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1. INTRODUCTION

Dielectric resonators have become important components of microwave
systems in designing filters, oscillators, amplifiers and tuners [1]. This
is mainly due to their high-Q (low-loss) value and their contribution
to miniaturization of microwave circuits. The resonance properties
of dielectric cylinders have been studied in the past using various
approaches based on the Perfectly Magnetic Conductor (PMC) wall
assumption [2], the Dielectric Waveguide Model (DWM) [3] and its
improvements [4], the Effective Dielectric Constant (EDC) method
[5], Mode Matching (MM) methods [6–10], Integral Equation (IE)
and Method of Moments (MoM) techniques [11–15], Generalized Im-
pedance Boundary Condition (GIBC) methods [16], Finite Elements
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Figure 1. Dielectric cylindrical geometry.

(FE) methods [17], Finite Difference Frequency Domain (FDFD) meth-
ods [18, 19] and Finite Difference Time Domain (FDTD) methods
[20, 21], assuming non-radiating structures. Usually, the dielectric res-
onator is of finite height cylindrical shape with a very large dielectric
permittivity (εr ≈ 30) and, in many cases, the resonance proper-
ties are treated considering the dielectric cylindrical resonator isolated
in space [8, 9, 12, 20–28]. Nevertheless, the resonance properties of
dielectric cylinders is highly dependent on the electromagnetic (EM)
properties of the neighbouring object, the most common case being
the grounded dielectric substrate used in microstrip technology cir-
cuits. Indeed, the extensive use of microstrip technology, compatible
to high permittivity finite cylinder dielectric resonators, requires the
development of accurate computational techniques to determine their
resonance properties and especially the effects of EM structures being
in their vicinity. This is due to the fact that, the very high value of the
cylinders’ dielectric permittivity seems to cause numerical instability
and serious convergence problems on the computational techniques to
be used, which are otherwise very stable and easily convergent for low
dielectric permittivity values. Considering the necessity of computing
the resonance frequency with an accuracy better than 50 ppm, very
accurate and highly convergent methods need to be developed, such
as IE-MoM techniques used in previous works [14, 15]. Especially for
“open” structures, as in the present case, MoM/Galerkin techniques
with a “proper” set of basis functions seem to be more promising in
terms of accuracy compared to FDTD and FE based methods.

To this end, in the present paper, an open dielectric resonator is
analyzed, using a volume integral equation formulation in conjunction
with a Galerkin technique to determine the resonance frequencies, as
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well as the quality factors (Q). The geometry of the resonator struc-
ture is shown in Figure 1(a). A cylinder of height d and radius a with a
high permittivity value (εr � 1) is placed above a grounded dielectric
substrate of permittivity ers and height h. For the sake of generality,
the pursued analysis is also valid for the case where there is an (1−h)
distance between the resonator and the grounded dielectric substrate,
as shown in Figure 1(b). The geometry presented in Figure 1(a) cor-
responds to the case 1 = h, while for 1→∝ the resonator is isolated
in the free space. In the following, the excitation structure is consid-
ered to be a Hertzian dipole instead of a microstrip line. The time
dependence of the EM oscillation is assumed to be exp(−iωt) and is
suppressed throughout the analysis.

In section 2, the formulation of the problem is presented and an
integral equation is derived in terms of the electric field inside the res-
onator, which is solved in section 3, via an entire domain Galerkin
technique. The specific computations needed to calculate the kernel
and the right hand side elements are given in section 4. Numerical re-
sults are presented in section 5 for several resonator sizes and operation
frequencies and the resonance properties of the examined structure are
determined, while concluding remarks and topics for further work are
given in section 6.

2. FORMULATION OF THE RESONANCE PROBLEM

In order to determine the resonance properties of the structure shown
in Figure 1, the dyadic Green’s function G(r, r′) of the grounded sub-
strate has to be taken into consideration. To this end, the expres-
sion derived in [29] for a Hertzian dipole excitation parallel to the mi-
crostrip substrate is extended and generalized, assuming an arbitrarily
oriented elementary dipole as a primary source, with a current density
J(r) = poδ̂δ(r − ro), where po(A ·m) is the electric dipole moment,
δ̂ is the unit vector defining the dipole orientation and δ(r − ro) is
the three-dimensional (3D) Dirac delta function, with ro denoting the
dipole position.

Since the entire space is magnetically homogeneous, applying the
Green’s theorem, the fundamental equation is obtained, as [30]

E(r) = k2
o(εr − 1)

∫
Vd

∫∫
dr′ G(r, r′) · E(r′) + poδ̂ ·G(r, ro) (1)
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where Vd is the finite height dielectric cylinder volume and E(r) is
the unknown electric field distribution inside the cylindrical dielectric
resonator. The physical interpretation of eq. (1), when r is kept within
the dielectric resonator volume Vd, is the regeneration of the electric
field itself, due to the reaction of the dielectric cylinder in the presence
of the grounded substrate. Restricting the observation point r within
Vd, eq. (1) forms a 3D integral equation in terms of E(r), which is
solved, as presented in section 3, applying a Galerkin procedure.

