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1. INTRODUCTION

Since some years, a growing interest in scattering of electromagnetic
waves on more realistic geometries than represented by spheres and
infinitely extended circular cylinders can be stated. In remote sens-
ing, for instance, there is an urgent need to learn more about the
scattering characteristics of hexagonal ice crystals which form basic
constituents of cirrus clouds [1–9]. So far, ice crystals with mod-
erate size-parameters, where ray-tracing techniques [10–12] can not
be applied, have been modeled mainly by finitely extended circular
cylinders or prolate/oblate spheroids [13–15]. Especially the exact T-
matrix method was used in these calculations. In recent years, Finite-
Difference methods have been applied to infinite and finite hexagonal
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cylinders, like the Finite-Difference Time-Domain (FDTD) technique,
for instance [17–19]. These methods have the conceptual disadvantage
that a finite discretization volume is required. Therefore, absorbing
boundary conditions must be introduced which allow only an approx-
imate fulfillment of the non-local radiation condition. Moreover, ori-
entation averaging becomes more complicated than in the T-matrix
approach, and, it is known that spurious solutions can occur which
have to be rejected in an additional process. These difficulties are
overcome by the Discretized Mie Formalism (DMF) [20]. It was devel-
oped to deal with scatterers having non-separable boundary surfaces.
In using the Method of Lines [21] to solve the Helmholtz equation be-
longing to the scattering problem, this method can be thought of as a
synthesis of the well-known Mie theory and Finite-Difference methods.
Like the Mie theory it analytically incorporates the regularity inside
the scatterer and the radiation condition at infinity. As a result, the
final calculation can be restricted to the surface of the scatterer only.
Recently it could be shown that the limiting behaviour of the Method
of Lines results in a generalization of the SVM applicable to scatterers
having a boundary surface which does not coincide with a constant
coordinate line in the coordinate system under consideration [22, 23].

Infinitely extended cylinders are simpler in concept because they re-
duce the scattering problem to a two-dimensional one. However, they
do not occur in nature. Therefore, deriving approximate solutions for
finite cylindrical structures on the basis of the results for infinitely ex-
tended ones is a first step towards more realistic structures. A first
application of this idea to circular cylinders was given in [24, 25] and
is based on Huygens’ principle. For that it is assumed that the surface
fields on the mantle of a sufficiently long finite cylinder are approxi-
mately those of the infinite one, and that any contribution from the
top and bottom faces can be neglected. However, only perpendicularly
incident fields with respect to the cylinder axis have been considered.
An extension to oblique incidence can be found in [26, 27]. In this
paper, we will discuss the extension to non-circular cross-sections.

First, the scattered field of infinite cylinders with non-circular cross
sections is calculated by use of the generalization of the SVM. This
allows us to determine the surface fields exactly. Next, the vectorial
formulation of Huygens’ principle is used to derive an approximation of
the scattered far field, and any related quantities of interest of the cor-
responding finite cylinder. In applying Huygens’ principle, the surface
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integration over the actual mantle surface is replaced by an integra-
tion over the mantle of the smallest circular cylinder circumscribing the
non-circular one. This allows an analytical calculation of the total sur-
face integration and results in analytical expressions for the scattering
amplitudes that can be readily implemented in computer programs.
In a third part we will discuss the range of applicability of the ap-
proximation. This is achieved by a comparison with exact results for
finite circular cylinders. Finally, results for finite hexagonal columns
in different size parameter regions are presented.

2. SCATTERING ON INFINITE CYLINDERS WITH
NON-CIRCULAR CROSS-SECTIONS

2.1 Formulation of the Problem in Cylindrical Coordinates

Throughout this paper we assume homogeneous, isotropic, and in
general absorbing dielectric cylinders. Moreover, we will only consider
monochromatic electromagnetic fields with a time-dependence e−jωt .
The internal and scattered electromagnetic fields are decomposed into
transverse electric (TE) and transverse magnetic (TM) parts with re-
spect to the z′-direction . {x′, y′, z′} represent the coordinates of
the body frame with z′ being the cylindrical axis. Each part can be
derived from a scalar potential, Πe and Πm , so that the following
relations hold in cylindrical coordinates:

Ez′ =
j

ωε

[
∂2Πe

∂z′2
+ k2Πe

]
(1)

Eρ′ =
j

ωε

∂2Πe

∂z′∂ρ′
+

1
ρ′
∂Πm

∂φ′
(2)

