1-D analysis utilizing coupled-wave theory. In this and
also in a large variety of 1-D coupled-wave analyses, the transversal
variation of the electromagnetic field is either ignored or just described
approximately by a confinement factor. The evaluation of this factor
and of other parameters like the coupling coefficient κ which play
an important role in 1-D analyses has been studied in many different
papers [2–4].

Attention has also been paid to the 2-D wave propagation in the pe-
riodic structure of a DFB laser. To our knowledge, there have been two
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Figure 1. A typical DFB laser.

basic methods for the treatment of this problem by now, namely the
modal analysis [5] and a modified 2-D coupled-wave theory [6]. In the
former method, the problem of wave propagation in an infinite peri-
odic structure is reduced to an eigenvalue problem for the modes guided
by the periodic structure. The starting point of the latter method is
the assumption of a set of coupled forward and backward propagating
waves, so that a system of differential equations for the amplitudes of
these waves describes the wave propagation.

It is the aim of this work to develop a completely different 2-D field
analysis which enables us to accurately determine the field distribu-
tion in a DFB structure. For this purpose, we shall first characterize
the set of waves guided by the periodic waveguide of a DFB struc-
ture. To this end we present, in accordance to our previous work [7],
an electrical network the mathematical description of which coincides
with the governing equations for the total field in a DFB structure.
As a result, the field analysis may be reduced to a network analysis.
In this case, the natural frequencies and their corresponding zero-input
responses [8] of the equivalent network yield the wave numbers and the
field distribution of the guided waves, respectively. This analysis can
be carried out very efficiently with the help of the common methods for
the analysis of electrical networks. It is worth noting that the neces-
sary input parameters for the existing 1-D analyses, e.g., the coupling
coefficient and the confinement factor, can be regarded as by-products
of the method of this paper. In Section 2 we develop a basic mathe-
matical modeling to describe the 2-D field distribution in the periodic
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region of a DFB structure. With the help of this modeling, a network
consisting of ideal TEM transmission lines is presented in Section 3.
In the same section, we will discuss the method used to evaluate the
natural frequencies and the zero-input responses of the equivalent net-
work. Section 4 is devoted to numerical results of applying our method
to some problems which have already been analyzed by other methods.
Finally, we summarize the basic points of the work in Section 5.

2. TWO-DIMENSIONAL MODEL OF PERIODIC
WAVEGUIDES

In this section, we will propose a method to convert Maxwell’s equa-
tions inside the periodic region of a DFB structure into a system of
first-order differential equations. These equations constitute the basis
for a network modeling which is of primary importance in the present
work.

Fig. 2 shows the periodic region of the DFB structure from Fig. 1.

Figure 2. Geometry of a periodic layer with a period of d .

We assume no variation in y-direction (∂/∂y = 0) . Thus for
TEz-polarized waves, the y-component of the electric field Ey satis-
fies the wave equation

∂2Ey(x, z)
∂x2

+
∂2Ey(x, z)

∂z2
+ k2

oεg(z)Ey(x, z) = 0 (1)

where εg(z) represents the relative permittivity of the periodic region,
and ko = 2π/λo with λo as free-space wavelength. The periodic
variation of εg(z) can be expressed in the form of a Fourier series, i.e.,

εg(z) =
∞∑

m=−∞
ε̄m e−j2mπz/d , (2)
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where

ε̄m =
1
d

∫ d

0
εg(z) e+j2mπz/ddz . (3)

Here d means period of the variation of the dielectric constant. Re-
garding the periodicity of εg(z) , the general solution of eq. (1) can be
written as pseudo-periodic function

Ey(x, z) =
∞∑

m=−∞
Ēm(x) e−jγmz, γm =

(
γ +

2mπ

d

)
. (4)

Solution (4) is a linear combination of terms with exp(−jγmz) called
space harmonics in analogy to the common time-harmonic functions.
The values of γm correspond to the wave numbers of these space har-
monics.

