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1. INTRODUCTION

In this paper, we study the coupling from a line current source to a
nearby wire. In our application, the source and the wire are perpen-
dicular to each other.

The analysis of coupling to wires from dipoles or other wires is
relatively recent. In a paper appearing in 1977 [1], the authors used
full-wave scattering techniques to formulate the current induced on a
horizontal wire above earth by a vertical electric dipole (VED), and
obtained approximate solutions when the VED is electrically distant.
In the same year, Hill and Wait [2] investigated coupling between an
arbitrarily oriented electric or magnetic dipole and a horizontal cable
over an ideal ground. They presented results for far field radiation
and modal currents of a leaky coaxial cable excited by a VED. In
a series of two consecutive papers, Wait investigated the excitation
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of a coaxial cable above ground by a VED [3] and the excitation of
an ensemble of parallel horizontal lines above a layered ground by a
similar source [4]. No numerical results were presented in either paper.
Later, the emphasis shifted to coupling between crossing conductors
on microstrip and microwave circuits where one or both conductors
may carry incident currents. Giri et al. [5] developed an equivalent
circuit approximate model for the junction of two skewed transmission
lines, where the inductive coupling was solved in close form and the
capacitances obtained by solving coupled integral equations. In that
paper the authors assumed TEM propagation on both conductors.

Different approaches were followed by other authors to develop sim-
ilar coupling models: Kami and Sato [6] used transmission line theory
and assumed that the power returning to the exciting line is negligible.
Uwano et al. [7] analyzed crossing strip lines on a suspended substrate
using a generalized transverse resonance technique. Papatheodorou et
al. [8] used the method of moments to solve coupled integral equations
derived for a microstrip crossover in a dielectric substrate backed by
a ground plane. Young [9] developed a closed form approximation for
TEM capacitive coupling between orthogonally crossing wires over a
ground plane using full-wave scattering analysis. Finally, in a recent
paper, Wait [10] presented a self-contained canonical solution for the
currents excited on an overhead cable by a vertical line of current of
finite height over a perfectly conducting plane, where low frequency ap-
proximations were incorporated to provide some insight. No numerical
results were presented.

We note that in all of the above mentioned papers there existed
multiple conductors and/or ground planes, thus assuring the existence
of TEM modes. This facilitated developing approximate low frequency
approximations if desired. In this paper we deal with the case of a
single, infinitely-long wire close to a perpendicular infinite line-current
source. As we shall show, the absence of a second conductor or ground
plane makes results quite different since no bound modes exist. The
analysis presented here is primarily for the infinite current source, with
the cases of single and multiple dipole sources presented for comparison
purposes.

In the next section we present the analytical formulation of the inci-
dent and scattered fields and currents excited on the wire (scatterer).
Following that we discuss features of the different complex planes in-
volved in the problem. Next we present asymptotic analysis for obtain-
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(a)

(b) (c)

Figure 1. Problem geometry when the source is (a) a dipole, (b) a
dipole array, or (c) a line current.

ing approximate expressions for the far-zone field. We also investigate
the details of special cases that arise from certain values of parameters.
Following that, we specialize the analysis to single and multiple dipole
sources and show that we arrive at the continuous source expressions
by superimposing the expressions of infinitely many dipoles. Finally,
we present the numerical results of the analysis of fields and currents;
we show that there is a distinct difference between the radiation pat-
terns of the source and the scatterer. Indeed, the fields generated by
the source are heavily attenuated, whereas the fields scattered by the
wire do not suffer from such attenuation.
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2. FORMULATION

The geometries of the different parts of the problem are shown in Fig. 1.
We shall detail the formulation of the continuous source case (Fig. 1c).
The current source is assumed to have a constant phase behavior, i.e.,

I(y) = I0e
−iβy.

where β is a constant. This current form was used many times by
Wait (see [11] for example) because it can be extended to a general
form current using Fourier transform methods. The single dipole for-
mulation is very similar and that of a dipole array can be obtained
by superposition. In the continuous source case we assume that the
traveling current speed is slower than that of light in the surrounding
medium, i.e., β > k . In this paper we assume the surrounding medium
is free space, although the generalization to any lossless medium can
be achieved by incorporating the proper permittivity, so long as β is
kept larger than k . The scattering wire is placed a distance d from
the source, has a cross-sectional radius a , and is infinitely long. The
radius a is assumed sufficiently small to satisfy thin-wire approxima-
tions. We split the fields into an incident field emanating from the
source, and a scattered field caused by the adjacent wire, viz:

ETOTAL = Et = Ei + Es (1)

We begin by solving for the incident field. We define (Fig. 1c) a local
coordinate system (x′, y′, z′) such that the line current is aligned with
the z′-axis, i.e., x → x′, y → z′, z → −y′ . Only the z′ directed
potential is needed. Indeed, if Ai is the vector potential of the incident
field, then

Ai = 1z′ψ
i (2)

where (
∇2

ρ′,z′ + k2
)
ψi = −I0e−iβz′ δ(ρ

′)
2πρ′

, (3)

and 1z′ is a unit vector in z′ direction. We now define the following
Fourier transform pair

Ψ(λ) =
∫ ∞
−∞

ψ(z′)e−iλz′dz′ (4)

ψ(z′) =
1
2π

∫ ∞
−∞

Ψ(λ)eiλz
′
dλ
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and apply the forward transform to (3), viz:

1
ρ′

∂

∂ρ′

(
ρ′
∂Ψi

∂ρ′

)
+

(
k2 − λ2

)
Ψi = −I0δ(λ+ β)

δ(ρ′)
ρ′

(5)

The solution to (5) is given by [12, eq. 4.116]

Ψi =
2πI0δ(λ+ β)

4i
H

(2)
0

[(
k2 − λ2

)1/2
ρ′

]
(6)

We now take the inverse Fourier transform of (6) to obtain the solution
in z′ , viz:

ψi =
I0
4i
e−iβz′H

(2)
0 (λ0ρ

′) (7)

where
λ0 =

√
k2 − β2, Im(λ0) < 0. (8)

In the primed coordinate system, the scatterer is parallel to y′ , which
means that the only electric field component to interact with the wire
is Ei

y′ ; thus we require only that component, viz:

Ei
y′ = 1y′ ·Ei =

(
1ρ′ sinφ′ + 1φ′ cosφ′

)
·
(
1ρ′E

i
ρ′ + 1φ′E

i
φ′ + 1z′E

i
z′

)
= sinφ′Ei

ρ′ + cosφ′Ei
φ′

The required cylindrical components of the field are given by [13, eq. 5–
18]

Ei
ρ′ =

1
ŷ

∂2ψi

∂ρ′∂z′
, and

Ei
φ′ =

1
ŷρ′

∂2ψi

∂φ′∂z′
= 0

where ŷ = iωε . Thus,

Ei
y′ = sinφ′

∂2ψi

∂ρ′∂z′

=
I0βλ0

4ŷ
sinφ′e−iβz′H

(2)
1 (λ0ρ

′)
(9)

We consider now the scattered field, where we define (Fig. 1c) another
local coordinate system (x′′, y′′, z′′) that is just a translated version
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of (x, y, z) , i.e., x′′ = x − d . We follow the same steps as with the
incident field, but this time the current is unknown. Again

Ψs =
I(λ)
4i

H
(2)
0 (γρ′′)

where I (λ) is the Fourier transform of the unknown current, γ =(
k2 − λ2

)1/2 , and Im (γ) < 0 . We require the scattered field compo-
nent parallel to the wire, i.e.,

Es
z′′ =

1
ŷ

(
∂2

∂z′′2
+ k2

)
ψs.