Eφ′ =
j

ωε

1
ρ′

∂2Πe

∂z′∂φ′
− ∂Πm

∂ρ′
(3)

Hz′ = − j

ωµ0

[
∂2Πm

∂z′2
+ k2Πm

]
(4)

Hρ′ = − j

ωµ0

∂2Πm

∂z′∂ρ′
+

1
ρ′
∂Πe

∂φ′
(5)

Hφ′ = − j

ωµ0

1
ρ′
∂2Πm

∂z′∂φ′
− ∂Πe

∂ρ′
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Please note that in the outer region ε = ε0 is assumed whereas ε =
ε′s + jε′′s is used for the inner region. The potentials have to fulfill the
scalar Helmholtz equation:

∇2Πe/m + k2ρ′2Πe/m = 0 (7)

∇2 = ρ′
∂

∂ρ′
ρ′

∂

∂ρ′
+ ρ′2

∂2

∂z′2
+

∂2

∂φ′2
. (8)

The incident field is given in the laboratory frame denoted by {x, y, z} .
It propagates along the positive z-axis, i.e., we have

�Einc
v = �eyE0e

jk0z �H inc
v = −�ex

k0

ωµ0
E0e

jk0z (9)

�Einc
h = −ωµ0

k0

�H inc
v

�H inc
h =

k0

ωµ0

�Einc
v (10)

for the horizontal (h) and vertical (v) polarization if the xz-plane is
taken as the reference plane. In analogy to three-dimensional scatter-
ers, the orientation of the cylinder is described by the Eulerian angles
of rotation {φp, θp, ψp} which transform the laboratory frame into
the body frame (see Figure 1). This transformation is expressed by

x′

y′

z′


 = A ·


x
y
z


 (11)

with

A =


 cosφp cos θp cosψp − sinφp sinψp

− cosφp cos θp sinψp − sinφp cosψp

cosφp sin θp
sinφp cos θp cosψp + cosφp sinψp − sin θp cosψp

− sinφp cos θp sinψp + cosφp cosψp sin θp sinψp

sinφp sin θp cos θp


 . (12)

After transition to cylindrical coordinates in the body frame we finally
obtain for the components of the incident field:

Einc
z′,v = A32E0e

jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp] (13)

Einc
ρ′,v =

[
cosφ′A12 + sinφ′A22

]
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Figure 1. Scattering geometry: Laboratory frame (x, y, z) and body
frame (x′, y′, z′), related by an Eulerian transformation with the
Eulerian angles (φp, θp, ψp); Scattering cone at θ′ = θp in the body
frame.

· E0e
jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp] (14)

Einc
φ′,v =

[
(− sinφ′)A12 + cosφ′A22

]
· E0e

jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp] (15)

H inc
z′,v = −A31

k0

ωµ0
E0e

jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp] (16)

H inc
ρ′,v = −

[
cosφ′A11 + sinφ′A21

] k0

ωµ0

· E0e
jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp] (17)

H inc
φ′,v =

[
sinφ′A11 − cosφ′A21

] k0

ωµ0

· E0e
jk0[ρ′(cosφ′A13+sinφ′A23)+z′ cos θp]. (18)

Now we can come to the crucial step of the analysis, the derivation of
the characteristic equation system.
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2.2 Application of the Separation of Variables Method to
Non-Circular Cylinders

There exist different numerical approaches to analyze plane wave
scattering on infinitely extended non-circular cylinders. Among them
surface integral equation methods and the DMF are the most power-
ful ones, especially if orientation averaging becomes necessary [28–30].
That’s what happens in remote sensing applications, for instance. Re-
cently it could be shown that the discretization procedure of the DMF
can be avoided, and that the SVM can be used directly [22, 23]. The
following treatment of the infinitely extended non-circular cylinder is
based on this formulation. Applying the well-known separation ansatz
to the Helmholtz equation (7)/(8) provides the following series expan-
sions for the scalar potentials belonging to the internal (index “int”)
and scattered (index “s”) field:

Πint
e = − j

ωµ0
E0 e

jhz′
∑
α

aαJα

(√
k2
s − h2ρ′

)
ejαφ

′
(19)

Πint
m = − j

ks
E0 e

jhz′
∑
α

bαJα

(√
k2
s − h2ρ′

)
ejαφ

′
(20)

Πs
e = − j

ωµ0
E0 e

jhz′
∑
α

cαH
(1)
α

(√
k2

0 − h2ρ′
)
ejαφ

′
(21)