3. SOLUTION OF THE INTEGRAL EQUATION

Since the unknown electric field quantity E(r) inside the dielectric
resonator volume Vd, represents a finite energy vector function, it can
be expanded into a Fourier integral, as

E(r) =
∫ +∞∫
−∞

∫
dk exp(ik · r)C(k) (2)

where each individual {exp(ik · r)C(k)} wave term should satisfy the
appropriate wave equation

∇×∇× E(r)− k2
oεrE(r) = 0 (3)

This shows that, for an isotropic dielectric, as in the present case, it is
|k| = kd = ko

√
εr and the 3D integral in eq. (2) should be restricted

only to the two angular variables, namely the θk and φk angles in the
phase space, as

E(r) =
∫
Ωk

∫
dk̂ C(k̂) exp(ikdk̂ ·r) ≡

2π∫
0

dφk

π∫
0

dθk sin θkC(k̂) exp(ikdk̂ ·r)

(4)
where r ∈ Vd, kd = ko

√
εr is the wavenumber in the dielectric res-

onator region, k̂ = ẑ cos θk + (x̂ cosφk + ŷ sinφk) sin θk is an arbitrary
unit vector in the spectral space Ωk and C(k̂) is the 3D unknown
spectral function.

On substituting eq. (4) into eq. (1), calculating the moment over the
volume Vd and using as test functions the same set of
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exp(−ikdξ̂ · r) functions (Galerkin technique), the following integral
equation is obtained∫

Ωk

∫
dk̂ K(ξ̂, k̂) · C(k̂) = B(ξ̂) (5)

where the kernel

K(ξ̂,k̂) =
∫
Vd

∫∫
dr exp[−ikd(ξ̂ − k̂) · r]

− k2
o(εr − 1)

∫
Vd

∫∫
dr

∫
Vd

∫∫
dr′ exp(−ikdξ̂ · r) ·G(r, r′) · exp(ikdk̂ · r′)

(6)
is referred to as “Impedance Matrix” and the right hand term

B(ξ̂) =
∫
Vd

∫∫
dr exp[−ikdξ̂ · r] G(r, ro) · δ̂po (7)

denotes the primary source impact. The techniques employed to com-
pute the K(ξ̂, k̂) and B(ξ̂) elements are described in section 4.

In order to solve eq. (5), considering the non-singular character of
the kernel K(ξ̂, k̂), a discretization procedure is implemented to con-
vert this equation to a linear system with finite number of unknowns.
To this end, the Fourier transformation given by eq. (4) is converted
into a discrete summation with distributed values, as

E(r) =
K∑
k=1

L∑
l=1

C(k̂kl) exp
[
ikd(k̂kl · r)

]
(8)

where C(k̂kl) = C(k, l) = Cxklx̂+ Cyklŷ + Czklẑ is a new unknown coef-
ficient in which the terms sin(k∆θ) and the weighting coefficients de-
rived from the discretization procedure are incorporated, the “pivot”
vectors are

k̂kl = sin(k∆θ)[cos(l∆ϕ)x̂+ sin(l∆ϕ)ŷ] + cos(k∆θ)ẑ) (9)

and the correspondences
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θk ↔ k∆θ and φk ↔ l∆φ with ∆θ =
π

K + 1
and ∆φ =

2π
L

(10)

are valid. Therefore, eq. (5) is converted to the 3KL order linear system

K∑
k=1

L∑
l=1

K(ξ̂k′l′ , k̂kl) · C(k̂kl) = B(ξ̂k′l′) (11)

where eqs. (9)–(10) are also valid for the set of {ξ̂k′l′ |k′ = 1, 2, . . .
K/1′ = 1, 2, · · · , L} “testing” pivots and the “impedance matrix” el-
ements K(ξ̂k′l′ , k̂kl) and the “source term” elements B(ξ̂k′l′) are de-
fined in the next section 4. The number of K and L pivot-vectors
is selected based on convergence considerations, discussed in section
5 and, finally, eq. (11) is numerically inverted, using a Gauss trian-
gulation technique. Note that, as already proved in previous works
[31], the convergence of the proposed Galerkin technique accelerates
due to the fact that, each individual basis function is chosen to satisfy
the corresponding wave equation (3) inside the cylindrical dielectric
resonator.