In the spectral domain this is given by

Es
z′′ =

1
ŷ
γ2Ψs

=
γ2I(λ)

4iŷ
H

(2)
0 (γρ′′).

(10)

We now apply the inverse Fourier transform to (10) to obtain

Es
z′′ =

1
8πiŷ

∫ ∞
−∞

γ2I(λ)H(2)
0 (γρ′′)eiλz

′′
dλ (11)

In order to evaluate I (λ) we apply the boundary condition on the
surface of the scatterer, i.e.,

Et |tangential=
[
Ei + Es

]
tangential

= 0 (12)

To do this we transform the coordinates (x′′, y′′, z′′) to (x′, y′, z′) , i.e.,
x′′ → x′ − d, y′′ → z′, and z′′ → −y′ . Thus,

ρ′′ =
(
x′′2 + y′′2

)1/2 →
[(
x′ − d

)2 + z′2
]1/2

and with changing λ to −λ , (11) becomes

Es
y′ =

1
8πiŷ

∫ ∞
−∞

γ2I(−λ)H(2)
0

{
γ

[(
x′ − d

)2 + z′2
]1/2

}
eiλy

′
dλ (13)
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For the application of the boundary condition, we evaluate (9) at the
center of the wire (x′ = d, z′ = 0) , and (13) at the surface of the

wire
([

(x′ − d)2 + z′2
]1/2

= a

)
. This is valid so long as a � λm ,

and d� a , where λm = 2π/k . Then from (12), (9), and (13) we get

1
2πi

∫ ∞
−∞

γ2I(−λ)H(2)
0 (γa)eiλy

′
dλ

= −I0βλ0
y′

(d2 + y′2)1/2
H

(2)
1

[
λ0

(
d2 + y′2

)1/2
]

= I0β
∂

∂y′
H

(2)
0

[
λ0

(
d2 + y′2

)1/2
]

(14)

We now apply the forward transform defined in (4) on both sides of
(14) with respect to y′ , viz:

γ2I (−λ)H(2)
0 (γa) = −I0βλF

{
H

(2)
0

[
λ0

(
d2 + y′2

)1/2
]}

(15)

where F{·} denotes the Fourier transform operator. The transform of
H

(2)
0 is obtained through a well-known integral identity [12, eq. 4.306];

thus (15) becomes

γ2I(−λ)H(2)
0 (γa) = −2I0βλ

e−id(λ2
0−λ2)1/2(

λ2
0 − λ2

)1/2

Rearranging yields

I(λ) =
2I0βλe−idγ̂

γ2γ̂H
(2)
0 (γa)

(16)

where
γ̂ =

(
λ2

0 − λ2
)1/2 (17)

and Im (γ̂) < 0 . From (16) and (13) we obtain the complete expression
for Es

y′ , viz:

Es
y′ = − I0β

4πiŷ

∫ ∞
−∞

λH
(2)
0

{
γ

[
(x′ − d)2 + z′2

]1/2
}

H
(2)
0 (γa)

e−idγ̂

γ̂
eiλy

′
dλ (18)
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Now that we have both the incident and scattered fields in the primed
system, we transform back to the original unprimed system to cast the
equations in their desired forms (x′ → x, y′ → −z, z′ → y) . Note
that because y′ → −z , we have to multiply the expressions by a minus
sign to get the correct sign of the z-component, viz:

Ei
z = −I0βλ0

4ŷ
z

(x2 + z2)1/2
e−iβyH

(2)
1

(
λ0

(
x2 + z2

)1/2
)

(19)

and

Es
z =

I0β

4πiŷ

∫ ∞
−∞

λH
(2)
0

{
γ

[
(x− d)2 + y2

]1/2
}

H
(2)
0 (γa)

e−idγ̂

γ̂
e−iλzdλ. (20)

In order to get the familiar form of the inverse Fourier transform we
change λ to −λ , viz:

Es
z = − I0β

4πiŷ

∫ ∞
−∞

λH
(2)
0

{
γ

[
(x− d)2 + y2

]1/2
}

H
(2)
0 (γa)

e−idγ̂

γ̂
eiλzdλ. (21)

To obtain the excited current as a function of z, we note that (16)
was obtained by operating on y′ . Thus we have to apply the same
procedure followed in obtaining the fields regarding coordinate trans-
formations, viz:

I(z) = −I0β
π

∫ ∞
−∞

λe−idγ̂

γ2γ̂H
(2)
0 (γa)

eiλzdλ (22)

3. FEATURES OF COMPLEX PLANES

Here we explain the details of the complex planes involved in solving
the continuous source case; then we specialize to the dipole case. The
complex plane of (21) and (22) is shown in Figure 2. We shall defer
discussion of the contours C I and C II until the numerical results sec-
tion. There are three branch cuts in this plane: The first is Im (γ) = 0
where γ =

(
k2 − λ2

)1/2 . The branch points are λ = ±k and the
branch cut covers the whole imaginary axis and the piece of real axis
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Figure 2. Complex λ-plane showing branch cuts and numerical
integration contours.

between branch points. The second branch cut is Im (γ̂) = 0 where
γ̂ =

(
k2 − β2 − λ2

)1/2
. The branch points are λ = ±λ0 (see (8)) and

the branch cut ∈ (−i∞, λ0] ∪ [−λ0, i∞) . Finally, the third branch
cut is the one associated with the Hankel functions in (21) and (22),
defined by Im (γ) = 0 and Re (γ) < 0 . This branch cut lies on top
of the first one but is of a different nature. The first branch cut is
a square root represented by a two-sheet Riemann surface, while the
third has a logarithmic nature near the origin represented by an in-
finitely sheeted Riemann surface. To insure convergence of (21) and
(22), we define the top sheet of the complex λ-plane as Im (γ) < 0
and Im (γ̂) < 0. Furthermore, to achieve proper phase we require that
the contour of integration pass through the third and first quadrants
of the λ-plane where Re (γ) > 0 and Re (γ̂) > 0. More details about
λ and γ complex planes can be found in Chapter 3 of [14].