The magnetic field Hz(x, z) can be expressed in the same form

Hz(x, z) =
∞∑

m=−∞
H̄m(x)e−jγmz. (5)

If we define Ey(x) and Hz(x) as vectors consisting of the expansion
coefficients Ēm and H̄m in eqs. (4) and (5), we obtain after substi-
tuting eqs. (2), (4), and (5) into Maxwell’s equations

d

dx

[
Ey(x)
Hz(x)

]
= −jω

[
0 µ0I

ε0N 2 0

] [
Ey(x)
Hz(x)

]
(6)

with
N 2 = n2 − 1

k2
o

[Γ]2 , (7)

where I means the identity matrix and n2 is defined as

n2 =



· · · · · · · · · · · · · · · · · · · · ·
· · · ε̄1 ε̄0 ε̄−1 ε̄−2 ε̄−3 · · ·
· · · ε̄2 ε̄1 ε̄0 ε̄−1 ε̄−2 · · ·
· · · ε̄3 ε̄2 ε̄1 ε̄0 ε̄−1 · · ·
· · · · · · · · · · · · · · · · · · · · ·


 . (8)

[Γ] is a diagonal matrix whose elements are the wave numbers γm .
The system of differential equation (6) is equivalent to Maxwell’s equa-
tions in the periodic region, and shows the desired form for modeling
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it by an equivalent network as we will explain later. It should be noted
that eq. (6) is valid in the homogeneous regions of a DFB structure
as well. In those regions, where the relative permittivity is constant,
the formulation can be simplified regarding the fact that all Fourier
coefficients ε̄m in eq. (2), except for ε̄0 , are reduced to zero. In other
words, the above formulation can be applied to each region of a DFB
structure without any restrictions.

Solving eq. (6) for the case that the electric and magnetic fields in
the plane x = 0 are known, we find these fields at any other plane x
from [

Ey(x)
Hz(x)

]
= [A]

[
Ey(0)
Hz(0)

]
, (9)

where

[A] =
[

cos(koNx) −jηoN−1 sin(koNx)
−j/η0 sin(koNx) cos(koNx)

]
(10)

with ηo =
√

µo/εo . To simplify the calculation of [A] , one may
diagonalize the matrix N according to

N 2 = [P ] [D] [P ]−1 . (11)

Here [P ] is a matrix whose columns are the eigenvectors of N 2 ,
whereas matrix [D] is a diagonal matrix with diagonal elements λ2

m ,
i.e., the eigenvalues of N 2 . Hence we introduce new vectors Êy(x)
and Ĥz(x) according to

Ey(x) = [P ] Êy(x),

Hz(x) = [P ] Ĥz(x),
(12)

in order to replace the vectors Ey(x) and Hz(x) . After this trans-
formation, the submatrices of [A] are all diagonalized, and we arrive
at [

Êy(x)
Ĥz(x)

]
=

[
A B
C D

] [
Êy(0)
Ĥz(0)

]
(13)

with
A = D = [cos(koλmx)]

B = −
[
j
ηo
λm

sin(koλmx)
]

C = −
[
j
λm
ηo

sin(koλmx)
]

.
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Equation (13) is equivalent to a chain matrix representation for an
infinite set of uncoupled transmission lines. According to eq. (13), at
each point x the voltage and current of the i-th transmission line
correspond to the i-th element of the vectors Êy(x) and Ĥz(x) , re-
spectively. The propagation constant of the i-th transmission line is
given by λi , while its characteristic impedance reads ηo/

√
λi . We will

utilize these results in the next section to develop an electrical model
for a given DFB structure.

3. ELECTRICAL MODELING OF DFB STRUCTURES

Applying the mathematical modeling introduced in the previous sec-
tion to a DFB structure, we will now introduce an electrical model
which can be used to determine the 2-D field distribution in such a
structure.