4. COMPUTATION OF THE “IMPEDANCE TERMS”
AND “SOURCE TERMS”

In order to compute the “impedance matrix” elements K(ξ̂k′l′ , k̂kl)
and the “source term” elements B(ξ̂k′l′) appearing in eq. (11), the
Fourier expansion of the scalar Green’s function is employed, as

exp(ik0|r − r′|)
4π|r − r′| =

1
(2π)3

lim
ε→0+

+∞∫
−∞

dpx

+∞∫
−∞

dpy

+∞∫
−∞

dpz
exp(ip · (r − r′))
p2 − k2

0 − iε
(12)

where p = (px, py, pz) and p2 = p2
x + p2

y + p2
z. Then, expressing the

dyadic Green’s function G(r, r′) as a superposition of the free-space
Green’s function Go(r, r′) and the dyadic G1(r, r′) , associated to the
microstrip substrate, the following representation is derived



Analysis of a dielectric resonator on a grounded substrate 193

G(r, r′) = Go(r, r
′) +G1(r, r

′)

=
1

8π3

∫ +∞∫
−∞
ε→0+

∫
dp

(p2I − pp)
p2 − k2

0 − iε
eip·(r−r

′)+

+
1

8π2

+∞∫
−∞

∫
dpxdpy g1

(px, py)eipx(x−x′)+ipy(y−y′)−µ(z+z′−2h)

(13)
where g

1
is given in Appendix I and

µ =
√
p2
x + p2

y − k2
0 with Real(µ) > 0 and Imag(µ) < 0 (14)

in accordance to the exp(−iωt) time dependence and the satisfaction
of the radiation condition at infinity.

After substituting eq. (13) into eq. (11), the integrations with re-
spect to the (x, y, z) and (x′, y′, z′) variable s are of the type

U1 =
∫
Vd

dr eiβ·r =

α∫
0

dρ

2π∫
0

ρdφ

l+d∫
l

dz exp{i(ρβρ cos(φβ − φ) + βzz)}

(15)
with β = ρβ ρ̂+ φβφ̂+ βz ẑ and are carried out analytically, as

U1(β) = 2πα2 J1(ρβα)
ρβα

·
2 sin

(
βz
d

2

)
βz

eiβz(1+
d
2 ) (16)

making use of the formula 9.1.18 of [32]

2πJ0(τ) =

2π∫
0

dφ eiτ cosφ (17)

Then, all the derived integrals with respect to the pz term, appearing
in the Go(r, r′) term of eq. (13), are of the type

lim
ε→0+

+∞∫
−∞

dpz
f(pz)

p2 − k2
0 − iε

exp(iαpz) , α �= 0 (18)
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Figure 2. Complex plane geometry.

having poles at the points ±λu with λ2
u = k2

0 − p2
x − p2

y + iε, ε→ 0+

and, therefore, their values are also carried out analytically, using con-
tour integration methods (Cauchy theorem). In each case, the contour
C shown in Figure 2 is closed depending on the number α sign.

After having carried out analytically the integrations with respect
to the (x, y, z), (x′, y′, z′) and pz variables, as described above, two
dimensional integrals in the spectral space (px, py) are obtained, which
are numerically computed, based on a Gauss quadrature integration
method presented in p. 887 and p. 916 of [32]. Sufficient accuracy
is then achieved, by increasing both the number of integration points
and the integrals’ bounds truncation. To this end, the double integrals
with respect to the variables px and py are transformed in cylindrical
coordinates as

+∞∫
−∞

dpx

+∞∫
−∞

dpy ≡
+∞∫
0

dρp ρp

2π∫
0

dφp , px = ρp cosφp, py = ρp sinφp

(19)
so that the convergence only with respect to the ρp integration upper
limit has to be checked.

Following the above described procedure, the “impedance matrix”
elements K(ξ̂k′l′ , k̂kl) and the “source term” elements B(ξ̂k′l′) are
defined in Appendix II.
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5. NUMERICAL RESULTS

If the examined resonator problem is faced as a homogeneous prob-
lem, then in eq. (11) it would be B(ξ̂k′l′) = 0 and the resonance fre-
quencies could be determined by computing the complex roots of the
corresponding kernel determinant det[ K(ξ̂k′l′ , k̂kl)] for the k̇0 = ω̇/c
variable, where k̇0 and ẇ is the complex wavenumber and the com-
plex frequency, respectively. However, this task has been proved to
lead to numerical difficulties [33], due to the involvement of the two
variables Real(k0) and Imag(k0). To this end, in the present work,
an alternative method, based on the assumption of an external source
is applied, leading to a numerically stable solution.

Namely, in order to determine the resonance properties, the stored
average electric field energy is computed, based on the expression

Pε =
εoεr
4

∫
Vd

∫∫
dr E(r) · E∗(r) (20)

and substituting eq. (2) into eq. (20), after some simple algebra, it is
shown that

Pε =
εoεr
4

∫
Ωk

∫
dk̂

∫
Ωk

∫
dξ̂ C(k̂) · C∗(ξ̂)U(k̂ − ξ̂)⇒

Pε =
εoεr
4

K∑
k=1

L∑
l=1

K∑
k′=1

L∑
l′=1

C(k̂kl) · C∗(ξ̂k′l′)U(k̂kl − ξ̂k′l′)
(21)

where exactly the same discretization procedure as in eqs (8)–(11) is
employed, with U(k̂kl − ξ̂k′l′) =

∫
Vd

∫∫
dr exp[+ikd(k̂kl − ξ̂k′l′) · r] being

calculated as described in eqs (15)–(17).
In order to determine the resonant frequencies “ fn ” and the cor-

responding quality factors “Qn ”, a frequency scanning technique is
employed, by varying the oscillation frequency f of the primary cur-
rent source. An approximate estimation of the resonant frequency for
the dominant mode (TE01δ) of an isolated dielectric resonator can be
found by using the formula (see p. 3 of [1])

fapprox =
34
α
√
εr

(α
d

+ 3.45
)

(22)
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where α, d denote the cylinder radius and height respectively and are
expressed in mm, while fapprox is expressed in GHz. Then, eq. (11) is
solved consequently for various frequencies f in the region of fapprox
and the stored electric energy Pε is computed as a function of fre-
quency. A resonance behaviour is observed, independently of the pri-
mary excitation, presenting peak values with narrow linewidth.