In the continuous source case, steepest descent analysis is performed
first by applying the usual mapping to the scattering integral (21):

λ = k sinw. (23)

We then take kr � 1 , where r is the distance from (d, 0, 0) to the
observer. The complex w-plane is shown in Figure 3, where we note
that γ becomes an analytic function. However, the branch cut asso-
ciated with the Hankel functions does not disappear. Note that since
the branch point of γ̂ depends on β , the branch point becomes very
close to the origin for values of β/k ≈ 1 . In this situation the steepest
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Figure 3. Steepest descent complex plane.

descent path intersects the branch cut for most values of θ . In general,
the SD path does intersect the branch cut near grazing ( θ → 0 ) for
all values of β . In the dipole case, the w plane has no γ̂ branch cut,
which means that there is no difficulty with the SD path intersecting
it. All other features in the w and λ planes are the same as the
continuous source case. One final note here is that the SD path shown
in Figure 3 corresponds to kr � 1 and r/d � 1 . For r/d > 1 but
not very large, the situation is different. The details are in the next
section.

4. ASYMPTOTIC ANALYSIS

In this section we shall first consider the asymptotic analysis of (21).
We shall assume that both kr and r/d are much greater than 1. Later
on we shall relax the second condition. We use the method of steepest
descents as described in [15] by applying (23) and the usual coordinate

transformation z = r cos θ and
[
(x− d)2 + y2

]1/2
= r sin θ to (21),

viz:
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Es
z = −I0βk

2

4πiŷ

∫
FTC

sinw coswH(2)
0 (kr cosw sin θ)

H
(2)
0 (ka cosw)

e−idγ̂

γ̂
eikr sinw cos θdw,

(24)

where r and θ are as indicated in Figure 1c, γ̂ =
[
(k cosw)2 − β2

]1/2
,

and FTC denotes the Fourier transform contour shown in Figure 3.
We take kr � 1 and invoke the large argument approximation for the
Hankel function [16, eq. 9.2.4] in the numerator, viz:

Es
z ≈

∫
FTC

f(w)eg(w)dw, (25)

where

g(w) = ikr sin(w − θ), and (26)

f(w) = −eiπ/4 I0βk
2 sinw coswe−idγ̂

4πiŷγ̂H(2)
0 (ka cosw)

(
πkr sin θ cosw

2

)1/2
. (27)

The next step is to deform FTC to the SD path defined along the
valleys of

cosh (Imw) = − csc (Rew − θ) . (28)

In doing this, we do not encounter any singularities for most values
of θ and β . For values of θ → 0 the SD path may have to wrap
around the γ̂ branch cut located on the positive imaginary w-axis .
We shall consider this subsequently. The saddle point (SP) lies at
w0 = mπ/2 + θ, m odd, where we pick m = −1 to make the range
of w around the origin. By standard SD techniques we evaluate f(w)
at SP and perform the integral along the SD path to yield

Es
z,SP = −I0ηm

e−ikr

2πr
β

k

cos θ

H
(2)
0 (ka sin θ)

e
−kd

[
(βk )

2−sin2 θ
]1/2

[(
β

k

)2

− sin2 θ

]1/2
(29)

where ηm is the intrinsic impedance of the medium (free space here).
The SP contribution gives an excellent approximation of the scattered
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field for kr > 20π, r/d > 10, β/k ≥ 1.11, and 0.1 < θ/π ≤ 0.5 . This
combination of values guarantees that the observer is well in the far
zone and away from grazing angles. Mathematically this means that
the SD path does not wrap around the γ̂ branch cut and is not near
the Hankel function branch cut. Strictly speaking, in this problem
there is no far zone region, because the scatterer has infinite length.
However, if the observer is not close to grazing, the SP approximation
can be made very close to the actual field if kr is large enough. It is
instructive to modify the standard SP approximation for parameters
other than ones mentioned above.

A. 1 < β/k < 1.11

In this case, the γ̂ branch point becomes very close to the origin
of the w-plane . For example, if β/k = 1.01 , the branch point is at
w = i cosh−1(β/k) ≈ i0.14 . This means that for most values of θ the
SD path will wrap around a portion of the γ̂ branch cut, producing
a contribution that must be added to the SP approximation. Initially
the SD path meets the branch cut at iw1 = i cosh−1(csc θ) ; then to
stay on the proper sheet, it goes down the branch cut, wraps around
the branch point iw2 = i cosh−1(β/k) , goes up along the other side of
the branch cut to iw1 , then continues on the SD path. Along the path
around branch cut, Im(γ̂) = 0 and Re(γ̂) is negative on the downward
portion and positive on the upward. From the above information, we
use (25) to formulate the branch cut integral, viz:

Es
z,BC = CBC

∫ w1

w2

sinhwi (coshwi)
1/2 cos(dγ̂)eikr sin(iwi−θ)

γ̂H
(2)
0 (ka coshwi)

dwi (30)

where

CBC =
eiπ/4I0βk

2

iπŷ (2πkr sin θ)1/2
,

and γ̂ =
[
k2 cosh2 wi − β2

]1/2
, a real positive quantity along inte-

gration path. Since the branch point w2 is our main concern here,
we follow Ishimaru’s method [17, Section 15–8] in expanding relevant
terms in the integrand around it, while evaluating other terms without
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expansion1 . In particular, the following expansions are performed

cos(dγ̂) ≈ 1− β

k
(kd)2 χ (wi − w2) (31)

γ̂ ≈ k

[
2
β

k
χ (wi − w2)

]1/2

sin(iwi − θ) ≈ −α1 + iα2 (wi − w2) , where

α1 =
β

k
sin θ − iχ cos θ,

α2 =
β

k
cos θ + iχ sin θ, and

χ =

[(
β

k

)2

− 1

]1/2

.

We shall call the result Ishimaru’s approximation (IA), viz:

EIA = CIA

∫ w1

w2

[
1− β

k
(kd)2 χ (wi − w2)

]
e−krα2(wi−w2)

(wi − w2)
1/2

dwi (32)

where

CIA = CBC
e−ikrα1

kH
(2)
0 (βa)

(χ
2

)1/2
.

If w1 is finite (the SD path wraps around a portion of the branch cut),
then (32) can be expressed in terms of incomplete gamma functions,
which we develop into a series for computational purposes. However,
as θ → 0, w1 →∞ , and the SD path wraps around the whole branch
cut. In this case we can express (32) in terms of Γ (1/2) and Γ (3/2)
[16, eq. 6.1.1], viz:

EIA = H(ε)CIA×

 2e−αεε1/2 (1 + SΩ) , if θ > θ0 (or w2 < w1 <∞)(π
α

)1/2
Ω, if θ < θ0 (or w1 →∞)

(33)

1 The approach we follow here is slightly different from that of Ishimaru. Our

approach does not produce caustic behavior as w2 → w1 because of the way we

handle the branch cut integral.
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where
α = krα2,

Ω = 1− β

2αk
(kd)2 χ,

S =
∞∑

m=1

m!
(2m+ 1)!

