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1. INTRODUCTION

In electromagnetic wave theory and optics, the analysis of the diffrac-
tion by gratings is a very important problem, and diffraction character-
istics of various kinds of gratings have been investigated so far [1-4]. In
most of these analyses, it is assumed that the periodic structure of the
grating has infinite extent. The actual gratings, however, have finite
extent and their diffraction characteristics are different from those of
infinite gratings because of the “end-effects” that caused by the ends
of the finite gratings. Therefore, the diffraction by finite gratings have
also been analyzed and diffraction characteristics have been investi-
gated [5-9]. On the other hand, the most suitable model for analyzing
the end-effects of finite gratings is a semi-infinite grating, because it
can provide end-effects contributions in pure form as the Sommerfeld’s
solution for half-plane can provide the information of edge diffraction.
However, the analysis of the diffraction by a semi-infinite grating is
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much difficult because the Floquet’s theorem cannot be applied to it,
and there are very few reports about this problem. Hills and Karp [10]
have analyzed this problem by using the Wiener-Hopf technique and
have revealed the interesting diffraction phenomena. In their analysis,
the problem have been solved under the assumption that the thin wire
elements are widely spaced relative to the wavelength. However, it is
necessary to reveal the diffraction characteristics for narrow spacing
in using the finite grating for practical applications such as frequency
selective surface or polarization selective surface [11-13].

In this paper, we analyze the diffraction of plane electromagnetic
wave by a semi-infinite strip grating and investigate the end-effects
contribution. In this analysis we assume that each strip is narrow rel-
ative to the wavelength, but there is no restriction in spacing of the
strip elements. In the formulation, we divide the current induced on
each strip into two currents, the periodic current on the infinite strip
grating and the correction current induced by the truncation of the
periodic structure. These currents are determined by solving a set of
integral equations. (Outline of the formulation were reported in the
previous letter [14].) In order to investigate the end-effect contribu-
tion, numerical calculations are carried out for current distribution,
diffraction patterns, and radiated powers by the induced currents.

2. FORMULATION OF THE PROBLEM

Let us consider a semi-infinite strip grating as shown in Fig. 1(a). The
spacing between the strips is d and each strip has a width 2a. The
incident wave is an FE-polarized plane wave given by

El(x y) — efik(xsin&;fycosei) (1)

where 6; is an incident angle, k = w,/€opo = 27/ is a wavenumber,
and A is a wavelength. The current induced on each strip has only
a z-component. For convenience, let us divide the current density on
the n-th strip J*(nd + 2)(|z| < a) into two parts:

Jh(nd + z) = JP(nd + z) + J¢(nd + x) |z| < a, n=0,12,---

(2)
where JP(nd+ x) is the current on the infinite strip grating as shown
in Fig. 1(b) and J¢(nd+x) is the unknown correction current induced
by the removal of the strips located on negative x axis. For periodicity
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Figure 1. Geometry of the problem.

of the structure, JP(nd + z) satisfies the following periodic condition
JP(nd + z) = e~ Mol JP () (3)
,30 = ksin Ql (4)

From physical consideration, it is obvious that J h(nd—i—:}:) approaches
JP(nd + ) as n increases. Therefore, J(nd + x) has a following
important property:

|J¢(nd 4+ x)| — 0 as  n— oo (5)

The integral representation of the scattered field EP from an infinite

strip grating of Fig. 1(b) has only z component and expressed as
follows:

EP(z,y) = —iwpo Z e~nbod [ JP(e\G(z,y|nd + ', 0)dz’  (6)

n=—00 —a

where G(z,y|z’,y’) is the two-dimensional Green’s function

Gyl o) = GHO UG P T —9) ()



42 Nishimoto and Ikuno

and Hé2) is the Hankel function of the second kind. By applying the
boundary condition

E'(nd+z,0)+FEP(nd+z,0) =0 for |z|<a, n=0,41,+2,--- (8)

to Eq. (6), we can derive the following integral equation for JP(x).

E'(x,0) = iwug Z e_m’god/ JP(2")G(x,0nd + 2',0)d’, |z| < a

n=—oo

(9)
Similarly, the integral representation of the diffracted field from a semi-
infinite strip grating is expressed as

Ef(z,y) = —iwpo Z / JMnd + 2)G(z,ylnd + 2, 0) dz’  (10)
and the integral equation for J¢(nd + ) is expressed as follows:

E'(md + 2,0) = iwpug Z e~ inPod Jp(:c’)G(md + z,0|nd + 2, 0)dz’

+zw,u,02/ J¢(nd + 2")G(md + z,0/nd + 2',0)dz’

|z <a, m=0,1,2,--- (11)

where we use Egs. (2) and (3). If JP(x) is obtained by solving Eq. (9),
then J¢(nd + x) can be determined by solving Eq. (11).