In order to insure convergence, in the first place, accurate compu-
tation of the K(ξ̂n, k̂n) and B(ξ̂n) terms (see eq. (11)) is required,
which—according to the formulae given in Appendix II—corresponds

to accurate computation of
+∞∫
0

dρp ρp
2π∫
0

dφp f(ρp, φp) integrals. Suf-

ficient accuracy is achieved, by increasing both the number of integra-
tion points and the ρp integration upper bound truncation. For the
K(ξ̂n, k̂n) elements, in the worst case, the integrand f(ρp, φp) −→ρp→∞

1
ρ3p
,

while for the B(ξ̂n), in the worst case, the integrand f(ρp, φp) −→ρp→∞
1
ρ2p
,

and the ρp integration upper limit is truncated to 1000k0 to achieve
an accuracy better than 1% for the resonance frequencies values. Fur-
thermore, for each examined case, convergence in terms of the number
of K and L pivot-vectors is checked, by increasing both K and L
to cover sufficiently the spectral space. It has been proved that the
Go(r, r′) free-space term of the dyadic Greens function appearing in
eq. (13) is the most difficult one to converge, compared to the G1(r, r′)
term associated to the microstrip substrate. To this end, in Tables 4
and 6 this convergence is shown for two indicative cases of an isolated
resonator, with a homogeneous distribution of the pivot-vectors in the
spectral space. Once the number of the pivot-vectors is large enough to
obtain a resonance behaviour, the resonance frequency value is highly
converging and does not change by adding more pivots. Nevertheless,
the absolute peak values of the corresponding stored electric energy
We need some increase of the K and/or L values, as shown in Tables
4 and 6, where, as expected, this convergence is even more difficult for
electrically larger resonators.

In order to prove the validity of the proposed method, numerical
results have been computed and compared with previously published
data, concerning dielectric cylindrical resonators, either isolated [9, 12]
or mounted on a microstrip substrate [1, 4, 9].

In all the results presented hereafter a cylindrical coordinates system
is adopted, with its z-axis coinciding to the cylindrical resonator axis
and its ρϕ-plane coinciding to the ground plane. Then, the excitation
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Figure 3. TE01δ and HEM12δ modes at f = 4.85 GHz and f =
6.66 GHz, respectively for an isolated resonator with εr = 38, α =
5.25 mm and d = 4.6 mm.

is considered to be a Hertzian dipole, with electric moment po = 1A·m ,
orientation δ̂ = ŷ and position vector ro = (xo, yo, zo) = 5x̂+ 10ẑ (in
mm). As far as the isolated resonator is concerned, the computations
are carried out by considering only the free-space term Go(r, r′) in
eq. (6). In Figure 3, the resonance behaviour of an isolated cylindri-
cal dielectric resonator is presented, for the two successive resonating
modes TE01δ and HEM12δ. As already mentioned, the average stored
energy of the electric (or magnetic) field is computed on the frequency
axis. Resonant frequencies and linewidths (1/Q) are computed and
shown in Table 1, where the comparison with previously reported the-
oretical and experimental data [12] exhibits a very good agreement.

Further numerical results are presented in Figure 4, concerning an-
other isolated cylindrical dielectric resonator. In Table 2 the results
derived by the present analysis are compared with those of [9] and a
very good agreement is again exhibited.

Numerical computations have been also carried out for a dielectric
cylindrical resonator mounted on a microstrip substrate. First, in Fig-
ure 5, a sample case is examined, corresponding to the same resonator
as in Figure 4, placed in this case over a metal plate. The distance
(l−h) between the metal plate and the resonator is equal to the radius
α of the resonator. As shown in Figure 5, the resonant frequency of
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RESONANT FREQUENCY (GHZ) QUALITY FACTOR
MODE MEASURED COMPUTED PRESENT MEASURED COMPUTED PRESENT

[12] Surface Integral HISTORY [12] Surface Integral THEORY

Equation [12] Equation [12]

TE01δ 4.85 4.829 4.85 51 45.8 45.2

HEM12δ 6.64 6.638 6.66 64 52.1 59.2

Table 1. Resonant frequency and quality factor for TE01δ and
HEM12δ modes of an isolated resonator with εr = 38, α = 5.25 mm
and d = 4.6 mm.