A 2-D drawing of the DFB structure of Fig. 1 is illustrated in
Fig. 3(a), where a rectangular groove shape has been assumed for the
periodic region or grating. Note that other groove shapes may be an-
alyzed by subdividing the grating into a finite number of layers and
approximating each of these layers by using a grating with rectangular
profile.

Fig. 3(b) depicts the equivalent network of the shown structure. It
consists of a set of cascaded transmission lines which are connected to
multiport networks T1 and T2 . The transmission lines in the periodic
region x1 < x < x2 model the wave propagation in accordance with
eq. (13). With regard to this equation, the characteristic admittance
of the m-th transmission line is given by

Ym =
√

λm/ηo. (14)

In a homogeneous region, this admittance can be calculated from

Ym =
√

k2
oεn − γ2

m/ηoko, (15)

where εn (n = s, f, d, c) represents the relative permittivity of the
corresponding homogeneous region. In the last relation, we have taken
into account that the m-th space harmonic exp(−jγmz) propagates
in a region with constant relative permittivity εn .

The multiport networks T1 and T2 are included in the equiva-
lent network of Fig. 3(b) in order to model the transformations at the
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Figure 3. (a) Geometry of a general DFB structure with rectangular
grating, (b) network model for one period.

interfaces of the periodic region given by eq. (12). For instance, at
x = x2 the network T2 performs the transformations Ey(x = x+

2 ) =
[P ] Êy(x = x−2 ) and Hz(x = x+

2 ) = [P ] Ĥz(x = x−2 ) .
The relation between Ey(x = x+

2 ) and Hz(x = x+
2 ) can be estab-

lished by determining the admittances at x = x2 when looking into
positive x-direction (see Fig. 3(b)). This leads to

Hz(x = x+
2 ) = [Yload] Ey(x = x+

2 ) (16)

with an admittance matrix [Yload] . The vector transformation carried
out by T2 maps this admittance matrix into the matrix

[Yin] = [P ]−1 [Yload] [P ] , (17)
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which is comparable to the function of a transformer. Matrix [Yin]
relates the voltages and currents in the periodic region according to

Ĥz(x = x−2 ) = [Yin] Êy(x = x−2 ) . (18)

Equations (14) to (18) constitute a complete characterization of the
network model in Fig. 3(b). Using these relations, we will now analyze
the equivalent network in order to determine the set of guided modes
and their corresponding propagation constants.

Since the natural frequencies of this network correspond to the prop-
agation constants of the DFB structure, we should determine the zero-
input response of the network. To this end, the network is divided into
two parts, e.g., at plane S in Fig. 3(b). The upward and downward
propagating waves are terminated at this plane with reflection matri-
ces [Γu] and [Γd] , respectively. Thus the continuity of voltages and
currents at plane S requires

det([Γd] [Γu]− I) = 0, (19)

what constitutes a dispersion relation for the waves guided by the DFB
structure. The values of γ (see eq. (4)) which satisfy eq. (19) form the
set of possible propagation constants.

On the other hand, any eigenvector of the product [Γd] [Γu] with
corresponding eigenvalue of unity can be thought to represent the zero-
input response of the equivalent network. These eigenvectors determine
the incident waves of the transmission lines at that plane at which the
above product is defined. Starting with these incident waves, one is
able to evaluate the voltages and currents of the equivalent network at
any x which determine the expansion coefficients Ēm(x) and H̄m(x)
in eqs. (4) and (5), respectively. Substitution of the obtained expan-
sion coefficients in eqs. (4) and (5) leads to the required 2-D field
distributions Ey(x, z) and Hz(x, z) of each mode guided by the DFB
structure.

4. NUMBERICAL RESULTS AND DISCUSSIONS

In the following, the developed network modeling is applied to the
analysis of some practical DFB structures.