Πs
m = − j

k0
E0 e

jhz′
∑
α

dαH
(1)
α

(√
k2

0 − h2ρ′
)
ejαφ

′
. (22)

h is the separation constant for z′-separation, and it is related to the
incident field as will be shown later. The Hankel functions of first kind
fulfill the radiation condition in the outer region, and the Bessel func-
tions ensure the regularity inside the scatterer. (19)–(22) together with
(1)–(6) result in the corresponding expansions for the electromagnetic
field components. To determine the unknown expansion coefficients
aα, bα, cα , and dα the continuity conditions

�n× [�Eint − �Einc − �Es] = 0 (23)

�n× [�H int − �H inc − �Hs] = 0 (24)

of the tangential field components at the scatterer surface are of special
importance. �n denotes the outward directed unit normal vector, and
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is given by

�n = nc

(
�eρ′ −

R′(φ′)
R(φ′)

�eφ′

)
(25)

nc =

{
1 +

(
R′(φ′)
R(φ′)

)2
}− 1

2

(26)

for the non-circular and single-valued boundary surface R(φ′) . (23)
and (24) can be rewritten into the four equations:

− Eint
z′ + Es

z′ = −Einc
z′ (27)

−
[
Eint

φ′ +
R′(φ′)
R(φ′)

Eint
ρ′

]
+

[
Es

φ′ +
R′(φ′)
R(φ′)

Es
ρ′

]

= −
[
Einc

φ′ +
R′(φ′)
R(φ′)
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ρ′

]
(28)

−H int
z′ +Hs

z′ = −H inc
z′ (29)

−
[
H int

φ′ +
R′(φ′)
R(φ′)

H int
ρ′

]
+

[
Hs

φ′ +
R′(φ′)
R(φ′)

Hs
ρ′

]

= −
[
H inc

φ′ +
R′(φ′)
R(φ′)

H inc
ρ′

]
. (30)

Next we insert all the field components derived above into equations
(27)–(30). In any practical calculation the expansion terms in (19)–
(22) must be restricted to a finite number. Therefore, α runs from
−ncut, . . . , ncut , where ncut has to be determined by appropriate
convergence considerations. If we integrate each of the equations (27)–
(30) with ∫ 2π

0
dφ′e−jβφ

′
, (31)

with β also running from −ncut, . . . , ncut , we finally obtain the char-
acteristic equation system


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


=




−�e(h/v)z′

−�e(h/v)φ′,ρ′

−�h(h/v)
z′

−�h(h/v)
φ′,ρ′




(32)



86 Rother et al.

to determine the unknown expansion coefficients. The elements of the
block matrices in (32) are of the general form

Zαβ =
∫ 2π

0
Zαe

j(α−β)φ′dφ′, (33)

with Zα being one of the functions Mα, Oα, Qα, Rα, Sα, Tα , which
are given by:

Mα = −κ2
sJα

(
ξ′s

)
(34)

Oα = κ2
0H

(1)
α

(
ξ′0

)
(35)

Qα = −jκs
h

ks

(
Jα (ξ′s)
ξ′s

jα+
R′(φ′)
R(φ′)

J ′α
(
ξ′s

))
(36)

Rα = −jκs

(
J ′α

(
ξ′s

)
− R′(φ′)

R(φ′)
Jα (ξ′s)
ξ′s

jα

)
(37)

Sα = jκ0
h

k0

(
H

(1)
α (ξ′0)
ξ′0

jα+
R′(φ′)
R(φ′)

H(1)′
α

(
ξ′0

))
(38)

Tα = jκ0

(
H(1)′

α

(
ξ′0

)
− R′(φ′)

R(φ′)
H

(1)
α (ξ′0)
ξ′0

jα

)
(39)

κ0/s =

(
1− h2

k2
0/s

) 1
2

(40)

ξ′0/s =
(
k0/s − h2

) 1
2 R(φ′). (41)

To fulfill the continuity conditions the z′-dependence of the internal,
scattered and incident field must be identical. Therefore

h = k0 cos θp (42)

has to be used. The inhomogeneities on the right-hand side of (32) are
nothing but the expansion coefficients of the tangential components of
the incident field at the scatterer surface if expanded in terms of ejβφ

′
,

i.e., we have:

e
(h/v)
z′
β

=
∫ 2π

0
e−jβφ

′
Einc

z′ dφ
′ (43)
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e
(h/v)
φ′,ρ′

β
=

∫ 2π

0
e−jβφ

′
(
Einc

φ′ +
R′(φ′)
R(φ′)