Mode Measured Computed Present

TE01δ [9] [9] Theory

Resonant 9.11 9.13 9.14

Frequency (GHz)
Quality 46 51 45.75

Factor

Table 2. Resonant frequency and quality factor for TE01δ mode of an
isolated resonator with εr = 38, α = 2.86 mm and d = 2.38 mm.

Figure 4. TE01δ mode for an isolated resonator with εr = 38,
α = 2.86 mm and d = 2.38 mm.

TE01δ mode is computed at 9.15 GHz, in agreement to the 9.16 GHz
resonant frequency reported in [4]. The quality factor Q has been
found to be 185, which is feats to the plot presented in Figure 5 of [9].
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Figure 5. TE01δ mode for a resonator with εr = 38, α = 2.86 mm
and d = 2.38 mm, placed at a distance l = α(h = 0) above a metal
plate.

Finally, a second sample of a dielectric cylindrical resonator
mounted on a microstrip substrate is examined for comparison pur-
poses. Namely, the TE01δ mode for a resonator with εr = 37.7, α =
3.85 mm and d = 3.41 mm, mounted on a microstrip substrate with
εrs = 2.54 and thickness h = 0.254 mm, is shown in Figure 6. The
resonant frequency for this mode is reported in pp. 162–163 of [1] to
be 7.56 GHz, while, using the present theory, it is computed at 7.58
GHz.

After having checked the validity of the method, new results have
been obtained to demonstrate the impact of the resonator height or
the presence of the grounded substrate to the resonance properties of
the resonator. To this end, first an isolated resonator with εr = 35
and radius α = 3.0 mm is examined for two different height values
d = 3.0 mm and d = 1.5 mm and second both resonators are mounted
on a microstrip substrate with εrs = 2.1 and thickness h = 0.69 mm.

The results concerning the d = 3.0 mm isolated cylinder are pre-
sented in Figure 7 and Table 3, while the results concerning the d =
1.5 mm isolated cylinder are presented in Figure 8 and Table 5. Fur-
thermore, for the d = 1.5 mm resonator, field distributions are plotted
in Figures 9–10, for the TE01δ and HEM12δ modes respectively, which
are in qualitative accordance to Figures 6.16 and 6.30–6.31 of [1]. Com-
paring Tables 3 and 5, it can be concluded that, as expected, though
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Figure 6. TE01δ mode for a resonator with εr = 37.7, α = 3.85 mm
and d = 3.41 mm, mounted on a microstrip substrate with εrs = 2.54
and thickness h = 0.254 mm.

Figure 7. TE01δ and HEM12δ modes at f = 8.565 GHz and f =
11.91 GHz, respectively for an isolated resonator with εr = 35, α =
3.0 mm and d = 3.0 mm.

Mode Resonant Quality
Frequency (GHz) Factor

TE01δ 8.565 35.8
HEM12δ 11.91 41.6

Table 3. Resonant frequency and quality factor for TE01δ and
HEM12δ modes of an isolated resonator with εr = 35, α = 3.00 mm
and d = 3.00 mm.
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K L W e

5 8 521.354
6 8 1204.225
7 8 3329.618
8 8 5496.801
8 10 5547.854
8 12 5601.198
10 10 5609.753
10 12 5598.742

Table 4. Convergence of the absolute peak values of the stored electric
energy We in terms of the pivot-vectors K and L for TE01δ mode
of an isolated resonator with εr = 35, α = 3.00 mm and d = 3.00 mm.

Mode Resonant Quality
Frequency (GHz) Factor

TE01δ 10.57 37.75
HEM12δ 14.37 42.45

Table 5. Resonant frequency and quality factor for TE01δ and
HEM12δ modes of an isolated resonator with εr = 35, α = 3.00 mm
and d = 1.50 mm.

Figure 8. TE01δ and HEM12δ modes at f = 10.57 GHz and f =
14.37 GHz, respectively for an isolated resonator with εr = 35, α =
3.0 mm and d = 1.5 mm.
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Figure 9. Electric field distribution of the dominant component |Eϕ|
at the equatorial plane d = 0.75 mm for TE01δ mode of an isolated
resonator with εr = 35, α = 3.0 mm and d = 1.5 mm.

(a) (b)

Figure 10. Electric field distribution at the equatorial plane d =
0.75 mm for HEM12δ mode of an isolated resonator with εr = 35, α =
3.0 mm and d = 1.5 mm:
(a) tangential component |Etan| (b) longitudinal component |Ez| .

the quality factor is not affected by the modification of the resonator
height, the resonant frequencies are shifted, as predicted by the approx-
imate estimation of eq. (22). Finally, the convergence of the absolute
peak values of the corresponding stored electric energy We in terms of
the K and L number of pivot-vectors is presented in Tables 4 and
6 respectively for both isolated resonator cases. Note that, since the
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K L W e

5 8 494.697
6 8 3605.122
7 8 3329.618
8 8 3362.801
8 10 3346.854
8 12 3407.198
10 10 3397.773
10 12 3385.742

Table 6. Convergence of the absolute peak values of the stored electric
energy We in terms of the pivot-vectors K and L for TE01δ mode
of an isolated resonator with εr = 35, α = 3.00 mm and d = 1.50 mm.