(4αε)m ,

ε = w1 − w2,

π

2
> θ0 > sin−1

[
sech

(
2
δ

+ w2

)]
,

δ = 2α (Ω− 1) ,

and H(·) is the Heaviside unit step function, which is inserted to draw
the readers attention to the fact that the branch cut contribution is
computed only when csc( θ) > β/k . The lower limit on θ0 is deter-
mined by limiting the second term of the cosine expansion in (31) to
2. For most combinations of parameters, this limit is too stringent
(almost 0). A more computationally convenient value is 0.1 π. Note
that EIA → 0 as w2 → w1 because when SD path wraps around a
finite length of branch cut, we properly handle the integral as a finite
integral. In [17], Ishimaru extends the path to infinity, then crosses
the branch cut to the proper sheet in order to complete the SD path.
This introduces false caustic behavior when w2 → w1 .

As we shall show in numerical results, this approximation is only
valid for small values of d/r (< 0.2) , because of the series in d2 that
results from (31). To expand the envelope of approximation, we must
then add more terms of this series, complicating the resulting integral.
We may obtain a better approximation of (30) by not expanding the
cosine function. We begin by splitting (30) into two integrals, viz:

EBC =
CBC

2
(
E+ + E−

)
(34)

where

E± =
∫ w1

w2

sinhwi (coshwi)
1/2 e±idγ̂eikr sin(iwi−θ)

γ̂H
(2)
0 (ka coshwi)

dwi. (35)

Now we only expand the sine function and γ̂ and evaluate everything
else at w2 , viz:

E± ≈ C

∫ w1

w2

e±α(wi−w2)1/2e−α(wi−w2)

(wi − w2)
1/2

dwi (36)
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where

C =
e−ikrα1

kH
(2)
0 (βa)

(χ
2

)1/2
, and

α = ikd

(
2χ

β

k

)1/2

.

The integral in (36) can be expressed in terms of error functions [16,
eq. 7.1.1], viz:

E± ≈ C
(π
α

)1/2
eα

2/4α

[
erf

( ∓α
2α1/2

+ (αε)1/2
)
− erf

( ∓α
2α1/2

)]
(37)

Substituting (37) in (34) yields the required improved branch cut con-
tribution, viz:

EBC,imp = Cimp

[
erf

(
(αε)1/2 − α

2α1/2

)
+ erf

(
(αε)1/2 +

α

2α1/2

)]
(38)

where

Cimp = H(ε)
−eiπ/4I0βη

4πkH(2)
0 (βa)

(
χ

α2 sin θ

)1/2 e−ikα1r

r
, and (39)

erf(z) =
2

π1/2

∫ z

0
e−t2dt. (40)

This approximation has the proper behavior when kd � 1; since as
α→∞, EBC,imp → 0.

We next investigate what the branch cut contribution physically
produces in the scattered electric field. When kd → 0 , α → 0 , and
we gain more insight by examining the branch point contribution in
cylindrical coordinates. Letting ρ = r sin θ and z = r cos θ in (38)
and applying the definitions of α, α1 , and α2, we produce

EBC,imp → Cimp
e−iβρ

ρ1/2

e−kzχ(
β
k z + iρχ

)1/2
erf

[{
εk

(
β

k
z + iρχ

)}1/2
]
(41)

where

Cimp = H(ε)
−eiπ/4I0βη

4πk
χ1/2

H
(2)
0 (βa)
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Thus in the low frequency limit, the branch cut contribution manifests
itself as a cylindrical wave modified by phase and amplitude factors.
The role of the error function can be made clearer for some limiting
cases. For grazing angles, θ → 0 and ε→∞ ; thus erf(·)→ 1 . Here
the wave propagates in ρ with a speed slower than that of light in the
surrounding medium, and attenuates in |z| . Although the derivation
here was made for positive z , the behavior in negative z is the same
because of symmetry. The spatial spread is not exactly that of a pure
cylindrical wave. When the observer is close to broadside ( θ → π/2)
the argument of the error function is very small (because the steepest
descents path wraps around a very small portion of the branch cut).
Thus erf(z)→

(
2z/π1/2

)
exp(−z2) , and

EBC → 2Cimp

(
kε

π

)1/2 e−iρ(β+kεx)

ρ1/2
e−z(kχ+εβ) (42)

which is a cylindrical wave localized to the plane normal to the
scatterer.

The above two approximations take care of the branch cut contribu-
tion when the SD path wraps around it, but they do nothing to the SP
contribution itself when the SP approaches the branch point. The SD
approximation assumes that the SP has the most contribution to the
scattering integral; but when the SP is close to λ0, this is no longer
valid, especially if d/r is not very small. Both the SP location and
the SD path slope change as a result of proximity of the branch point.
One way to include the effect of a branch point proximity to a SP is
to apply a method first suggested by Bleistein [18] and explained later
for this special case by Felsen and Marcuvitz [15, Section 4.4c]. This
method accommodates the effect of algebraic branch points near saddle
points and assumes no change in SP location or SD slope. Although
in our case the branch point is more than algebraic ( γ̂ is also in an
exponent), we shall still use the method for illustrative purposes. We
begin from (25) and evaluate everything but the second exponent and
algebraic branch cut at w0 , viz:

Es
z ≈ h(w0)

∫
SD

eikr sin(w−θ)[
cos2 w −

(
β

k

)2
]1/2

dw, (43)
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where

h(w0) = eiπ/4 I0βk cos θe−id[(k sin θ)2−β2]1/2

4πiŷH(2)
0 (ka sin θ)

(
πkr

2

)1/2
.

Since the above integral is significant only around w0 , we employ the
change of variables u = w − θ + π/2 and expand around u = 0 , viz:

Es
z ≈ h(w0)

∫
↗

e−ikr(1−u2/2)[
sin2 θ + u sin 2θ −

(
β

k

)2
]1/2

du (44)

where the slanted arrow denotes the 45◦ local slope of the SD path
at u = 0 . In the vicinity of u = 0 , the real part of the square root in
the denominator of (44) changes sign from lower limit of integration to
upper limit. This necessitates splitting the integral into two parts; we
also use same reasoning of asymptotic analysis to extend each part to
infinity. The above integral can be then expressed in terms of parabolic
cylinder functions as follows

EMSP = CMSP

[
D− 1

2

(
b (kr)1/2

)
+ iD− 1

2

(
−b (kr)1/2

)]
(45)

where

b =

(
β

k

)2

− sin2 θ

sin 2θ
ei3π/4, (46)

CMSP =
I0βηe

−iπ/8

4π (kr)3/4
(cot θ)1/2

e
−kd

[
(βk )

2−sin2 θ
]1/2

H
(2)
0 (ka sin θ)

e−ikr(1−|b|2/4),

and the parabolic cylinder function is given by [15, eq. 4.5.36]

D−ν(t) =
2et

2/4

Γ (ν)

∫ ∞
0

p2ν−1e−
1
2 (p2+t)2dp, Re (ν) > 0.