Einc
ρ′

)
dφ′ (44)

h
(h/v)
z′
β

=
∫ 2π

0
e−jβφ

′
H inc

z′ dφ
′ (45)

h
(h/v)
φ′,ρ′

β
=

∫ 2π

0
e−jβφ

′
(
H inc

φ′ +
R′(φ′)
R(φ′)

H inc
ρ′

)
dφ′. (46)

The only difference between the circular and non-circular cylinder is
the fact that in the former case all block matrices of (32) become
diagonal, due to the independence of Zα of the φ′-coordinate . Then,
the inversion of (32) can be performed analytically, and we obtain the
well-known expansion coefficients of the circular cylinder. In the other
case the block matrices become full matrices of the order (2ncut +
1) × (2ncut + 1) , and the inversion must be performed numerically.
But, there exists the possibility to reduce the numerical effort. It can
be shown that in a fixed column “α” of each block matrix in (32)
the elements decrease with increasing distance |α− β| from the main
diagonal. This is seen from relation (33) which can be interpreted as
an expansion of Zα in terms of the functions ejnφ

′
, with n = α− β .

Therefore, each block matrix should be constructed in such a way
that, starting with the main diagonal, the adjacent diagonals are added
stepwise until convergence is achieved. Actual calculations have shown
that only a few adjacent diagonals have to be taken into account if the
boundary surface does not deviate too much from a circular one.

Once the coefficients have been determined the electromagnetic field
for the infinitely extended cylinder is given at any point in space. The
components of the scattered field on the mantle of the smallest circular
cylinder, circumscribing this non-circular one, read as follows:

Esurf
z′ = E0e

jk0z′ cos θp
(
sin2 θp

) ∑
α

cαH
(1)
α (ξ′)ejαφ

′
(47)

Esurf
ρ′ = E0e

jk0z′ cos θp (j sin θp)

·
∑
α

{
(cos θp) cαH(1) ′

α (ξ′)− dα
H

(1)
α (ξ′)
ξ′

jα

}
ejαφ

′
(48)

Esurf
φ′ = E0e

jk0z′ cos θp (j sin θp)

·
∑
α

{
(cos θp) cα

H
(1)
α (ξ′)
ξ′

jα+ dαH
(1) ′
α (ξ′)

}
ejαφ

′
(49)
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Hsurf
z′ = − k0

ωµ0
E0e

jk0z′ cos θp
(
sin2 θp

) ∑
α

dαH
(1)
α (ξ′)ejαφ

′
(50)

Hsurf
ρ′ = − k0

ωµ0
E0e

jk0z′ cos θp (j sin θp)

·
∑
α

{
(cos θp) dαH(1) ′

α (ξ′) + cα
H

(1)
α (ξ′)
ξ′

jα

}
ejαφ

′
(51)

Hsurf
φ′ = − k0

ωµ0
E0e

jk0z′ cos θp (j sin θp)

·
∑
α

{
(cos θp) dα

H
(1)
α (ξ′)
ξ′

jα− cαH
(1) ′
α (ξ′)

}
ejαφ

′
, (52)

with ξ′ = k0Rmin sin θp . Rmin is the radius of the smallest circum-
scribing cylinder.

These are the input quantities for our approximation we want to
derive in the next chapter.

3. AN APPROXIMATE SOLUTION FOR SCATTERING
ON FINITE NON-CIRCULAR CYLINDERS

For the following considerations, Huygens’ principle serves as a starting
point. It states that the electromagnetic fields are uniquely determined
at any point in space if the tangential electric and magnetic field com-
ponents on an arbitrary closed surface are given. In vector form it
reads as follows (e.g., [31])

�Es
(
�r′

)
=

∮
S
dS

{
jωµ0G

(
�r′, �r′

) [
�n× �Hsurf

(
�r′

)]
+

[
∇×G

(
�r′, �r′

)] [
�n× �Esurf

(
�r′

)]}
(53)

In our specific problem �Es(�r′) represents the scattered field of the
finite cylinder we are looking for. Consequently, the tangential surface
fields [�n× �Esurf (�r′)] and [�n× �Hsurf (�r′)] , occurring on the right hand
side of (53), are those of the finite structure. According to [24–27],
these surface fields are approximated by those of the corresponding
infinite cylinder given in (47)–(52), thus neglecting the contributions
from the top and bottom faces. Cylindrical coordinates {ρ′, φ′, z′} are
chosen for performing the surface integration since they are matched
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best to the geometry under consideration. Due to the usage of the
circumscribing circular cylinder �n reduces to �n = �eρ′ in (53).