In order to solve Egs. (9) and (11), we assume that the strip is
narrow relative to the wavelength:

2ka << 1 (12)

Under the above assumption, the phase of the current on the strip
is considered to be constant over the strip, but the amplitude has
singularities at the edges of the strip. Taking account of the edge
condition, J? and J¢ can be approximated as follows:

LA
1—(z/a)*
2 7.
Jc(nd—i-fl?)%—i ’$‘Sa, n:071727”' (14)
1—(z/a)?

JP(z) =~ lz] <a (13)
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where J* and J, are the unknown constants to be determined and
they correspond to the averaged current densities on the strips. Since
the strip is narrow, both sides of Egs. (9) and (11) are considered to be
constant over the range |x| < a, and they are approximated by their
average values. Taking the average of the both sides of Eqs. (9) and
(11) yields

_ E
p 0
= 15
2iwppa(S1 + Go) (15)
and
ianmjfl _ 24@% _ P —imBod <52 n ie—ilﬂodGl>
= iwpoa — (16)
m=0,1,2,---
where
1 [
E,6 =~ E'(md+ z) dz (17)
a

—a

z,0lnd + 2/,0) dz'dx

6=z [, %“

1
IH7§2)(k|n|d) ‘n#0
3
1 1 1 ka
>0 g (g (18)
11 ka 1
- _ = In—2 i G 2 =
{4z 2 <+ 4>+207r} go(ka)” in=0
Sp= Y e g, (19)
Y0
Sy =) e mig, (20)
n=1

and v = 0.5772--- is Euler’s constant. In the calculation of Gg, we
have used the approximation of the Hankel function for small argument
(see Eq. (A-8)) [15].

Equation (16) is an infinite set of equations to determine the un-

—=C . —C .
known constants J,. Since .J, approaches zero as n increases
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(see Eq. (5)), truncating Eq. (16) and solving it numerically, the un-

known constants J,, can be determined. Here, we should note that the

convergence of the series S; and S is very slow and it is necessary
to transform them into rapidly converging series. This can be done
by using the Poisson’s sum formula [16], and results are described in
Appendix.

Note that this calculation method is equivalent to the Method of
Moment in which the function 1/4/1 — (x/a)? and the constant are
used as the bases function and the weighting function, respectively.

3. FAR FIELD REPRESENTATION

Scattered field is expressed as follows:
E*(z,y) = B*P)(z,y) + E*)(z, y) (21)

where E*®) and FE*© are the fields radiated by the currents J?
and J° respectively, and E*®) is called a “Kirchhoff solution” [10].
Referring to Egs. (10), these fields are expressed as follows:

Es(l’) (:E,y) = —iwg Ze—mﬁod/ Jp($,)G(ﬂ§,y |nd + x/70) dz’
n=0 @
(22)
B (2,y) = —iwopo Y / Jé(nd +2')G(z,y |nd + «',0) dz’
n=0" "¢

(23)

For convenience, let us transform Eqs. (22) and (23) into Fourier inte-
gral representations. Fourier transform and its inverse transform are

defined by
FQ) = [ fla)es do
. | (24)
f@) = 5= [ P ac

where the contour C' is the infinite paths in the complex (-plane as
shown in Fig. 2(a). By using Eq. (24), we have
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Figure 2. Paths of integration.
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wpoad’ Jo(ag)eTV k= iz

s(p) — <
ESP(z,y) = —— o R e )d( (y $0)
(25)
w,uoa Jo(ag)eFV k2= g—ilz—nd)C 3
B (a,y) = ZJ/ T 4 (y50)
(26)

where Jy is the zero-order Bessel function. Note that the integrand of
Eq. (25) has poles at

¢ = Bm = Bo+2mn/d (27)

and these poles correspond to the Floquet’s modes.