The steps needed to arrive from (44) to (45) are elaborate and can be
found in Appendix A of [14].

Although there is some improvement introduced by (45) over the
standard SP approximation, the field still deviates from numerically
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computed fields at certain angles and for some combinations of pa-
rameters. This is due to the assumption that neither the SP location
nor the SD path change when approaching the γ̂ branch point. If we
employ the large argument expansion of D−ν(t) [19, Section 16.52],
then we get back the standard SP contribution previously derived
in (29).

B. θ → π/2

Here we show why both standard and modified SD analyses fail to
give the correct field for angles approaching scatterer broadside. The
deviation is observed for β/k ≈ 1 and r/d < 10 . To show this, we
go back to (25) where we include both exponents into our attempt to
find a correct SD analysis, i.e.,

g(w) = ikr sin(w − θ)− ikd

[
cos2 w −

(
β

k

)2
]1/2

. (47)

To find SP we set ∂g/∂w = 0 , viz:

cos(w0 − θ) = −d
r

cosw0 sinw0[
cos2 w0 −

(
β

k

)2
]1/2

. (48)

Note that for d/r → 0 we get back the result obtained before. How-
ever, if this is not the case and d is comparable to r then (48) is
a transcendental equation that is not easily treated analytically. We
may obtain a feeling for the situation by assuming a value for θ and
examining w0 . If θ = π/2, then (48) can be simplified as[

cos2 w0

{
1−

(
d

r

)2
}
−

(
β

k

)2
]

sin2 w0 = 0

which has the solution

w0 = mπ and mπ± i cosh−1

[
s
β

k

(
1

1− (d/r)2

)1/2
]
, m = 0,±1,±2, ...

where s = ±(−1)m . The upper (lower) sign in s is chosen when m
is even (odd). This shows that for every value of m there are three
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saddle points instead of one. For example, if m = 0 we have the
original SP at w0 = 0 and two other SP’s on the imaginary axis on
either side of the origin. For other values of θ , a complex plane root
search must be employed to find the two SP’s off real axis. If these are
found, one can use the approach in [15, Section 4.5b] to find the effect
of three neighboring SP’s. We leave this for future work.

C. θ < 0.1π

When θ becomes smaller and approaches grazing, another behav-
ior appears in the numerically integrated scattered field that does not
appear in standard or modified SD approximation. This behavior ex-
ists in all combinations of β, d, and r but is sometimes masked by a
stronger SP contribution. The behavior is manifested by oscillations
on top of the scattered field envelope; the oscillations increase in mag-
nitude as θ → 0 . We show representative plots of this in the numerical
results section. We may examine what is happening by looking at Fig-
ure 3. As θ → 0 , the SD path moves towards the left and the SP
approaches w = −π/2, which is the location of the Hankel function
branch point. Also, the upper part of the SD path is now wrapped
around more of the γ̂ branch cut. The oscillations we observe are not
accommodated by the branch cut contribution; so it must be the ef-
fect of the Hankel function branch point. We expect that because the
branch point is logarithmically singular, it has a nontrivial effect on
both the SP location and the constant phase path. For some combina-
tions of parameters, the SP contribution is orders of magnitudes lower
than the oscillations. The analysis of the situation is further compli-
cated if we take into account the other two SP’s we discussed above.
Physically, these oscillations appear because the observer is closer to
the scattering wire but far from its center. We shall show later that
along the wire there is always an excitation of traveling currents that
will cause these oscillations when the observer is close to the wire.

5. DIPOLE SOURCE EXCITATION

Here we simply mention the final formulas obtained if the excitation is
a dipole source. The derivation is similar but simpler than that of the
continuous source case. If a dipole source is placed as shown in Figure
1a, then the incident field is given by [13, eq. 2-113]
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Ei
Dz =

I0l

2π
e−ik[x2+(y−y0)2+z2]1/2 (y − y0) z

x2 + (y − y0)
2 + z2

×

3
2

 η

x2 + (y − y0)
2 + z2

+
1

iωε
[
x2 + (y − y0)

2 + z2
]3/2


+

iωµ

2
[
x2 + (y − y0)

2 + z2
]1/2


where the subscript D designates dipole quantities, l is dipole length,
and I0 = I0(ω)f(y0) is an arbitrary function of the operating fre-
quency ω and dipole position y0. An alternative form used to match
boundary conditions can be obtained from an equivalent form [3]:

Ei
Dz = − I0l

8πŷ
y − y0[

x2 + (y − y0)
2
]1/2

∫ ∞
−∞

λγH
(2)
1

[
γ

(
x2 + (y − y0)

2
)]1/2

eiλzdλ

(49)

By matching boundary conditions on the surface of the wire, we obtain
the excited current and scattered field, viz:

ID(z) =
I0l

i2π
y0(

d2 + y2
0

)1/2

∫ ∞
−∞

λ
H

(2)
1

[
γ

(
d2 + y2

0

)1/2
]

γH
(2)
0 (γa)

eiλzdλ, and

(50)

Es
Dz = − I0l

8πŷ
y0(

d2 + y2
0

)1/2

∫ ∞
−∞

λγ
H

(2)
1

[
γ

(
d2 + y2

0

)1/2
]

H
(2)
0 (γa)

H
(2)
0

(
γ

[
(x− d)2 + y2

]1/2
)
eiλzdλ

(51)
The current and field for the dipole array case are obtained by superim-
posing the above two equations. We demonstrate this for the current.
Suppose that we want the current on the wire excited by an array of N
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dipoles placed tip to tail on the y-axis from −Y0 to +Y0 , where we
restrict N to be even (Figure 1b). Such a configuration will have N/2
dipoles on each side of the y-axis with no dipole placed at the origin.
If all the dipoles are of equal lengths ( l1 = l2 = · · · = lN = l ), then the
spacing between each dipole and its neighbor is ∆y = l = 2Y0/(N−1) .
Also, the position of each dipole will be given by

y0(n) = −Y0

(
N − 2n
N − 2

)
−∆y

(
n− 1
N − 2

)
, n = 1, 2, . . . , N

In this development we also make the current strength of each dipole
a phased function of the position, i.e., I0 = I0e

−iβy0(n) , where I0 is
a function of the operating frequency. The spatial-frequency current
excited by the array thus can be expressed as the following Riemann
sum

IA(λ) =
I0λ∆y

iγH
(2)
0 (γa)

N∑
n=1

e−iβy0(n) y0(n)

(d2 + y0(n)2)1/2

·H(2)
1

(
γ

[
d2 + y0(n)2

]1/2
) (52)

where A denotes the dipole array. If we take N → ∞, then ∆y →
dy, y0(n) → y, and the sum becomes an integral from −Y0 to +Y0.
If we further take Y0 →∞ then we get