As first example, we examine the propagation characteristics of the
thin-film structure shown in the insert of Fig. 4. This structure has
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been analyzed in [5, 9] by a modal analysis which is based on a Hill
differential equation studied in [10]. Fig. 4 shows the results obtained
by our method in comparison with those computed by a perturbational
method and by the method of [9]. Note the excellent agreement of the
numerical results of this work with those reported in [9].

Our Method           

Peng                 

Perturbational Method
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Figure 4. Variation of the attenuation factor α versus grating thick-
ness tg . d is the period of the grating.

The diagram of Fig. 4 shows the imaginary part of the propagation
constant γ for the lowest propagating mode as function of grating
thickness tg . We have assumed γ = β − jα so that α represents an
attenuation constant in the direction of propagation. Damping can be
caused either by radiation or by the Bragg effect in the vicinity of the
stop band. In the particular example of Fig. 4, radiation has caused
the shown attenuation since the working frequency is far from the stop
band (i.e., Λ �= mλg/2 , where m is an integer number, characterizing
the order of the grating, Λ and λg are the period of the grating and
the wavelength of the guided wave, respectively).

The expansions (4) and (5) have been truncated in the numerical
analysis. By retaining only coefficients with m = −M up to m = M ,
we have realized that even a value of M = 7 leads to fast relative
convergence.

Periodic structures have found a broad spectrum of applications in
the field of integrated optics, e.g., in filter structures. The filtering
property of periodic structures is basically a result of the presence
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of stop-bands where the longitudinal wave number becomes complex.
In this case, the incident wave decays exponentially and is reflected
backward. To show this property, we consider the structure illustrated
in Fig. 5.

Figure 5. A typical filter used in integrated optics. The periodic
structure is terminated by two dielectric slab waveguides.

In this filter, the periodic waveguide fills the region 0 < z < l which
is terminated by two dielectric slab waveguides extending in regions
z ≤ 0 and z ≥ l . To determine the transmission characteristic of
this filter, we expand the total field inside the periodic waveguide in
terms of the set of all waves guided by the structure. This expansion
is matched in planes a and b of Fig. 5 to a similar expansion for the
slab waveguides. In the course of that matching, we pay attention to
the transversal components of both electric and magnetic fields.

Since the filter of Fig. 5 has a shielded construction, the spectrum of
the guided waves is discrete. In the following computations, we have
considered 10 modes of this spectrum for both the slab waveguides
and the DFB structure. In Fig. 6, the computed transmission and
reflection characteristics of this filter are shown as a function of the
grating period for a free-space wavelength of λo = 1µm . The number
of periods in the DFB structure is assumed to be 20.

As can be seen, this passive DFB structure has a characteristic like
that of a band-stop filter for frequencies at which the Bragg condition
is fulfilled. The 2-D electric field distribution is visualized in Fig. 7
for the case that the grating period amounts to d = 0.41µm and that
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Figure 6. Reflection and transmission characteristics of the filter il-
lustrated in Fig. 5 versus the grating period for 20 periods.

the DFB structure contains 10 periods. As can be seen in Fig. 7, the
electric field decays exponentially while propagating in z-direction .
Note also that the standing wave on the left hand side is caused by the
reflected wave. Moreover, the distributed nature of the reflected wave
can be recognized in Fig. 7 clearly.

Fig. 8 shows a structure to be considered next. It is an example of
an active structure used in a DFB laser. In this laser, the active layer
is characterized by its relative permittivity εf and its gain go per unit
length. The effective gain parameter computed by our method is seen
in Fig. 8 in comparison with the computed values using the method
proposed by Wang [11, 12].

His results which are based on a truncated Floquet representation of
the total field considerably deviate from those given by the 2-D method
of this work because the model of [11] does not take into account the
mode conversion at the junction of two succeeding steps of the grating
thus leading to an inaccuracy in the final results.