The Green’s dyad G(�r′, �r′) , occurring in Huygens’ principle (53), is
given by [31]

G
(
�r′, �r′

)
=

{
I +

1
k2

0

∇∇
}
g0

(
�r′, �r′

)
(54)

with the scalar Green’s function

g0

(
�r′, �r′

)
=

ej
�k0(�r′−�r′)

4π
∣∣∣�r′ − �r′

∣∣∣ . (55)

Since we are only interested in scattering quantities that are defined
in the far field of the particle, the far field approximation of �Es(�r′)
is considered. In this approximation, the scattered field of any finite
obstacle represents outgoing spherical waves which are best described
in spherical coordinates {r′, θ′, φ′} . Thus, we obtain the following
far field expression for the dyadic Green’s function which is the only
quantity on the right hand side of (53) that depends on the observation
point �r′ :

G
(
�r′, �r′

)
= { �eθ′ �eθ′ + �eφ′ �eφ′}

ejk0r′

4πr′
e−jk0 �er′ ·�r′ . (56)

It’s straightforward to show from (56) that

[
∇×G

(
�r′, �r′

)]
= { �eφ′ �eθ′ − �eθ′ �eφ′} (jk0)

ejk0r′

4πr′
e−jk0 �er′ ·�r′ . (57)

The scalar product �er′ · �r′ in equations (56) and (57) between vectors
given in spherical and cylindrical coordinates provides

�er′ · �r′ = Rmin sin θ′ cos
(
φ′ − φ′

)
+ z′ cos θ′. (58)

Similar scalar products are obtained when inserting equations (47)–
(52) and (56)–(57) into (53):

�eθ′ ·�eφ′ = cos θ′ sin
(
φ′ − φ′

)
(59)

�eθ′ ·�ez′ = − sin θ′ (60)
�eφ′ ·�eφ′ = cos

(
φ′ − φ′

)
(61)

�eφ′ ·�ez′ = 0 . (62)
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Now we are able to calculate the surface integral of Huygens’ principle.
After performing the z′-integration over the finite cylinder length l
the following φ′-integrals remain:

Isα =
∫ φ′=2π

φ′=0
dφ′e−jk0Rmin sin θ′ cos(φ′−φ′) sin

(
φ′ − φ′

)
ejαφ

′
(63)

Icα =
∫ φ′=2π

φ′=0
dφ′e−jk0Rmin sin θ′ cos(φ′−φ′) cos

(
φ′ − φ′

)
ejαφ

′
(64)

Iα =
∫ φ′=2π

φ′=0
dφ′e−jk0Rmin sin θ′ cos(φ′−φ′)ejαφ

′
. (65)

They can be analytically calculated resulting in

Isα = −2π(−j)ααJα(ξ′I)
ξ′I

ejαφ
′

(66)

Icα = −2π(−j)α+1J ′α(ξ′I)e
jαφ′ (67)

Iα = 2π(−j)αJα(ξ′I)e
jαφ′ (68)

ξ′I = k0Rmin sin θ′. (69)

Finally, the following approximation for the scattered far field of a finite
cylinder with an arbitrary cross-section in the body frame is obtained:

�Es(�r′) = E0
ejk0r′

r′
j

4π
ξ′


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)



×
(
�eθ′

{∑
α

sin θpH(1)
α (ξ′)

(
cos θ′dαIsα − cαI

c
α

)

+j sin θ′
(
−jα cos θpdα

H
(1)
α (ξ′)
ξ′

+ cαH
(1)′
α (ξ′)

)
Iα

}

+�eφ′

{∑
α

sin θpH(1)
α (ξ′)

(
− cos θ′cαIsα + dαI

c
α

)

+j sin θ′
(
jα cos θpcα

H
(1)
α (ξ′)
ξ′

+ dαH
(1)′
α (ξ′)

)
Iα

})
. (70)
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This is in correspondence with the result published in [26] but with
coefficients cα and dα obtained from the non-circular cylinder.