IA(λ) =
I0

iγH
(2)
0 (γa)

λ

∫ ∞
−∞

e−iβyH
(2)
1

(
γ

[
d2 + y2

]1/2
) y

(d2 + y2)1/2
dy

(53)
Integrating by parts and using a well known identity of Hankel func-
tions [12, eq. 4.306], the above equation can be expressed as

IA(λ) = − I0

iγ2H
(2)
0 (γa)

λiβ

(
2ie−d(β2−γ2)1/2

(β2 − γ2)1/2

)
(54)

By letting iγ̂ = (β2 − γ2)1/2 where Im(γ̂) < 0 and taking the inverse
Fourier transform we get

IA(z) = −βI0
π

∫ ∞
−∞

λe−idγ̂

γ2γ̂H
(2)
0 (γa)

eiλzdλ. (55)

This is the same current expression derived in the continuous source
problem.
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The asymptotic behavior of the scattered field excited by a single
dipole is given by

Es
Dz,SD =

I0lk
2

4πωε
y0(

d2 + y2
0

)1/2

e−ikr

r
cos θ sin θ

H
(2)
1

[
k(sin θ)

(
d2 + y2

0

)1/2
]

H
(2)
0 (ka sin θ)

.

(56)
For dipole excitation, the situation is simpler than the continuous
source case because we do not have a branch cut intercepting the
SD path and the Hankel function branch point has a much weaker
effect. An observation worth mentioning is that the SP contribu-
tion begins to have a good agreement with numerical integration for
r/

(
d2 + y2

0

)1/2
> 100 . The reason is that the current excited on the

wire from a single dipole has a non-localized behavior, unlike some
cases of the dipole array and continuous source cases where we can
achieve localized current behavior. We shall explain this further in the
next section.

Finally, the current excited by a single dipole has a logarithmic
asymptotic behavior. We show this by casting (50) as

ID(z) = −I0l

2π
y0(

d2 + y2
0

)1/2

∂

∂z

∫ ∞
−∞

H
(2)
1

[
γ

(
d2 + y2

0

)1/2
]

γH
(2)
0 (γa)

eiλzdλ (57)

The integral in the above equation has been shown [20, 21] to have the
following asymptotic behavior as z →∞

∫ ∞
−∞

H
(2)
1

[
γ

(
d2 + y2

0

)1/2
]

γH
(2)
0 (γa)

eiλzdλ→ 2π

ik
(
d2 + y2

0

)1/2

e−ikz

ln
(
− 2iz

Γ2ka2

)
(58)

where Γ = 1.781 · · · . Substituting (58) in (57) and performing the
derivative produces a second term that decays faster in z , so in the
limit we are left with

ID(z)→ I0ly0

d2 + y2
0

e−ikz

ln
(
− 2iz

Γ2ka2

) (59)
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Figure 4. Amplitude of the integrand of the scattering integral for the
continuous source case: β/k = 1.1 , d = 0.1 , r = 10.0 , and θ = 1.0
radians. Parameters d and r are given in wavelengths.

6. NUMERICAL RESULTS

The numerical integration techniques followed in calculating fields and
currents are slightly different. In all plots that follow, we have set the
operating wavelength λm and the excitation current I0 to unity. We
begin by examining the integrand of (21), where we notice that it is
of oscillatory nature for all λ . For |λ| > k the integrand is orders of
magnitude smaller than for |λ| < k . The integrand does not increase
without limit at the singularities at λ = ±k because of the Hankel
functions in both numerator and denominator. However, the vicinity
of these singularities introduces well-known numerical difficulties. Be-
cause of rapidly changing phase especially for large r , the frequency
of oscillations rises as λ → ±k from both sides, which makes numer-
ical integration difficult (see Figure 4). The first step in performing
numerical integration is to combine both sides of the integrand into
one from 0 to infinity to reduce time of computation. Then to circum-
vent the problem of rapid oscillations near singularity we introduce the
following mapping [22]
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Figure 5. Magnitude of scattered field for the continuous source case:
β/k = 1.01 , d = 0.5 , and r = 10.0 ; SP: Saddle point contribution;
BC: Branch cut contribution; MSP: Modified SP contribution using
parabolic cylinder functions.

λ =

{
k sinα, 0 ≤ λ ≤ k

k cosh
(
α− π

2

)
, λ > k

This mapping spreads the oscillations more evenly and facilitates nu-
merical integration. Since the integrand is on the real axis, it can be
split into real and imaginary parts where zero crossings can be found
analytically. We use a five-point Simpson’s rule to integrate between
zeros. The same argument is used for the scattering integral of the sin-
gle dipole case. Because of the strong attenuation of the integrand for
λ > k , it suffices to cut off the integration at λ = 3k. Analysis of the
asymptotic behavior of the integrands from cutoff point to infinity has
verified the validity of doing so. Figure 5 shows plots of standard and
modified SP contributions with and without adding the contribution
of branch cut (BC). Note that in the mid-range of θ the standard SP
contribution follows closely the numerically integrated (NI) field, but
deviates from it closer to broadside. Adding BC to SP adds the ripples
missing in SP in the mid-range, and fixes part of the deviation from
NI as can be seen just before θ = 0.4π. The jump in SP and modi-
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Figure 6. Behavior of the γ̂ branch cut integral approximation with
increasing d : β/k = 1.01 and r = 10.0 .

fied SP (MSP) around θ = 0.45π is a result of the assumption that
the SP location and the SD path do not change when SP approaches
branch point. The MSP provides a better performance than SP for
0.4π < θ < 0.5π because it accommodates some effect of the BC. The
approximation for the BC contribution we are using is the improved
one (38). Although for the parameters shown in Figure 5 both Ishi-
maru’s and the improved approximation give the same result, IA starts
to give erroneous results for d/λm > 1.5 , where λm is the operating
wavelength in the surrounding medium (see Figure 6). As can be seen
in Figures 7 and 8, all of these effects near broadside disappear when in-
creasing β/k and/or kr. Near grazing, the asymptotic analysis cannot
predict the existence of a singularity; however, this situation improves
for larger r . Getting closer to grazing makes the observer closer to the
scatterer, and makes the effect of traveling current far down the wire
stronger than that near the center. This can be explained in Figure 9,
where we show the fields produced from convolving current excited on
the scatterer with the Green’s function. The details of producing the
field from current can be found in the Appendix A. We note that the
SP contribution does not predict any oscillations in the field, and that
convolving current extending on z ∈ [−8, 8] gives better approxima-
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Figure 7. Magnitude of scattered field for the continuous source case:
β/k = 1.11 , d = 1.9 , and r = 10.0 .