As final example, we examine a Multi-Quantum-Well (MQW)-DFB
laser. There is an increasing interest in the applications of MQW-
DFB lasers, which is partly owing to the fact that MQW laser diodes
show the desirable characteristics of a low threshold current and a
tunable lasing wavelength by modifying the structure of the quantum
well layers [13]. The selected MQW-DFB laser has 10 active quantum
well layers each of which is buried between two barrier layers (passive
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Figure 7. The two-dimensional field distribution of the structure il-
lustrated in Fig. 5 for 10 periods.
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Figure 8. Gain (imaginary part of the propagation constant) for the
structure shown in the insert calculated by our method (solid line) and
by Wang’s model (dashed line). d and go are period of the grating
and the gain of the active layer ( εf = 1.560 ), respectively.

quantum well layers). Its lasing wavelength amounts to λo = 1532nm .
The grating has a period of 235 nm and a duty cycle of 35%. Table 1
summarizes other parameters of this structure.

Firstly, we have calculated the attenuation of the structure in the
Bragg region for the first and second order of the grating. The results
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Layer Thickness [nm] Refracting Index

1 1000 3.162
2 40 3.381

3, 5, 7, . . . 23 4.8 3.381
4, 6, 8, . . . 22 7.8 3.595

24 57 3.381
25 45 3.165
26 28 3.256
27 1000 3.156

Table 1. Parameters of the simulated MQW–DFB structure.

of this simulation can be seen in Fig. 9.
The attenuation is maximum at the Bragg-wavelength. The max-

imum of this attenuation which is related to the coupling coefficient
κ and to the bandwidth of the Bragg region, decreases for the second
order of the grating to about 43% of its value for the first order. Fig. 10
shows the normalized distribution of the transversal electric field. The
refractive indices of different regions of the quantum well layers (active
and passive) as well as that of the grating layer are also depicted.

As can be seen, the electric field is maximum in the quantum well
layers and decays exponentially towards the substrate and top lay-
ers. For this structure, the computed effective index of refraction, i.e.,
neff = λo/λg where λg represents the guide wavelength, amounts to
3.256 . Figs. 11 and 12 are visualizations of the 2-D electric field distri-
bution inside the structure of Fig. 10. From the total 2-D distribution
of the electric field, we can calculate the confinement factor. This fac-
tor, which represents the fraction of the total intensity in the active
region of the laser, is defined according to

Γ =

∫
acticeE

2
y(x)dx∫∞

−∞E2
y(x)dx

. (20)

The simulated confinement factor for the shown structure is about
Γ = 0.15 .
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Figure 9. Computed attenuation of the MQW structure of Table 1 in
the Bragg region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [µm]

R
el

at
iv

e 
fie

ld
 In

te
ns

ity
 a

t z
=

0
n(x)

3.156

3.595

3.266

3.485

Q
ua

nt
um

 L
ay

er
s 

 

G
ra

tin
g 

  

Figure 10. Transversal electric field distribution for the first order of
the grating of the MQW structure characterized in Table 1.

5. CONCLUSIONS AND SUMMARY

In this work, we have developed a network of ideal transmission lines,
the voltages and currents of which satisfy a system of differential equa-
tions analog to 2-D Maxwell’s equations governing the electromagnetic
field in a DFB structure. The parameters of this network can directly
be determined from the physical parameters of the DFB structure to
be investigated.

To determine the propagation constants of the set of waves guided
by the DFB structure, we analyze the equivalent network for zero-input
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Figure 11. 2-D electric field distribution inside the investigated MQW
structure for first order of the grating.
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Figure 12. 2-D electric field distribution inside the investigated MQW
structure for second order of the grating.

response which leads to a dispersion relation for the guided waves. The
steps of this analysis can be carried out very efficiently. Moreover, the
equivalent network may be applied to any arbitrary DFB structure
without any restriction on its physical parameters.

We have shown that the application of this 2-D method leads to
results with higher accuracy in comparison with those obtained by
the common 1-D analyses of DFB structures. The reason for that
is the possibility of a precise modeling of all scattering phenomena
contributing to the wave propagation in a DFB structure.
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