From infinitely extended cylinders it is known that the scattered
field concentrates on a cone defined by θp (see Figure 1). Our approx-
imation reveals a similar behaviour if increasing the cylinder length l
up to infinity. In this case the l-dependent factor in (70) becomes

lim
l→∞


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)

 =

2π
k0 sin θ′

δ(θ′ − θp) . (71)

Of course, the calculation of differential scattering cross-sections makes
no sense due to the δ -dependence of the field components. However,
reasonable total cross-sections are obtained by integration over θ′ .
Now, let’s see what happens with (70) if θ′ = θp is chosen for a finite
length. By use of the relation

Jα (χ)H(1)′
α (χ)− J ′α (χ)H(1)

α (χ) =
2j
πχ

, (72)

we end up with

�Es(�r′) = E0
ejk0r′

r′
sin θp
π

l
∑
α

(−j)α+1 (�eθ′cα +�eφ′dα) ejαφ
′
. (73)

Apart from the radial dependence, the remaining expression is propor-
tional to what is known from the infinitely extended cylinder (see [32]
and [20]).

The expressions derived so far are valid within the body frame. Since
all scattering quantities are considered within the laboratory frame, the
field in equation (70) has to be transformed back into this system by

Es
θ = W11E

s
θ′ +W12E

s
φ′ (74)

Eφ = W21E
s
θ′ +W22E

s
φ′ . (75)

Moreover, the scattering quantities will be defined in the reference
plane (xz-plane with φ = 0 and π) so that the functions Wij(i, j =
1, 2) are given by
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W11 = cos θ cosφA11 cos θ′ cosφ′ − sin θA13 cos θ′ cosφ′

+ cos θ cosφA21 cos θ′ sinφ′ − sin θA23 cos θ′ sinφ′

− cos θ cosφA31 sin θ′ + sin θA33 sin θ′ (76)

W12 = − cos θ cosφA11 sinφ′ + sin θA13 sinφ′

+ cos θ cosφA21 cosφ′ − sin θA23 cosφ′ (77)

W21 = cosφA12 cos θ′ cosφ′ + cosφA22 cos θ′ sinφ′

− cosφA32 sin θ′ (78)

W22 = − cosφA12 sinφ′ + cosφA22 cosφ′ . (79)

Again, the Aij(i, j = 1, 2, 3) are the elements of the Euler matrix (12).
The corresponding variables transformation reads as follows:

θ′(θ, φ) = arctan[
((A11 sin θ cosφ+A13 cos θ)2 + (A21 sin θ cosφ+A23 cos θ)2)1/2

A31 sin θ cosφ+A33 cos θ

]

(80)

φ′(θ, φ) = arctan
[
A21 sin θ cosφ+A23 cos θ
A11 sin θ cosφ+A13 cos θ

]
. (81)

Now we define horizontally and vertically polarized components of the
scattered far field with respect to the reference plane,

Es
h = Es

θ (82)
Es

v = Es
φ . (83)

Then, the scattering amplitude matrix f that relates these compo-
nents to the polarized incident field (9) and (10) by the definition


Es

h

Es
v


 =

ejk0r

r
· f ·


Einc

h

Einc
v


 with f =


 fhh fhv

fvh fvv


 (84)

has within our approximation the form:
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fhh(θ) =
j

4π
ξ′


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)

∑

α

(
W11d

(h)
α −W12c

(h)
α

)

·
{

sin θpH(1)
α (ξ′) cos θ′Isα + α sin θ′ cos θp

H
(1)
α (ξ′)
ξ′

Iα

}

−
(
W11c

(h)
α +W12d

(h)
α

){
sin θpH(1)

α (ξ′)Icα−j sin θ′H(1)′
α (ξ′)Iα

}
(85)

fhv(θ) =
j

4π
ξ′


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)

∑

α

(
W11d

(v)
α −W12c

(v)
α

)

·
{

sin θpH(1)
α (ξ′) cos θ′Isα + α sin θ′ cos θp

H
(1)
α (ξ′)
ξ′

Iα

}

−
(
W11c

(v)
α +W12d

(v)
α

){
sin θpH(1)

α (ξ′)Icα−j sin θ′H(1)′
α (ξ′)Iα

}
(86)

fvh(θ) =
j

4π
ξ′


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)

∑

α

(
W21d

(h)
α −W22c

(h)
α

)

·
{

sin θpH(1)
α (ξ′) cos θ′Isα + α sin θ′ cos θp

H
(1)
α (ξ′)
ξ′

Iα

}

−
(
W21c

(h)
α +W22d

(h)
α

){
sin θpH(1)

α (ξ′)Icα−j sin θ′H(1)′
α (ξ′)Iα

}
(87)

fvv(θ) =
j

4π
ξ′


l

sin
(
k0l

2
(
cos θp − cos θ′

))
k0l

2
(
cos θp − cos θ′

)