Figure 8. Magnitude of scattered field for the continuous source case:
β/k = 1.11 , d = 1.9 , and r = 30.0 .
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Figure 9. Comparison of scattered field produced from current con-
volution with that obtained numerically and by SD for the continuous
source case: β/k = 1.11 , d = 1.9 , and r = 10.0 .

tion to the field than that extending on z ∈ [−4, 4]. By this we mean
that the field resulting from convolving the Hertzian dipole field with
the portion of current excited on the scatterer from z = −8 to z = 8
is a better approximation to the numerically integrated field than that
produced from the current on z ∈ [−4, 4] . However, the magnitude
and frequency of field oscillations near grazing are affected only slightly
by the current on the negative side of z as can be seen from convolving
currents extending on z ∈ [0, 8] . This can be made clearer by visual-
izing the observer grazing the positive z-axis at r = 10 . At such a
position the observer is much closer to the current on the positive side
of the z-axis than to the negative side. Of course at other values of
θ, both positive and negative side currents are needed to produce the
correct field.

In producing plots as shown in Figure 9, we use numerically com-
puted currents from (22). In computing the current integral we did
not produce asymptotic results for two reasons. First, the most im-
portant part of the current is that around the center of the scatterer
in most of the cases. That is what produces most of the scattered
field. Second, as is shown in current plots (Figure 10), the current
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Figure 10. Magnitude of current excited on scatterer for the contin-
uous source case: β/k = 1.01 except for the bottom curve, where
β/k = 1.11 .

quickly takes the form of traveling currents ( e−ik|z| ) that are very
slowly decaying. We expect this to happen because the current ex-
cited from a single dipole has the same behavior (59); we showed that
superimposing dipole contributions approach that of the continuous
source (see (52) to (55)). We return to the numerical integration of
(22) to point out that the technique used here is slightly different than
that used for calculating field integrals. This is because the nature of
singularities in the integrand of (22) is different. At λ = ±k the inte-
grand behaves as a logarithmic branch point (of H

(2)
0 (γa) ) on top of

a pole (from γ2 ). This combination gives an overall singular behavior
weaker than that of a pole. In addition, when performing the stan-
dard semi-circular contour integration around the singularity we get a
residue of zero. We therefore perform the integration numerically in
the complex plane on a contour that goes around the singularity. To
evaluate the contribution from the singularity, we use a three-segment
contour around λ = ±k (see C I in Figure 2). Around λ = +k , the
first segment starts from the origin at a 45◦ slope up to λ = k + iλi
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where

λi =
{

1, |z| < 1
1/z, |z| ≥ 1 .

This is necessary to avoid growing exponentials in the integrand of
(22) when |z| ≥ 1 . The second segment extends horizontally from
λ = k+ iλi to λ = λ1 + iλi , where λ1 is the location of the first zero
crossing of the integrand2 . The third segment goes vertically down
from λ = λ1 + iλi to λ = λ1 . On these segments the integrand is
computed numerically, split into real and imaginary parts, then inte-
grated using the quadrature routine DQAGS from the public domain
SLATEC package [23]. For the rest of the real line integral ( λ > λ1)
we use a combination of integration between zero crossings and asymp-
totic evaluation. By using asymptotic evaluation we save computation
time. Details of evaluating the asymptotic integrand can be found in
Appendix B. In order to verify the results obtained from the singular-
ity contribution, we use another contour to go around it. The contour
used here is a sine-shaped contour (see C II in Figure 2) described
parametrically in terms of Re(λ) and Im(λ). The reason for using
such a contour instead of say, a semi-circle, is that we still can trans-
form the integral into a semi-infinite one. Both contours produce the
same result, but the three-segment contour is computationally faster
by a factor of 1.5. In Figure 10 we show representative plots for the
current on the scatterer for different distances from the source. Note
that the current quickly takes the traveling form with the localized
behavior becoming more apparent for d/λm > 1 , and that increasing
β/k accentuates localization. By localized we mean that current far
down the scatterer is one or more orders of magnitude smaller than
the current around the origin. It is in these cases that the oscillations
appearing near grazing cannot be predicted by SD analysis, because
the SP contribution is manifested physically from the current “bulge”
around the center of scatterer. Since at grazing the observer is closer
to the traveling current on the scatterer than to the “bulge”, the field
produced from traveling currents is more dominant than that produced
from the central bulge. In Figure 11 we show representative plots for
the excited scatterer current when the source is a single dipole. The

2 In evaluating this integral we also use symmetry to transform the integral into

a semi-infinite one. This results in a purely imaginary integrand for λ > k,which

means that the only zero crossings are for this imaginary part.
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Figure 11. Magnitude of current excited on by a single dipole source:
β/k = 1.11 and d = 0.01 .

result exhibits traveling nature down the scatterer as predicted by (59).
In Figure 12 we show that superimposing contributions from dipoles in
a linear array approaches that of a continuous source. In order to show
the converging behavior, it was very important to keep the distance
between dipoles less or equal 0.01λm .

We next summarize information about scattering effects from the
scatterer perpendicular to the current source. We begin by showing a
relief plot of the magnitude of the incident field from the continuous
source for β/k = 1.01 (19) taken at the y = 0 plane (Figure 13). If
this were a three dimensional plot of xyz coordinates, we would see
the current source running vertically through the origin between the
two peaks. We find two peaks because the incident field has a null at
z = 0 . Note that for a spherical coordinate system with the origin at
(x, y, z) = (0, 0, 0) , the incident field has no symmetry with respect to
any coordinate of (r, φ, θ) 3 . Note also that all the previously shown
plots of scattered field were taken at a shifted coordinate system cen-
tered at (x, y, z) = (d, 0, 0) . This means that although the scattered

3 It does have partial symmetry in θ . The field in θε[0, π/2] is a mirror image

to that in θε[π/2, π] but opposite in sign.
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Figure 12. Magnitude of scattered electric field (SD approximation)
for the cases of continuous and dipole array sources: β/k = 1.11 ,
d = 0.01 , r = 50.0 , and ∆y0 = 0.01 .

Figure 13. Magnitude of incident electric field for the continuous
source case measured at y = 0 plane.
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Figure 14. An example chart used to determine the minimum values
of d for placing the scattering wire at selected angles if the total Ez

field is not to exceed −40 dbV: β/k = 1.01 .

field is φ-independent in the shifted system, it is not in the original
system. Our goal is to show scattering effects in the original coordinate
system of the incident field.