Next, in order to derive the far field representation, we evaluate the
integrals of Eqs. (25) and (26) for kr = ky/22 + 3% > 1 by using the
saddle point method [17]. Since the scattered field E* is symmetric
with respect to x-axis, we shall derive the far field representation for
|0| < /2. Let us introduce the following change of variables

¢ = ksinw, x =rsiné, y = rcosb. (28)

By the above change of variables, the contour C' of the integration is
changed into P as shown in Fig. 2(b), and it can be deformed to the
steepest descent path (SDP) which passes through the saddle point
0 as shown in Fig. 2(b). As the results of the uniform asymptotic
evaluation by the saddle point method [17], we have

E*(r,0) = E9(r,0) + E%(r,0) T — 00 (29)

where

E9(r, ) wuoaJ Z Jo(Bma) —zk:rcos(9—wfn)u(9 —wP)

] /k2 ﬁQ
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k2 — 32

m

—p
Ed(?",(g) _ _(A)N()d(lj Z [—Sgn(e _ w%)M

[m]

e—iw/4

7¢(Cm)

7 Jo(kasin0)
1 — exp[—ikd(sin 6; — sin 0)]

—ikr cos(6—wh),)

wioa | 2 ikr—r/4)
2 wkr

e

Z Jo ﬁma 1
[m] VK~ 72”5111 (0 me>

(o.¢]
+Jo(kasin 0) Z J¢ ginkdsin 0]
n=0

0 — wh
Cm = v2krsin|27w|

B(¢) = /g T it gy

1:60>0
u() =
0:6<0

and 7, is the summation over m for which |8,| <k holds, and
wh which are the poles satisfying the relation

kEsinwt, = G, (35)

correspond to the Floquet’s modes of periodic structure. Eq. (29)
indicates that the scattered field by a semi-infinite grating is expressed
as a sum of two types of waves, F9 and E? The wave FEY, which
is the residue contribution, is a set of plane waves (Floquet’s modes)
and E? is a cylindrical wave diffracted at the end of the semi-infinite
grating as shown in Fig. 3. It can be shown that the amplitudes and
the directions of propagation of the plane waves of EY coincide with
those of Floquet’s modes of the infinite grating shown in Fig. 1(b). It
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is, however, found from Eq. (30) that they exist only within the region
wh, < 0 < 7/2. Therefore, the lines # = wh, act as the shadow and
reflection boundaries of the plane waves similar to those appearing in
the diffraction by a conducting half plane. This result is also pointed
out by Hills and Karp [10].

4. NUMERICAL RESULTS AND DISCUSSIONS

First, we shall show the currents on the strips. Fig. 4 shows the aver-
aged current densities 7Z and 7;. In Fig. 4(c), log scale representa-
tion of J, are also shown. From these figures, it can be found that the
correction currents has, as we expected, a property of Eq. (5) and they

act J, oc (knd)~3/2. Therefore, the behavior of 72 can be expressed
as follows:

T = T'em 0 1 O((knd) /2 (36)

n

Since the current on a conducting half plane JEHP is expressed as

JOHP (kx) = JPO (kx) + O((kx) /%),  kx — 0
JFO . Physical optics current (37)

the current on a semi-infinite strip grating behaves similar to that on
a conducting half plane.

Fig. 5 shows the diffracted fields E¢ for narrow spacing (d = 0.1)).
These patterns are normalized by one half of the intensity of the inci-
dent wave. For comparison, diffracted fields by a conducting half plane
are also shown. Since kd < 1, diffraction patterns from a semi-infinite
strip grating agree well with those from a conducting half plane. The
Kirchhoff solution, which are obtained by letting J¢ = 0, are also
shown by the broken line. It is found from this result that the diffrac-
tion at 90° is suppressed by the effect of the correction currents.

Fig. 6 shows the diffracted fields for d = 0.6A. We can find from this
result that the diffraction patterns have sharp nulls that do not exist in
Kirchhoff solutions. Hills and Karp [10] have analytically investigated
the existence of these nulls, and have pointed out that these nulls
appear in the direction of the propagation of the spatial harmonic
waves for 6; = 90°, that is

V2 — (k +2mm/d)?

k+2mn/d (38)

0w = arctan
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(a) Floquet’s modes EY

I

d— e e s = w - ..

N

(b) edge diffracted wave E¢

Figure 3. Diffracted wave by a semi-infinite grating.

Although the above result by Hills and Karp is obtained under the
restriction that the spacing of the elements is large relative to the
wavelength, we can confirm from Fig. 6 that their result is true when
the spacing is narrow.
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Figure 5. Diffraction patterns for narrow spacing. (2a = 0.05), d =
0.1\, kr =50)\; —— E9 ----: Kirchhoff solution).