Mode Resonant Quality
Frequency (GHz) Factor

TE01δ 9.35 143
HEM12δ 12.38 206

Table 7. Resonant frequency and quality factor for TE01δ and
HEM12δ modes of a resonator with εr = 35, α = 3.00 mm and
d = 1.50 mm mounted on a microstrip substrate with εrs = 2.1 and
h = 0.69 mm.

Go(r, r′) free-space term is the most difficult one to converge, com-
pared to the G1(r, r′) term associated to the microstrip substrate, the
same number of pivot-vectors needed to solve the isolated resonator
problem will also sufficiently cover the spectral space for solving the
microstrip substrate mounted resonator problem.

The results concerning the d = 3.0 mm cylinder mounted on a
microstrip substrate with εrs = 2.1 and thickness h = 0.69 mm are
presented in Figure 11 and Table 7, while the results concerning the
d = 1.5 mm cylinder mounted on the same microstrip substrate are
presented in Figure 12 and Table 8. Comparing Table 3 to Table 7
and Table 5 to Table 8, it can be concluded that the presence of the
grounded substrate results to a moderate shift of the resonant frequen-
cies, but to an expected significant increase of the quality factor Q.
The latter phenomenon, which has been already observed by other
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Figure 11. TE01δ and HEM12δ modes at f = 9.35 GHz and f =
12.38 GHz, respectively for a resonator with εr = 35, α = 3.0 mm and
d = 3.0 mm, mounted on a microstrip substrate with εrs = 2.1 and
thickness h = 0.69 mm.

Figure 12. TE01δ and HEM12δ modes at f = 11.91 GHz and f =
14.75 GHz, respectively for a resonator with εr = 35, α = 3.0 mm and
d = 1.5 mm, mounted on a microstrip substrate with εrs = 2.1 and
thickness h = 0.69 mm.

Mode Resonant Quality
Frequency (GHz) Factor

TE01δ 11.91 278
HEM12δ 14.75 476

Table 8. Resonant frequency and quality factor for TE01δ and
HEM12δ modes of a resonator with εr = 35, α = 3.00 mm and
d = 3.00 mm mounted on a microstrip substrate with εrs = 2.1 and
h = 0.69 mm.
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researchers (see Fig. 5 of [9]), is explained by the fact that, when the
resonator is placed close to a perfectly conducting surface, the elec-
tric field intensity inside the resonator is increased, while the radiation
losses are lowered. Furthermore, in case that the conducting surface is
covered by a dielectric substrate of low permittivity, no surface waves
are excited inside the dielectric substrate, due to the axis-symmetric
pattern of the electric field generated by the resonating dielectric cylin-
der.

Finally, in Figure 13, the variation of the resonant properties of the
d = 1.5 mm resonator is shown, by moving the resonator with respect
to the grounded substrate. As expected, for large distances (1 − h)
(approximately five times the resonator height), the isolated resonator
solution, given in Table 5, is derived.

6. CONCLUSIONS

A numerically stable and efficient technique to compute the resonance
properties of very high permittivity dielectric cylinders placed on a
microstrip substrate has been presented. A volume integral equation
formulation in conjunction with an entire domain Galerkin technique
with a suitable plane wave expansion has been employed and proved
to be highly convergent and stable. The computation of the stored
average electric (or magnetic) energy inside the dielectric cylinder on
the frequency axis has been shown to be an efficient technique to de-
termine the resonance properties of modes with a very high accuracy.
Furthermore, the effect of the microstrip substrate to the cylindrical
resonator quality factor has been exhibited.

APPENDIX I

The dyadic g
1
(px, py) = g

1
(ρp, φp) appearing in wq. (13) is defined as

g
1
(px, py) = g

1
(ρp, φp) =



g1xx g1xy g1xz

g1yx g1yy g1xz

g1zx g1zy g1zz



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Figure 13. Cylindrical resonator with εr = 35, α = 3.0 mm and
d = 1.5 mm, placed above a microstrip substrate with εrs = 2.1 and
thickness h = 0.69 mm: variation of the (a) resonance frequency and
(b) quality factor vs. the distance (1− h) between the resonator and
the substrate.
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where

g1xx =

[
−

(
k2

0 − ρ2
p cos2 φp
µk2

0

)

+

2(k2
0εrs − ρ2

p cos2 φp)(µ coshµ1h+ µ1 sinhµ1h)

+ 2(k2
0 − ρ2

p cos2 φp)µ1 sinh2µ1h

k2
0(µεrs coshµ1h+ µ1 sinhµ1h)(µ1 coshµ1h+ µ sinhµ1h)




g1xy = g1yx

=

[
−2ρ2

p cosϕp sinϕp sinhµ1h(µ coshµ1h+ µ1 sinhµ1h)
k2

0(µεrs coshµ1h+ µ1 sinhµ1h)(µ1 coshµ1h+ µ sinhµ1h)