Figure 14 contains plots of the incident field when β/k = 1.01
computed at four different values of φ , in this case: φ = 0◦, 30◦,
60◦, and 90◦ . The reason for choosing these values is that they also
represent the field at other values. For example, the incident field has
the same magnitude for the following groups of φ : (0◦, 180◦), (90◦,
270◦), (30◦, 150◦, 210◦, 330◦), and (60◦, 120◦, 240◦, 300◦) . The upper
and lower halves of the vertical axis of the figure represents the + z
axis, while the horizontal axis represents the xy plane. Therefore θ
can be read the usual way, from the + z axis down to the xy plane.
The numbers (0, 18, 36, 54, 72, and 90) are values of θ in degrees. We
do not take θ further because the fields for θ ∈ [90◦, 180◦] are a mir-
ror image of those for θ ∈ [0◦, 90◦] . On each quadrant, there are four
plots of the incident field computed at different values of r/λm . The
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magnitude of the incident field is shown in db referred to 1 volt/meter
(dbV). The concentric dotted circles represent different levels of dbV
from −20 to −120, while the boundary of the chart is at 0 dbV.
We can immediately see the strong attenuation of the incident field.
For example, at φ = 0◦ , increasing r by five wavelengths produce a
magnitude dip of 40 dbV. Now suppose that we have an application
that can be modeled by our continuous current source in free space.
Suppose further that we need to place a perpendicular line conduc-
tor somewhere near the source such that at any given distance from
(x, y, z) = (0, 0, 0) we should have no more than −40 dbV total field.
We orient the coordinate system so that the source is aligned on the
y-axis, and the scatterer on the line described by (x, y) = (d, 0) . As-
sume that we are interested in measuring the level of electric field at
φ = 0 . We examine the first quadrant of the figure. We discard
measuring the field at r/λm = 5 , because without the scatterer the
incident field is more than −20 dbV. At r/λm = 10 , however, the inci-
dent field is below −40 dbV. Note that at this value of φ , the scatterer
is between the observer and the line current source. The numbers writ-
ten on the r/λm = 10 curve indicate the minimum distance at which
a scatterer can be placed without producing a total field exceeding
−40 dbV. For example, if we are interested in levels of total field for
the sector θ ∈ [0◦, 36◦], then we may place the scatterer at d/λm ≥ 1.
However, if we are interested in the sector θ ∈ [0◦, 54◦] then we must
have the scatterer placed at d/λm ≥ 2. The rest of the figure can be
read in the same manner. The most important thing to remember is
that although the observer’s position changes for different (r, φ, θ) , the
scatterer’s position is always on the + x axis, d wavelengths from the
origin. Sometimes at a certain distance only part of the curve meets
our criterion of being below −40 dbV, in which case we limit our at-
tention to only that part. For example, at φ = 60◦ and at r/λm = 10
we cannot look beyond θ = 18◦ because the incident field itself ex-
ceeds −40 dbV there. The figure serves as a concise and convenient
means to examine many parameters of incident and scattered fields
simultaneously without the need to consult many plots.

7. CONCLUSION

In this paper we have presented a full-wave analysis of the problem of
scattering from an infinite thin wire excited by a perpendicular trav-
eling current line source. We have presented results from standard
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and modified asymptotic analysis as well as numerical integration of
electric field and current integrals. We have shown that although the
incident field is localized near the source, the scattered field is much
wider spread. At distances well into the far zone, we have shown the
standard steepest descent approximation to be in good agreement with
numerical integration techniques. At moderate distances, however, a
standard steepest descent analysis fails to give the correct fields close to
broadside and close to grazing, with respect to the scatterer. We have
explained the sources of the discrepancies and have produced improved
results for some of them.

As future work, we plan to add another scatterer parallel to the
first and on the other side of the line source. This structure will -
in general - excite guided modes. We also plan to extend this into
an array of scatterers on both sides, in which case Floquet’s method
might be used. Another extension might be to add dielectric cladding
to the single or multiple scatterer cases, where guided modes will exist,
even for the single scatterer. Finally, allowing β to be smaller than k
will introduce totally different behaviors of both incident and scattered
fields.
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APPENDIX A.

Here we show how to produce the scattered electric field from currents
excited on the wire. First, we show how to cast the scattered field as a
convolution integral. Using operator notation, (21) can be written as

Es
z = F−1 [I (λ) G (λ)]
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where

I (λ) = 2I0β
λe−idγ̂

γ2γ̂H
(2)
0 (γa)

,

G (λ) = − 1
4iŷ

γ2H
(2)
0

{
γ

[
(x− d)2 + y2

]1/2
}
, and

F−1 [·] =
1
2π

∫ ∞
−∞

(·) eiλzdλ.

This means that

Es
z = I (z)⊗G (z)

=
∫ ∞
−∞

I (ξ)G (z − ξ) dξ

where I(z) and G(z) are the inverse Fourier transforms of I (λ) and
G (λ) respectively. A careful examination of G(z) reveals that it is
the field generated by a Hertzian dipole (see for example [13, eq. 2–
113]). To arrive at the familiar form for the radiation of a Hertzian
dipole that involves exponentials, we use a well known Hankel function
identity [12, eq. 4.306]. Now that we have established the field as a
convolution, we have to use numerical techniques since I(z) is only
available as data around the center of the scatterer. We use a very
simple algorithm that represents the following formula

Es
z(x, y, z) = ∆z′

N∑
j=1

I(z′j)G(x, y, z − z′j), where

∆z′ = z′2 − z′1,

and N is the number of data points in I(z) . Note that in the above
formula, each set of N points of G has the correct (x, y, z) depen-
dence.

APPENDIX B.

Here we show how to develop the expressions for the current integral
for large |λ|. Referring to (22), we use symmetry and the fact that γ̂
is pure imaginary to reduce the domain of integration, viz:

I(z) = −2I0β
π

∫ ∞
0

λe−dγ̃

γ2γ̃H
(2)
0 (γa)

sin(λz)dλ,
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where γ̃ = iγ̂ is real. We now focus our attention on evaluating the
integral for |λ| � k where γ becomes imaginary. We split the above
integral into two parts, one evaluated numerically from 0 to λc and the
other evaluated asymptotically from λc to ∞, where λc is a cutoff
value after which asymptotic approximations are valid. In this region
we assume that γ̃ → λ, γ → −iλ, and H

(2)
0 (γa) → (2i/π)K0(λa) →

(2i/π) exp(−λa)/(2λa/π)1/2. Hence the asymptotic integral becomes

Ic(z) = i
(πa

2

)1/2
Im

(∫ ∞
λc

λ−3/2e−λ(d−a)eiλzdλ

)
. (60)

Let us denote the integral inside the parentheses above by Ic and let
us perform a change of variables, viz:

Ic = λ−1/2
c

∫ ∞
1

t−3/2e−ζtdt, where

ζ = λc (d− a− iz) .

The above integral can be expressed in terms of the confluent hyper-
geometric function defined in [16, eq. 13.2.6] as follows

U(a, b; ζ) =
1

Γ (a)
eζ

∫ ∞
1

e−ζt (t− 1)a−1 tb−a−1dt,

where Re(a) > 0, Re(ζ) > 0.

Thus Ic becomes

Ic = λ−1/2
c e−ζU(1,

1
2
; ζ).

We have developed an efficient algorithm to compute U in much
shorter time compared to numerical integration.
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