∑

α

(
W21d

(v)
α −W22c

(v)
α

)
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·
{

sin θpH(1)
α (ξ′) cos θ′Isα + α sin θ′ cos θp

H
(1)
α (ξ′)
ξ′

Iα

}

−
(
W21c

(v)
α +W22d

(v)
α

){
sin θpH(1)

α (ξ′)Icα−j sin θ′H(1)′
α (ξ′)Iα

}
(88)

Note that the amplitudes are functions of the scattering angle θ in
the laboratory frame by the relations (76)–(81) for a fixed particle
orientation. All other scattering quantities of interest can be calculated
on the basis of the matrix f .

It is possible to compare fhh and fvv with the results derived by
van de Hulst [24] for perpendicular incidence on finitely approximated
circular cylinders. For this, we have to consider the special orientation
(φp = θp = π/2) . Together with the restriction to the scattering plane
(φ = 0 and π) it follows that θ′ = π/2 . Taking this in (85) and (88)
into account, and using (72) we get:

fhh(θ) = ∓ l

π

∑
α

(−j)α+1d(h)
α ejα(±θ−ψp) (89)

fvv(θ) = ∓ l

π

∑
α

(−j)α+1c(v)α ejα(±θ−ψp). (90)

The upper sign holds for φ = 0 , and the lower for φ = π . These
expressions are proportional to van de Hulst’s amplitude function S .

4. VERIFICATION AND APPLICATION OF THE
APPROXIMATION

To estimate the approximation derived in the previous chapter the fi-
nite circular cylinder can be used as a benchmark geometry. Due to
its axisymmetric structure, a rigorous analysis is possible by applica-
tion of the T-matrix approach in spherical coordinates, for instance.
Exact results for circular cylinders with different length can be found
in [13, 14, 33]. These are taken for a comparison of our approxima-
tion. The size parameter is k0 · a = 2.75 , and for the refractive index
we have n = 1.31 . This refractive index is a representative value for
light scattering on pure ice crystals in the visible. Both, fixed and
random orientations were considered. In the first case, the cylinder



Scattering of plane waves on finite cylinders 95

Figure 2. Differential scattering cross-sections dσvv/dΩ and dσhh/dΩ
and the elements of the Stokes matrix S for a finite circular cylinder
with its axis perpendicular to the direction of the scattering plane
(φp = π/2, θp = π/2) . Aspect ratio: 1.0, size parameter: 2.75, refrac-
tive index: 1.31 (–: exact, - · -: approximation).

axis is oriented perpendicularly to the reference plane, i.e. φp = π/2
and θp = π/2 . Figures 2–4 show a comparison of results obtained
by the exact method and the approximation for three different aspect
ratios (1.0, 3.0, and 5.0). Please note that, in what follows, the aspect
ratio is defined as the ratio of the cylindrical length to the largest di-
ameter of the cross-section. The differential scattering cross-sections
dσvv/dΩ and dσhh/dΩ as well as the elements of the Stokes matrix
S are defined according to [14, 33]. For the special single scattering
orientation in Figures 2–4 the cross polarized differential scattering
cross-sections vanish so that the Stokes matrix element S11 reduces
to S11 = (dσvv/dΩ + dσhh/dΩ) /2 . Additionally, only four elements
of the Stokes matrix are non-zero. Furthermore, the results obtained
within the approximation for this orientation are independent of the
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Figure 3. Same as Figure 2, but for an aspect ratio of 3.0.

Figure 4. Same as Figure 2, but for an aspect ratio of 5.0.
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Figure 5. Elements of the phase matrix for randomly oriented finite
circular cylinders with same parameters as used in Figure 2 (–: exact,
- · -: approximation).

aspect ratio and equal to those of the corresponding infinite cylinder.
For an aspect ratio of 1.0 (Figure 2), differences between the approxi-
mate results and those of the exact method can be especially observed
in the back scattering region. These differences vanish to a great ex-
tent at the aspect ratio of 3.0 (Figure 3) and become even smaller if 5.0
is chosen (Figure 4). This indicates that the approximation becomes
better with increasing aspect ratio at a given size parameter. The
six non-zero phase matrix elements for random orientation, presented
in the Figures 5-7, show a similar behaviour. We find again the ten-
dency that, the greater the aspect ratio the better the approximation
matches to the exact results. For an aspect ratio of 3.0, the differences
between the exact phase function and our approximation may already
be neglectable for many applications, as can be seen from Figure 6. In
this figure there is also given the approximation used in [13]. It shows
stronger deviations from the exact phase function than ours.