Finally, we shall quantitatively evaluate the end-effects contribution.
The end-effects of the semi-infinite grating can be considered as the
effects caused by the correction current J¢. Thus, in order to estimate
the degree of the end-effects contribution, we calculate the radiated
power W€ by J¢. The radiated power W€ is given by

2
we = %/ |E*©)(r,0)>rdd, 7 — 0 (39)
0

where Z is a wave impedance in free space. Furthermore, we define
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Figure 6. Diffraction patterns. (2a = 0.05), d = 0.6, kr = 50\;
—— B4 - - - - Kirchhoff solution).

the normalized radiated power R as follows:

we
- QCLPin

(40)

where P;, is the power density of the incident plane wave. Fig. 7
shows the normalized radiated power R versus the spacing d. We can
find, from this figure, that R becomes large when d = mA\ for 6; = 0°
and d = 0.586mA\ for 6; = —45° where m = 1,2,3,... . For infinite
grating, these values correspond to the spacing for cutoff of the m-th
mode expressed as follows:

m

=1 —sin@i)\

Physically, above spacing corresponds to the condition for which the
multiple scattering between the elements becomes strong (or the
Wood’s anomaly occurs). Therefore, this result indicates that the end-
effect of the semi-infinite grating becomes large for cut-off frequencies.

5. CONCLUSIONS

In order to reveal the end-effects of the finite grating, we have ana-
lyzed the diffraction of electromagnetic waves by a semi-infinite strip
grating under the assumption that the strip is narrow relative to the
wavelength. Numerical results of current distributions and diffraction



Diffraction by a semi-infinite strip grating 53

1.5 T T T a T T
(]
‘:g 1.25
2|
B
=
g 0.75
o
8 o5t
E .
(=] L
> 0.25

0 L A 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
Spacingd [A]
(a) HZ =0°

1.5
T o125}
Q
3
2. 1k
3
e 0.75
g .
E 05
E
g 025~

0 1 " A 1

0 0.5 1 1.5 2 2.5 3 3.5
Spacingd [A]

(b) 6; = —45°

Figure 7. Normalized radiated power R (2a = 0.05)). From Eq. (41),
cut-off occurs at d = A, 2\, 3A,... for 6; = 0°, and d = 0.586A,
1.172X, 1.757X, 2.343X, 2.939), 3.414),... for 6; = —45°.

patterns have revealed the behavior of the current near the edge and
the existence of the sharp nulls in the diffraction patterns. It has also
been found that the end-effects contribution becomes large for cutoff
frequencies. These results are very useful for evaluating the diffrac-
tion by a strip grating of finite size. Furthermore, according to the
concept of the GTD, we can easily obtain the diffraction coefficients
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of semi-infinite grating from Eq. (31), and will be able to use them in
calculating the diffraction by a strip grating of finite size.

In order to investigate the end-effects contribution in more detail,
we have to calculate the near field around the edge and reveal the
interaction between edge diffracted wave and Floquet’s modes. This
analysis is currently under investigation.

APPENDIX

A.1 Calculation of S,

Since the series S; is rewritten as

we first calculate the following series
=% By (k\/pZ n (nd)Q) ¢infod, (A.2)

By using the Poisson’s sum formula [16] and the following Fourier
transform of Hankel function

exp [—ip k2 — Cﬂ

/ H[()2)(\/ p2 + 22)e" dx =2 e (A.3)
Eq. (A.2) is transformed into spectral domain series
9 X exp|—ip k? — 32
== % { } (A4)
d n=-—o00 \% k? — 67%

where the branch of \/k? — 32 should be chosen so that the series of
Eq. (A.4) converges: that is

V-8 o k>0,
—i/B2 k2 . K< 2.

(A.5)

V=5 - {
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In order to improve the convergence of the series I, we introduce the
formula of logarithmic series

S ot s

n=1

Thus, Eq. (A.4) is rewritten as follows:

=% exp|-ipy k2 - 82,

+

exp[
Izz/d;{ vk =63 k2 - 82,

- % exp[_iP(QnW/d)}} + %In(l —expl-2mp/d) (A7)
]

o0

9 €xp [—ip k? — 33

_|__
d VkE— 32

By using the above series and the approximation of Hankel function
for small argument [15]

H (kp) = (1 - %( +1n kp)) (1 - (kf;)2> - i(;’?Q (A.8)

the series S; of Eq. (A.1) is transformed into following series that
converges rapidly

g 1 41 kd n 1 1 1
1= 2 Y n 1 1 d —k2—ﬁg

1 id

b i L.
2id n=1 \/k2 B /87% \/k2 - ﬁ%n nr

(A.9)
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A.2 Calculation of S5

Series Sy can be transformed into rapidly converging series in the
same manner for S;. Rewriting the series S2 in the following form