+

(
ρ2
p cosϕp sinϕp

µk2
0

)]

g1xz = −g1zx =
[ −2iρp cosϕp sinhµ1h

k2
o(µεrs coshµ1h+ µ1 sinhµ1h)

+
(
iρp cosϕp

k2
0

)]

g1yy =

[
−

(
k2

0 − ρ2
p sin2 φp

µk2
0

)

+

2(k2
0εrs − ρ2

p sin2 φp)(µ coshµ1h+ µ1 sinhµ1h)

+ 2(k2
0 − ρ2

p sin2 φp)µ1 sinh2µ1h

k2
0(µεrs coshµ1h+ µ1 sinhµ1h)(µ1 coshµ1h+ µ sinhµ1h)




g1yz =
[ −2iρp sinϕp sinhµ1h

k2
o(µεrs coshµ1h+ µ1 sinhµ1h)

+
(
iρp sinϕp

k2
0

)]

g1zz =

[
−2ρ2

p sinhµ1h

µk2
0(µεrs coshµ1h+ µ1 sinhµ1h

+
(
µ2 + k2

0

µk2
0

)]

with µ =
√
ρ2
p − k2

0, µ1 =
√
ρ2
p − k2

0εrs, Re(µ) > 0, Im(µ) < 0 and
Re(µ1) > 0, Im(µ1) < 0.
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APPENDIX II

Eq. (11) is written as

K∑
k=1

L∑
l=1


Kxx(k′, l′, k, l) Kxy(k′, l′, k, 1) Kxz(k′, l′, k, 1)
Kyx(k′, l′, k, 1) Kyy(k′, l′, k, 1) Kyz(k′, l′, k, 1)
Kzx(k′, l′, k, 1) Kzy(k′, l′, k, 1) Kzz(k′, l′, k, 1)


 ·


Cx(k, l)Cy(k, l)
Cz(k, l)




=


Bx(k′, l′)By(k′, l′)
Bz(k′, l′)




which, according to eq. (13) and retaining the same subscripts denoting
the free space and the microstrip substrate impact, is written as

{
K0 +K1

}
· C = δ̂ ·

{
B0 +B1

}
⇔



K0xx K0xy K0xz

K0yx K0yy K0yz

K0zx K0zy K0zz


 +


K1xx K1xy K1xz

K1yx K1yy K1yz

K1zx K1zy K1zz





 ·


CxCy
Cz




= δ̂ ·





B0xx B0xy B0xz

B0yx B0yy B0yz

B0zx B0zy B0zz


 +


B1xx B1xy B1xz

B1yx B1yy B1yz

B1zx B1zy B1zz







Then by denoting

kz = k0
√
εr cos(k∆θ)

ξz = k0
√
εr cos(k′∆θ)

ρ
k

= k0
√
εr sin(k∆θ)(cos(l∆ϕ)x̂+ sin(l∆ϕ)ŷ)

ρ
ξ

= k0
√
εr sin(k′∆θ)(cos(l′∆ϕ)x̂+ sin(l′∆ϕ)ŷ)

ρ
p

= pxx̂+ pyŷ = ρpρ̂

the kernel elements are defined as

K1 =k2
0(εr − 1)

+∞∫
0

dρp

2π∫
0

dϕp ρp

(
α4d2

2

) 
J1

(
|ρ
k
− ρ

p
|α

)
|ρ
k
− ρ

p
|α ·

J1

(
|ρ
p
− ρ

ξ
|α

)
|ρ
p
− ρ

ξ
|α



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sin
[
(iµ+ kz)

d

2

]

(iµ+ kz)
d

2

sin
[
(iµ− ξz)

d

2

]

(iµ− ξz)
d

2
e−2µde−2µ(1−h)ei(kz−ξz)(1+

d
2 )g

1
(ρp, φp)

with g
1
(ρp, ϕr) being defined in Appendix I and

K0xx = εr2πα2d
J1(|ρk − ρξ| α)

|ρ
k
− ρ

ξ
| α ·

sin
[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

expi(kz−ξz)(1+
d
2 )

− (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α ·

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )

·


(k2

0 − ρ2
p cos2 ϕp) ·


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

+
1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2




+2[ρ2
p sin2 φp + k2

z ]
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u




K0xy = Koyx = (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dρp φp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )



210 Karonis et al.

·


(ρ2

p cosϕp sinϕp) ·


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

+
1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2




+2
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u




K0xz = Kozx = (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )

·


(λu − p cosϕp) ·


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

− 1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2




+2kzρp
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u




K0yy = εr2πα2d
J1(|ρk − ρξ| α)

|ρ
k
− ρ

ξ
| α ·

sin
[
(kz − ξz)

d

2

]
(kz − ξz)d2

ei(kz−ξz)(1+
d
2 )

− (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α



Analysis of a dielectric resonator on a grounded substrate 211

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )

·


(k2

0 − ρ2
p sin2 φp) ·


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

+
1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2




+[ρ2
p cos2 φp + k2

z ]
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u


 2

K0yz = K0zy = (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )

·


(λuρp sinϕp) ·


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

− 1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2




+2kzρp
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u




K0zz = εr2πα2d
J1(|ρk − ρξ| α)

|ρ
k
− ρ

ξ
| α ·

sin
[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

ei(kz−ξz)(1+
d
2 )
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− (εr − 1)α4d

+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρk − ρp| α)

|ρ
k
− ρ

p
| α

·
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α ei(kz−ξz)(1+

d
2 )

·


ρ

2
p


 1
λu

ei(λu−kz)
d
2

(λu − kz)
·
sin

(
(λu − ξz)

d

2

)

(λu − ξz)
d

2

+
1
λu

ei(λu+kz)
d
2

(λu + kz)
·
sin

(
(λu + ξz)

d

2

)

(λu + ξz)
d

2

+2
sin

[
(kz − ξz)

d

2

]

(kz − ξz)
d

2

· 1
k2
z − λ2

u





 .

The right-hand terms B1 are defined as

B1 =

+∞∫
0

dρp

2π∫
0

dφp ρp

(
α4d2

2

) (
J1(|ρp − ρξ| α)

|ρ
p
− ρ

ξ
| α

)
·

·
sin

[
(iµ− ξz)

d

2

]

(iµ− ξz)
d

2

e−2µh ei(iµ−ξz)(1+
d
2 )e−iρpρ0 cos(φp−φ0)e−µz0g

1
(ρp, φp)

while for the right-hand terms B0 three different cases appear, de-
pending on the z-coordinate of the excitation source point (x0, y0, z0) :

i) for 1 + d− z0 > 0 and 1− z0 > 0

B0xx =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
(k2

0 − ρ2
p cos2 φp) ·

π

λu

(
eiλu(1+d−z0)−iµz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}
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B0xy = B0yx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρ2
p sinφp cosφp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}

B0xz = B0zx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρp cosφp) · π

(
eiλu(1+d−z0)−iξz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}

B0yy =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(ϕp−ϕ0)

{
(k2

0 − ρ2
p sin2 φp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}

B0yz = B0zy

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρp sinϕp) · π

(
eiλu(1+d−z0)−iξz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}

B0zz =
(

α

2πko

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρo cos(φp−φo)

{
(k2

0 − ρ2
p cos2 φp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d) − eiλu(1−z0)−iξz1

(λu − ξz)

)}

ii) for 1 + d− z0 > 0 and 1− z0 < 0

B0xx =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)
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(k2

0 − ρ2
p cos2 φp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−zo)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

B0xy = B0yx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρ2
p sinφp cosφp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−z0)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

B0xz = B0zx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρp cosφp) · π

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−z0)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

B0yy =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(ϕp−ϕ0)

{
(k2

0 − ρ2
p sin2 φp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−z0)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

B0yz = B0zy

= −
(

α

2πko

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)
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ρp sinϕp) · π

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−z0)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

B0zz =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
(k2

0 − ρ2
p cos2 φp) ·

π

λu

(
eiλu(1+d−z0)−iξz(1+d)

(λu − ξz)

+
eiλu(1−z0)−iξz1

(λu + ξz)

)
+ 2π

eiλzz0

ξ2z − λ2
u

}

iii) for 1 + d− z0 < 0 and 1− zo < 0

B0xx =
(

α

2πko

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φo)

{
(k2
o − ρ2

p cos2 φp) ·
π

λu

(
e−iλu(1−z0)−iξz1

(λu + ξz)
− e−iλu(1+d−zo)−iξz(1+d)

(λu + ξz)

)}

B0xy = B0yx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρ2
p sinφp cosφp) ·

π

λu

(
e−iλu(1−z0)−iξz1 − e−iλu(1+d−z0)−iξz(1+d)

(λu + ξz)

)}

B0xz = B0zx

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρp cosφp) · π

(
e−iλu(1−z0)−iξz1 − e−iλu(1+d−z0)−iξz(1+d)

(λu + ξz)

)}
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B0yy =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(ϕp−ϕ0)

{
(k2

0 − ρ2
p sin2 φp) ·

π

λu

(
e−iλu(1−z0)−iξz1 − e−iλu(1+d−z0)−iξz(1+d)

(λu + ξz)

)}

B0yz = B0zy

= −
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dφp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
ρp sinϕp) · π

(
e−iλu(1−z0)−iξz1 − e−iλu(1+d−z0)−iξz(1+d)

(λu + ξz)

)}

B0zz =
(

α

2πk0

)2
+∞∫
0

dρp

2π∫
0

dϕp ρp
J1(|ρξ − ρp| α)

|ρ
ξ
− ρ

p
| α · e−iρpρ0 cos(φp−φ0)

{
(k2

0 − ρ2
p cos2 φp) ·

π

λu

(
e−iλu(1−z0)−iξz1 − e−iλu(1+d−z0)−iξz(1+d)

(λu + ξz)

)}
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