Now, lets turn to the hexagonal cylinder. A circular cylinder with
an aspect ratio of 3.0, a size parameter of k0 · a = 2.75 , and the
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Figure 6. Same as Figure 5, but for an aspect ratio of 3.0. The
approximation used in [13] is additionally shown (· · ·).

Figure 7. Same as Figure 5, but for an aspect ratio of 5.0.
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Figure 8. Differential scattering cross-sections and the elements of the
Stokes matrix for a circular and a hexagonal cylinder. For the circu-
lar cylinder the following parameters have been used: size parameter:
2.75, refractive index: 1.31, aspect ratio: 3.0 (- · -: circular cylinder, –:
volume-equivalent hexagonal cylinder of equal length).

volume-equivalent hexagonal cylinder of equal length have been treated
by use of our approximation. The results for the fixed orientation
perpendicular to the reference plane are given in Figure 8. Signifi-
cant differences occur only in the back scattering region, especially for
dσhh/dΩ . But, if orientation averaging is considered, as depicted in
Figure 9, we can hardly distinguish between both geometries. This is
due to the relatively small size parameter. The scattering behaviour
becomes more dependent on the particle geometry with increasing size
parameter. This can be seen by comparing Figures 10 and 11. In
Figure 10, the phase matrix is presented for a hexagonal cylinder of
size parameter 60. One major difference to the circular cylinder is the
occurrence of the 22◦ -halo in the phase function P11 which can be
clearly seen by choosing a linear scale. The volume-equivalent circular
cylinder of equal length (aspect ratio 3.0) does not show this feature
(Figure 11).
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Figure 9. Same as in Figure 7, but elements of the phase matrix
(- · -: circular, –: hexagonal).

It is a well established fact that the radiative properties of cirrus
clouds are significantly different from that of water clouds. Recent
direct measurements of the scattering phase function with a polar
nephelometer show an enhanced side scattering at scattering angles
of about 100◦ for ice clouds [34]. The differences are attributed to
distinctions in the microphysical properties. While water droplets are
approximately spherical, ice crystals occur in a large variety of non-
spherical shapes the basic structure of which is hexagonal. In order
to investigate the influence of non-sphericity on the phase function,
computations for a typical size distribution of hexagonal ice columns
and of surface-equivalent spheres were performed (Figure 12). For this
comparison the AVHRR-wavelength of λ = 3.775µm was chosen. The
crystal dimensions and the corresponding particle densities used in our
computations can be found in Table 1. The mentioned phenomenon of
an enhanced side scattering in the case of non-spherical particles can
be observed within our approximation.
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Figure 10. Elements of the phase matrix for randomly oriented finite
hexagonal cylinders, with an aspect ratio of 2.7282, size parameter of
60 and refractive index of 1.31.

Figure 11. Same as Figure 9, but for the volume-equivalent circular
cylinder of equal length (i.e., with an aspect ratio of 3.0).
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Figure 12. Comparison of the phase functions for a typical size distri-
bution of hexagonal ice columns and of surface-equivalent spheres at a
wavelength of 3.775 µm (AVHRR channel No. 3).

Type No. Column Half-Width Column Length Radius of Surface-Equivalent Particle Density

in µm in µm Sphere in µm in m−3

1 1.4 3.5 1.8 1.69 · 105

2 4.0 10.0 5.1 3.78 · 105

3 10.0 30.0 13.6 6.58 · 103

4 22.0 60.0 28.8 1.47 · 103

Table 1. Typical dimensions of hexagonal ice columns and correspond-
ing particle densities, after [35].

5. CONCLUSIONS

In this contribution, an approximation for scattering on finite non-
circular cylinders was presented. It was developed to model the scat-
tering behaviour of hexagonal columns in ice crystal clouds and has
already been applied in radiative transfer studies [36]. Characteristic
features of hexagonal structures like the 22◦-halo as well as the en-
hanced side scattering of non-spherical particles are retained within
the approximation. It can be successfully applied for aspect ratios as
low as about 3 without significant errors. Therefore, this approxima-
tion can be used as an adequate tool for certain practical applications.



Scattering of plane waves on finite cylinders 103

It requires a comparatively small numerical effort since it is based on
the solution of the infinite geometry.
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