1 :
= - > Hy (knd)eh¢
(3
=1

o0

1 .
=5 O Hy (kinja)e i

n=oo

n#0

= Llim [ S B (/62 + () e — 5P (kp)

8% p—0

(A.10)

and applying the same procedure for deriving Eq. (A.9), Sy can be
transformed into series that converges rapidly. As the final result, we

get

. 1 L ﬁ 1 1_21——aurcs1n
2T \T T g 8 d Vk? = B3
6
k

2 . Bn 2 n
1 — —arcsin 1-— —arcsm —_— g
)

n ﬁ i T k + 7r _ud
n—=1 vk = B3 VK2 - B2, nm
(A.11)
where the branch of the arc sine is defined as follows:
arcsin ¢ ¢ <1
arcsin¢ = % —iln(¢ —v¢* - 1) P> (A.12)

T (== 1) ;<1

2



Diffraction by a semi-infinite strip grating 57

REFERENCES

1.

10.

11.

12.

13.

Zaki, K. A. and A. R. Nuereuther, “Scattering from a perfectly
conducting surface with a sinusoidal height profile: TE polariza-
tion,” IEEE Trans. Antennas & Propagat., Vol. AP-19, 208-214,
1971.

Ikuno, H. and K. Yasuura, “Improved point matching method
with application to scattering from a periodic surface,” IEFE
Trans., Vol. AP-21, No. 5, 657-662, 1973.

. Petit, R. Ed., “Electromagnetic theory of gratings,” Series topics

in current physics, Springer Verlag, New York, 1980.

. Uchida, K., T. Noda, and T. Matsunaga, “Spectral domain analy-

sis of electromagnetic wave scattering by an infinite plane metallic
grating,” IEEFE Trans. Antennas & Propagat., Vol. AP35, No. 1,
46-52, 1987.

. Twelsky, V., “On a multiple scattering theory of the finite grating

and Wood’s anomalies,” J. Appl. Phys., Vol. 23, No. 10, 1099-
1118, 1952.

. Ko, W. L. and R. Mittra, “Scattering by a truncated periodic

array,” IEEE Trans. Antennas & Propagat., Vol. AP-36, No. 4,
496-503, 1988.

Kobayashi, K. and T. Eizawa, “Plane wave diffraction by a finite
sinusoidal grating,” Trans. IFICE, Vol. E74, No. 9, 2815-2826,
1991.

. Carin, L. and L. B. Felsen, “Time-harmonic and transient scat-

tering by finite periodic flat strip arrays: Hybrid (Ray)—(Floquet
Mode)-(MOM) algorithm and its GTD interpretation,” IEEE
Trans. Antennas & Propagat., Vol. AP-41, No. 4, 412-421, 1993.

. Usoff, J. M. and B. A. Munk, “Edge effects of truncated peri-

odic surfaces of thin wire elements,” IEEE Trans. Antennas &
Propagat., Vol. AP-42, No. 7, 946-953, 1994.

Hills, N. L. and S. N. Karp, “Semi-infinite diffraction gratings I
and II,” Commu. Pure Appl. Math., Vol. 18, 203-233, 389-398,
1965.

Mittra, R., C. H. Chan, and T. Cwik, “Techniques for analyzing
frequency selective surfaces - A Review,” Proc. IEEFE, Vol. 76,
No. 12, 1593-1615, 1988.

Ando, M., A. Kondo, and K. Kagoshima, “Scattering of an arbi-
trary wave by a thin strip grating reflector,” IEFE Proc., Vol. 133,
No. 3, 203208, 1986.

Ando, M. and K. Takei, “Reflection and transmission coefficients
of a thin strip grating for antenna application,” IEEE Trans.
Antennas € Propagat., Vol. AP-35, No. 4, 367-371, 1987.



58

14.

15.

16.

17.

Nishimoto and Ikuno

Nishimoto, M. and K. Aoki, “Scattering of plane electromagnetic
wave by a semi-infinite strip grating,” Trans. IECE of Japan,
Vol. E69, No. 11, 1161-1164, 1986.

Jones, D. S., Acoustic and FElectromagnetic Waves, 672, Claren-
don Press, Oxford, 1986.

Morse, P. H. and H. Feshbach, Method of Theoretical Physics,
McGraw-Hill, 466467, 1953.

Felsen, L. B. and N. Marcuvits, Radiation and Scattering of
Waves, Chap. 4, Prentice-Hall, 1973.



